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Abstract—Android is the most widely used mobile operating
system with billions of users and devices. The popularity of
Android apps have enticed malware writers to target them.
Recently, Jamrozik et al. proposed an approach, named Boxmate,
to mine sandboxes to protect Android users from malicious
behaviors. In a nutshell, Boxmate analyzes the execution of an
app, and collects a list of sensitive APIs that are invoked by that
app in a monitoring phase. Then, it constructs a sandbox that can
restrict accesses to sensitive APIs not called by the app. In such a
way, malicious behaviors that are not observed in the monitoring
phase – occurring, for example, due to malicious code injection
during an attack – can be prevented. Nevertheless, Boxmate
only focuses on a specific API type (i.e., sensitive APIs); it also
ignores parameter values of many API methods and requested
permissions during the execution of a target app. As a result,
Boxmate is not able to detect malicious behaviors in many cases.

In this work, we address the limitation of Jamrozik et al.’s
work by considering input parameters of many different types
of API methods for mining a more comprehensive sandbox. Given
a benign app, we first extract a list of Android permissions that
the app may request during its execution. Next, we leverage an
automated test case generation tool, named Droidbot, to generate
a rich set of GUI test cases for exploring behaviors of the app.
During the execution of these test cases, we analyze the execution
of four different types of API methods. Furthermore, we record
input parameters to these API methods, and classify those into
four different categories. We leverage the collected parameter
values, and the list of requested permissions to create a sandbox
that can protect users from malicious behaviors. Our experiments
on 25 pairs of real benign and malicious apps show that our
approach is more effective than the coarse- and fine-grained
variants of Boxmate by 267.37% and 81.64% in terms of F-
measure respectively.

Index Terms—Mining Sandboxes, Malicious Behavior Detec-
tion, Android Security

I. INTRODUCTION

Nowadays, Android is the most widely used mobile operat-
ing system. Nevertheless, Android users easily become targets
of malwares and attackers. Truong et al. highlighted that
0.25% of Android devices are affected by malware [1], which
constitutes a considerable large number of infected devices.
Recently, Jamrozik et al. [2] proposed an approach, named
Boxmate, to mine sandboxes for Android apps. Boxmate
prevents the executions of suspicious behaviors that have not
been observed from the executions of an app in a monitoring
phase by automatically constructing sandboxes. In particular,
Boxmate utilizes an automated test case generation tool to
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generate GUI test cases for exploring behaviors of an app.
During the execution of these test cases, Boxmate records
occurrences of sensitive API methods (e.g., methods that take
photos or request access to location information, etc.). It also
considers input parameters of methods in Android’s Con-
tentResolvers classes. Boxmate leverages the above collected
information during the execution of apps to form sandboxes.
The sandboxes are then used to detect suspicious behaviors
that may correspond to the executions of malicious code
injected to the app.

In this work, to create more effective sandboxes for ma-
licious behavior detection, we propose a new approach that
takes into account various types of APIs and values of pa-
rameters that are input to them. Our goal is to construct more
accurate sandboxes that can distinguish malicious and benign
activities during the execution of Android apps. In particular,
given a benign Android app, our approach first extracts a
list of requested Android permissions. Next, we leverage an
automated test case generation tool to generate a rich set of
GUI test cases to explore behaviors of the benign Android
app. During the executions of these test cases, our approach
analyzes four different types of APIs: sensitive, reflection,
BroadcastReceiver, and SharedPreferences APIs, which can
be exploited by malware or attackers to take control of mobile
devices or stole users’ data. We also record input parameters of
these APIs and classify them into four different categories: re-
source, reflections, SharedPreferences, and ContentResolvers.
We utilize recorded parameters and information of requested
permissions to form a sandbox that can distinguish malicious
and benign behaviors of the given app.

Compared to Boxmate [2], our approach not only records
string parameters of ContentResolvers but also considers input
strings of many other APIs. Additionally, we propose a strat-
egy to detect anomalous values given a set of training strings
by leveraging Singular-Value Decomposition technique for
dimension reduction and One-class Support Vector Machine
for anomaly detection. Compared to exact string matching
strategy used by Boxmate, our proposed strategy avoids false
alarms but still detects many anomalous strings.

We evaluate our sandbox mining approach on 25 pairs of
real benign and malicious Android app pairs (BM pairs). These
BM pairs are filtered and selected from a repackaged Android
app dataset from Androzoo [3], [4]. All of the malicious apps
in the BM pairs that we pick have malicious code (i.e., adware,
trojan, spyware, etc.) grafted to the corresponding benign app



in the pair. They thus simulate attacks that can be made to a
benign app. Our experiments show that our approach achieves
Precision, Recall, and F-measure of 83.33%, 80.00%, and
81.63%, respectively. Furthermore, our approach outperforms
two variants of Boxmate [2], which create sandboxes in a
coarse-grained and fine-grained manner respectively, in terms
of F-measure by 267.37% and 81.64%.

The contributions of our work are highlighted as follows:
1) We propose a sandbox inference approach that compre-

hensively considers parameters and various types of APIs
that Android apps invoke during runtime.

2) We propose a statistical approach based on Singular-
Value Decomposition and One-class Support Vector Ma-
chine to detect anomalous values given a set of normal
string values. Our proposed strategy overcomes the weak-
ness of exact string matching employed by Jamrozik et
al. which potentially causes high false alarm rates.

3) We evaluate our proposed approach with 25 pairs of
benign and malicious Android apps that are selected from
a repackaged Android app dataset from Androzoo [3], [4].
Our results indicate that our approach is more effective
than the two baselines in terms of F-measure by 267.37%
and 81.64%, respectively.

The rest of our paper is organized as follows: Section II
briefly describes background materials. Next, we present our
sandbox mining approach in Section III. Then, we discuss our
empirical evaluation and findings in Section IV. Section V
highlights related work. Finally, we conclude the paper and
discuss future work in Section VI.

II. BACKGROUND

A. Android

Currently, Java is the main programming language to write
Android applications. However, Android apps are significantly
different from common Java programs. Android apps have no
main methods but many entry points that are methods implic-
itly called by the Android framework. Android framework is
responsible for managing the life cycle of all components in an
app. An Android app can have four kinds of components, i.e.,
Activity, Service, Content Provider, and Broadcast Receiver,
which are corresponding to the top-level abstractions of user
interface, background service, data storage, and response to
broadcasts, respectively. Intents are the inter-component com-
munication (ICC) mechanism in Android. By the difference
on whether targeted component is known or not, ICCs can be
divided into two categories, i.e., explicit and implicit.

Private and security-sensitive data (e.g., contacts, locations)
in Android platform is protected through a permission mech-
anism. To access a particular sensitive data, an app must
call certain APIs after obtaining a suitable permission. These
permissions in an app can be declared explicitly in a config
file manifest.xml or authorized by a user when the app is
executing. These sensitive APIs often include operations that
are security-critical as they may lead to private data leakage.
In this study, we consider the set of sensitive APIs is defined in

the AppGuard privacy-control framework [5], which contains
a total of 97 APIs.

B. Sandboxing

A sandbox is a security mechanism for separating running
programs, which is often used to run untested or untrusted
programs. It uses security policies to restrict the resources
(e.g., network, disk, etc.) that a program accesses. Android
apps run on a VM (Virtual Machine), and are completely
isolated from another due to the permissions Android gives
each app. This VM guarded by permissions functions like
a “sandbox”. Unfortunately, Android default permissions are
often too coarse-grained. Moreover, Android developers often
request more permissions than their apps actually require – this
causes the issue of overprivileged apps. Felt et al. reported
that 33% of Android apps were overprivileged [6]. Mining
sandboxes for Android is firstly proposed by Jamrozik et
al. They explore the behavior of the app under test by an
automated test case generation tool and construct a sandbox
based on the sensitive APIs identified during testing. The
mined sandboxes can detect and prevent unexpected changes
in app behaviors.

Jamrozik et al. [2] propose Boxmate that constructs Android
sandboxes by analyzing behaviors of benign apps. Boxmate
is capable of intercepting hidden attacks, backdoors, and
exploited vulnerabilities in Android apps. In Boxmate’s ap-
proach, there are two main phases: monitoring and deployment
phase. The goal of the monitoring phase is to construct a sand-
box by analyzing behaviors of a benign app. Boxmate employs
a test case generation tool, named Droidmate, to explore the
behaviors of the app under test. Droidmate can generate a rich
set of test cases, which contain a sequence of GUI events.
During the execution of these test cases, Boxmate records
invocations of sensitive API calls which are collectively used
to construct a sandbox. In the deployment phase, Boxmate
deploys the constructed sandbox on an Android app in order
to block and raise warnings to the users about anomalous
activities of the app that were not observed in the monitoring
phase.

In their experiment, Jamrozik et al. evaluated the con-
structed sandboxes considering two access control levels, i.e.,
per-app and per-event access control. With per-app access
control, the sandboxes are built on the set of sensitive APIs
identified by the test case generation tool and check whether
there exist different sensitive APIs in deployment phase. The
per-app access control allows for achieving a quick saturation
of sensitive APIs in the monitoring phase while alleviating few
false alarms in the deployment phase. However, it may be too
coarse to prevent some attacks, e.g., the sensitive APIs invoked
by some malicious behavior are exactly the same as those
invoked by the normal behavior. Thus, Boxmate implements
per-event access control, which is a more fine-grained access
control policy. For this setting, in the monitoring phase,
Boxmate records pairs of sensitive API and the event that
triggers it; in the deployment phase, upon invocation of each
sensitive API triggered by a GUI event, Boxmate checks
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Fig. 1: Overall framework.

whether this pair was seen during the monitoring phase. They
found that the per-event access control takes longer time to
mine sandboxes and increases the risk of false alarms. In our
paper, we use these two approaches as baselines. We refer to
the per-app strategy and per-event strategy as BoxmateA and
BoxmateE, respectively.

C. Automated Test Case Generation Tools for Android

Automated test case generation tools for Android are de-
signed to detect existing faults in apps. There are different
strategies to explore the behavior of an app under test. Choud-
hary et al. [7] highlight three main categories: random (e.g.,
Monkey [8] and Dynodroid [9]), model-based (e.g., GUIRip-
per [10], PUMA [11], Droidmate [12], and Droidbot [13]), and
systematic (e.g., ACTEve [14] and EvoDroid [15]) strategies.
Random tools randomly generate test inputs. On the other
hand, model-based tools construct a model from the GUI of
an app and explore it to create test cases. Systematic test
case generation tools usually utilize complicated and expensive
methods (e.g., symbolic execution, evolutionary algorithm) in
order to systematically generate test cases that are likely to
achieve higher coverage.

Our previous work [16] has investigated the effectiveness
of mining sandboxes on detecting malicious behavior using
five automated testing tools, i.e., Monkey [8], Droidmate [12],
Droidbot [13], GUIRipper [10], and PUMA [11]. We found
that Droidbot achieved the best performance on 112 app pairs,

so we choose Droidbot as the automatic testing tool in this
study.

III. PROPOSED APPROACH

A. Overall Framework

Figure 1 describes the overall framework of our sandbox
mining approach. Our approach works on two phases: monitor-
ing and deployment. The monitoring phase analyzes behaviors
of a benign version of an Android app to construct a sandbox
SB that can distinguish benign from anomalous behaviors.
The SB is then leveraged in the deployment phase to detect
anomalous behaviors. If the sandbox detects a potential threat
from the app during the deployment phase, it immediately
intercepts the operation of the app and raises a warning to an
Android user about a potential malicious activity. The follow-
ing paragraphs describe detailed operations of our approach in
monitoring and deployment phases:

1) Monitoring Phase: In this phase, our framework takes
as input a benign Android app. We first conduct static analyses
on the APK file of the benign app to find Android permissions
(e.g., android.permission.CAMERA, etc.) that might
be required by calls to a number of Android system APIs.
In particular, all system calls are extracted and mapped to
corresponding permissions1.

Next, we utilize a GUI test case generation tool, named
Droidbot [13], to create a rich set of test cases for discovering

1The list of system APIs that require Android permissions is obtained using
PScout [17].



TABLE I: Sensitive APIs accepting information of resources
as input parameters.

android.webkit.WebView.loadUrl
android.webkit.WebView.loadDataWithBaseURL
java.net.URL.OpenConnection
android.content.ContentResolver.query
android.content.ContentResolver.registerContentObserver

runtime behaviors of the input benign app. Then, our approach
executes these test cases on the app, and monitors invocations
of specific types of APIs; these API types are SharedPrefer-
ences2, reflection, BroadcastReceiver3, and sensitive APIs (see
Section III-B). These APIs are particularly important since
their functionalities can affect security and privacy of app
users. During runtime, we record values of specific parameters
passed to each monitored API. For example, our approach
focuses on parameters containing information of sensitive
resources (e.g, file locations, URLs, etc.) input to sensitive
APIs (see Table I), key-value string pairs extracted from
SharedPreferences objects, etc.

Subsequently, we leverage the extracted parameters and the
list of requested permissions to build the core of the resultant
sandbox by using two modules named Exact Value Matcher
(EVM) and Anomalous Value Detector (AVD). In particular,
EVM performs exact string matching, which is suitable for
detecting malicious resource accesses or permission requests.
On the other hand, AVD (see Section III-C) is built on top of a
Support Vector Machine classification model, which is capable
of distinguishing malicious from benign latent content hidden
inside string parameter values.

The resultant sandbox SB is then employed in Deployment
Phase to detect anomalous unseen permissions requested from
an unknown app or anomalies in parameters passed to vital
APIs during runtime.

2) Deployment Phase: This phase employs the constructed
sandbox SB to detect malicious behaviors in an Android app.
EVM and AVD of the sandbox SB together monitor requested
permissions and parameter values passed to a number of API
types during the execution of the Android app. In partic-
ular, EVM analyzes permissions and parameters passed to
reflection, BroadcastReceiver, and sensitive APIs. On the other
hand, AVD processes strings extracted from key-value pairs
in SharedPreferences objects. Once an anomalous parameter
is detected by EVM or AVD, the sandbox SB raises warnings
to users regarding the suspicious parameters.

B. Monitored APIs & Extracted Parameters

In both monitoring and deployment phases, our approach
monitors invocations of a number of API types during the
execution of an Android app. Invocations of these APIs can
be exploited by attackers or malware to take control of mobile
devices or stole users’ data. Monitored APIs and correspond-
ing parameters are classified to the following categories:

2android.content.SharedPreferences
3android.content.BroadcastReceiver

Sensitive: These are Android system APIs that can be used to
access private or security sensitive data or resources in mobile
devices, e.g., device ID, contacts, locations, etc. Malware and
attackers can exploit invocations of sensitive APIs to take
control of mobile devices. Furthermore, invocations of these
APIs may cause private data leakage.

Malicious activities often require specific external resources
or data; for example, an adware needs to access a remote
server to push an advertisement. Thus, we believe resource
information (i.e., file locations or URLs) passed to sensitive
APIs provides useful hints to differentiate malicious from
benign behaviors. In this work, we use the list of sensitive
APIs defined by the AppGuard privacy-control framework [5],
which includes a total of the 97 APIs. Among the above
sensitive APIs, we manually check and find that 5 out of
97 APIs accept information of resources (e.g., file locations,
URLs, etc.) as parameters (see Table I). During execution of
an Android app, our approach monitors the above 5 APIs
and records their input parameters that contain information
of resources (i.e., file locations or URLs) being accessed. We
refer to these parameters as sensitive resource parameters.

Reflection: In Android programming, reflection APIs belong
to java.util.reflect package, which can be used to
inspect or alter behavior of classes, interfaces, or methods
during runtime. For example, these APIs provide utilities
to access to private fields of a class or invoke methods
dynamically. In fact, many malware can bypass static analysis
tools by converting the sequence of method invocations in
their malicious injected code to a sequence of reflection API
calls [18]. Therefore, our approach focuses on monitoring
and recording invocations of methods that are passed as
parameters to java.lang.reflect.Method.invoke.
Intuitively, only invocations of Android system APIs are able
to directly access to sensitive resources and users’ data. Thus,
we further perform a processing step that selects parameters
that correspond to Android system APIs (i.e., belonging to
android package). We refer to these parameters as reflection
parameters.

BroadcastReceiver: BroadcastReceiver APIs provide utilities
for an Android app to register and handle particular system
or application events. Each registered BroadcastReceiver
object receives android.content.Intent based
notifications when its corresponding events happen during
runtime. For example, an Android app can register for
the HEADSET_PLUG system event, which is activated
when a headset is plugged to the mobile device. Attackers
might exploit BroadcastReceiver APIs by creating custom
BroadcastReceiver objects for attacking purpose. Therefore,
our approach monitors and records concrete types of
android.content.Intent objects passed as parameters
to android.app.ContextImpl.registerReceiver.
We refer to these parameters as BroadcastReceiver
parameters.

SharedPreferences: Each SharedPreferences object is linked
to a file that stores key-value pairs which can be read or written



by utilities provided by SharedPreferences APIs. These key-
value pairs contain specific data or settings of an Android app,
and they vary from app to app. Noticeably, data managed by
SharedPreferences objects are sharable between different parts
of an Android app. Malware or attackers might exploit Shared-
Preferences APIs to capture sensitive information or inject
incorrect data to perform malicious activities or take control of
mobile devices. Therefore, our approach monitors and records
keys and values that are passed to SharedPreferences APIs, and
we refer to these parameters as SharedPreferences parameters.

C. Anomalous Value Detector

Anomalous Value Detector (AVD) module is responsible for
detecting anomalous strings extracted from key-value pairs in
SharedPreferences objects. The construction and utilization of
AVD in the monitoring and deployment phases, respectively,
are highlighted as follows:

Monitoring Phase: In this phase, AVD analyzes parameters
observed in the monitoring phase (see Section III-A). Given
a parameter value S, AVD considers all n-grams (1 ≤ n ≤
min{10,len(S)})4 of S and their frequencies. For instance,
“ab” is a 2-gram of “abab” with frequency of 2. Next,
we construct a vector of these n-grams where the value of
each dimension corresponds to the occurrence frequency of
a specific n-gram. Then, we reduce the dimension of all
vectors to L by employing Singular-Value Decomposition
(SVD) technique to prevent issues with overfitting and curse
of dimensionality [19].

Subsequently, we consider entries of these L-dimensional
vectors as features, and input them to One-Class SVM al-
gorithm to learn a classification model that is capable of
distinguishing benign from anomalous parameters. In order to
achieve the best performance for constructed models, we tune
the configurations of One-Class SVM algorithm to optimize
the accuracy (i.e., percentage of correct classification) on the
training data. In particular, we apply Grid Search to select
the best configuration of kernel (i.e., sigmoid, polynomial,
rbf, or linear) and many other numeric arguments follow-
ing leave-one-out cross-validation5 applied on training data
recorded in the monitoring phase. Once the best configuration
that achieves the highest accuracy is determined, we apply
One-Class SVM with the found configuration on the whole
training data. The final constructed model is then used in the
deployment phase for anomalous parameter detection.

In our experiments, we leverage the implementation of One-
Class Support Vector Machine that is available in scikit-learn6

(0.19.1). By default, we set L = 3.

Deployment Phase: In this phase, AVD processes parameters
observed in the deployment phase. Similar to the monitoring
phase, AVD converts each parameter S′ to a vector where

4len(S) is the number of characters in S.
5We repeatedly select one data instance as test data, and leverage the other

ones as training data.
6http://scikit-learn.org/stable/index.html

the value of each dimension is the frequency of a n-gram
(1 ≤ n ≤ min{10,len(S′)}) of the parameter. Next, AVD
performs SVD to reduce all vectors’ dimensions to L. These
L-dimensional vectors are input to the One-Class SVM model
constructed in the monitoring phase to predict if a parameter
is anomalous compared to the observed benign parameters.

IV. EMPIRICAL EVALUATION

A. Dataset

To investigate the effectiveness of our approach and the
baselines in mining sandboxes, we use benign and malicious
app pairs, in which each malicious app in a pair is created
by grafting malicious code into its corresponding benign
app. In particular, we use a repackaged Android app dataset
from Androzoo [3], [4]. The repackaged apps are built by
unpacking benign apps and grafting some malicious code to
them. Previous studies show that most malware is piggybacked
of benign apps, e.g., 80% of the malicious samples in the
dataset MalGenome [20] are built through repackaging. The
dataset we analyzed contains 15,298 app pairs, and each pair
has one benign app and one malicious app, which is repacked
on the benign app. All benign and malicious apps are real apps
that have been released to various app markets.

Unfortunately, not all apps in the dataset can be used in
our study. First, we fail to install a number of them on the
emulator used in our study due to various compatibility issues.
These incompatibilities cause errors to be thrown or apps end
gracefully right after they are started. There are 7,490 app
pairs left after removing the incompatible apps.

As we want to include different types of malwares in our
study, we first determine malware types (e.g., adware, trojan,
worm, etc.) of the malicious apps in the remaining app pairs
by using Euphony [21], a tool that can infer malware labels
for malicious apps. We exclude 1,412 pairs of which the
malicious app has empty malware type as inferred by Euphony.
Out of the remaining 6,078 app pairs, 5,450 malicious apps
are repackaged with adware. Note that a benign app can be
repacked with multiple kinds of malwares at the same time.
Since it is impossible to run all the pairs of apps in limited
time and resources, we randomly choose 25 pairs of apps. Ten
of them are repackaged with adware and 15 out of them are
repackaged with other malware types.

Table II presents the detail information of these selected 25
pairs of apps. The columns in the table correspond to short
acronyms that we use to refer to the app pairs (Pair Index),
package names of the app pairs (Package), descriptions of the
functionalities of the app pairs (Functionality) and the malware
category (Malware). Out of these app pairs, two pairs have the
same benign app, i.e., P12 and P13. In this table, the benign
apps in the first ten pairs are all repackaged with adware, while
there are multiple categories of malware in the last fifteen
pairs, including trojan, spyware, riskware, worm, etc. These
25 pairs of apps have different functionalities. For example,
P2, P8, P10, P17 and P22 are game apps; P4, P11 and P16
can play audio; P12, P13, and P15 can display pictures.



TABLE II: Twenty five pairs of malicious-benign apps used in our study.

Pair Index Package Functionality Malware

P1 com.android.remotecontrolppt Office remote control adware
P2 com.dseffects.VirtualDog A virtual dog game adware
P3 com.northpark.beautycamera Take selfie photos adware
P4 ix.com.android.VirtualRecorder Record voice and play adware
P5 mobi.infolife.cachepro Clean cache in devices adware
P6 oms.sdt Flashlight with multiple color adware
P7 com.argentina.argentina A mail app in Argentina adware & addisplay
P8 com.androgames.BubbleBurst A bubble game adware & trojan
P9 com.omesoft.nosick A medical app for motion sickness adware & addisplay & trojan & riskware
P10 com.vinanetjsc.dkamphuocFilix A zombie game adware & addisplay & trojan & spyware

P11 byappy.icallmeon Remind users with text or voice messages riskware & spyware
P12, P13 com.AirplanesWallpapers.BoeingE3ASentryWallpaper Wall paper gallery spyware
P14 com.applacarte.a13701917511300513987 Optimist investment service trojan
P15 com.droidappik.sexyhotxxxgirls Sexy girls bikini picture gallery trojan
P16 com.hedami.musicplayerremix Play music worm
P17 com.onepixelarmy.fastball A casual arcade game trojan
P18 com.yy.fontmaster Manage different fonts exploit & trojan
P19 net.halfmobile.scannerfree A handy scanner for PDF creator riskware
P20 org.apache.cordova.rotarybook Books & reference trojan & virus
P21 cz.kinst.jakub.clockq A simple digital clock widget trojan
P22 com.pommedeterresautee.angrybirdsseasonunlock AngryBirds Seasons unlock trojan
P23 appinventor.ai rintoadi.RadioICBB Radio Islamic Centre Bin Baz trojan & spyware
P24 lysesoft.andftp A FTP client for Android trojan & fakelook & unclassifiedmalware
P25 com.nextminute.app Job management trojan & dropper & virus

B. Experimental Settings

1) Automated Test Case Generation Tools: In our study,
we choose Droidbot as the automated test case generation
tool to run the selected apps. Recently, Bao et al. [16] find
that Droidbot is more effective in constructing sandboxes
than four other automated test case generation tools, i.e.,
Monkey, Droidmate, GUIRipper, and PUMA. Moreover, both
Choudhary et al. [7] and Bao et al. [16] show that most
of automated test case generation tools achieve similar code
coverage. Thus, we believe Droidbot is a good choice in our
study. In our experiments, we execute Droidbot three times
with different initial seeds in order to generate three different
sets of test cases. Our goal is to ensure all execution scenarios
are covered by Droidbot as well as to facilitate the computation
of False Alarm Rate (see Section IV-B3).

Droidbot7 is an open-source model-based test case gener-
ation tool that provides utilities for easy installation. We use
the same setting as Bao et al. [16]’s study. In particular, we
configure the emulator to run Android SDK version 19. Our
emulator is a version of Genymotion emulator8 with 2GB
of RAM and Intel x86 CPU architecture. The emulator is
executed on a Mac OS 10.12 (Sierra) laptop running Intel
Core i5 CPU (2.3 GHz).

2) Instrumentation and Trace Collection: To record param-
eter values passed to interested APIs during the execution
of Android apps on generated test cases, we employ Droid-
mon9, which is an open-source Dalvik monitoring framework.
Different from the other Android instrumentation tools (e.g.,
DroidFax [22], etc.), Droidmon requires no modifications in

7https://github.com/honeynet/droidbot
8https://www.genymotion.com/
9https://github.com/idanr1986/droidmon

the bytecode of the APK files for injecting additional instru-
mentation code. Furthermore, Droidmon is based on Xposed
Framework10, which can change behaviors of Android sys-
tem and apps without touching APK files. Hence, Droidmon
provides the utilities to operate on different Android versions
without requiring additional efforts.

Droidmon requires a predefined input list of APIs in order
to record their invocations during runtime of Android apps. We
select and input the list of APIs highlighted in Section III-B
to Droidmon as parameters passed to these APIs contain
important information for building sandboxes. Every time an
interested API is invoked, Droidmon leverages logcat11

to store the invocation of that API. Droidmon eventually
produces a JSON file containing information of invoked APIs
of interest and their parameters.

3) Evaluation Metrics: We assess the effectiveness of a
sandbox in detecting malicious apps by leveraging the fol-
lowing metrics:

• True Positives (TP): Number of malicious apps that are
classified as malicious.

• True Negatives (TN): Number of benign apps that are
classified as benign.

• False Negatives (FN): Number of malicious apps that
are classified as benign.

• False Positives (FP): Number of benign apps that are
classified as malicious.

Then, we use the values of True Positives and False Negatives
to compute the True Alarm Rate (TAR), which is the

10http://repo.xposed.info/
11logcat is an official tool that dumps a log of system messages as well

as messages from user apps with Android’s Log class.
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percentage of apps that are correctly detected as malicious:

TAR =
TP

TP + FN
(1)

The higher the values of TAR, more of the malicious apps are
detected as such. Next, we leverage recorded values of True
Negatives and False Positives to calculate False Alarm Rate
(FAR), which is the percentage of apps that are incorrectly
detected as malicious:

FAR =
FP

FP + TN
(2)

The smaller the values of FAR, the smaller the probability that
false alarms are generated. We also compute Precision, Recall,
and F-measure to evaluate effectiveness of mined sandboxes
in classifying an app as benign or malicious as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure = 2× Precision× Recall
Precision + Recall

All of the above metrics are popular and widely adopted by
state-of-the-art approaches that detect malwares and privacy
leaks in Android apps (e.g., [23]–[27]).

In order to compute True Positives (TP) and False Negatives
(FN) of a mining sandbox approach, for each pair of benign
and malicious app (see Table II), we construct a sandbox from
recorded data of the benign app in monitoring phase, and
deploy the constructed sandbox on its corresponding malicious
app. Following Equation 1, we use True Positives (TP) and
False Negatives (FN) to compute True Alarm Rate (TAR).
On the other hand, to estimate True Negatives (TN) and False
Positives (FP), for each benign Android app we perform cross-
validation among the three different sets of test cases generated
by three distinct execution of Droidbot (see Figure 2). In
particular, we use monitored data of two sets of test cases
as training data to construct a sandbox. Then, we deploy the

inferred sandbox on recorded data of the remaining set of test
cases to check whether the resultant sandbox can detect benign
apps as malicious (i.e., false positive). We repeat this process
three times each using a different set of test cases to detect
false positives. In total, we analyze 3 x 25 = 75 combinations
between benign apps and the sets of generated test cases. Then,
we employ values of True Negatives (TN) and False Positives
(FN) to compute False Alarm Rate (FAR) (see Equation 2).

4) Baselines: We compare our proposed approach with two
variants of Boxmate [2], named BoxmateA and BoxmateE. In
particular, BoxmateA considers execution of sensitive APIs
in benign apps to construct sandboxes. On the other hand,
BoxmateE additionally takes into account GUI elements that
call sensitive APIs when inferring sandboxes. During its
operation, BoxmateE is capable of recording executed sensitive
APIs after an event trigger, i.e., an interaction with GUI
elements such as touching a text label, clicking a button,
etc. Subsequently, BoxmateE constructs a sandbox based on
the pairs of events and sensitive APIs. This per-event access
control is much more fined-grained, which increases the risk of
false alarms. For a fair comparison, the same set of test cases
and evaluation methodology are considered for our proposed
approach and the baselines.

C. Research Questions

Research Question 1: How effective is our proposed sandbox
mining approach compared to the baselines?

In this research question, we investigate the effectiveness
of our proposed approach in terms of different evaluation
metrics (see Section IV-B3). Then, we compare our approach
with two baselines, named BoxmateA and BoxmateE (see
Section IV-B4).
Research Question 2: Which type of recorded data con-
tributes most to the effectiveness of inferred sandboxes in
detecting malicious behaviors?

In this research question, we inspect the impact of each
type of recorded data (i.e., sensitive resource, reflection,
BroadcastReceiver, SharedPreference parameters, and Android
permissions) on the effectiveness of constructed sandboxes.
In particular, we exclude each type of recorded data and
construct a number of new sandboxes. Then, we observe
the effectiveness of these sandboxes in detecting malicious
behaviors compared to the default setting.
Research Question 3: How effective is Exact Value Matcher
(EVM) compared to Anomalous Value Detector (AVD)?

In this research question, we investigate the effectiveness of
EVM and AVD when they operate independently. We first set
each of the two modules to process all recorded data (i.e., sen-
sitive APIs, reflection, BroadcastReceiver, SharedPreference
parameters, and Android permissions) to detect anomalous
activities. Then, we compare the effectiveness of EVM and
AVD with the original setting.

D. Findings

a) RQ1 – Effectiveness of Proposed Approach: Table III
shows the effectiveness of our approach and the two baselines



TABLE III: Effectiveness of our approach and the two base-
lines. “FR” represents False Alarm Rate, and “TR” stands for
True Alarm Rate; “P” is Precision, “R” is Recall, and “F” is
F-measure; “BMA” is BoxmateA, “BME” is BoxmateE, and
“OA” stands for our approach.

Approach TR(%) FR(%) P(%) R(%) F(%)
BMA 16.00 9.33 36.36 16.00 22.22
BME 80.00 58.67 31.25 80.00 44.94
OA 80.00 5.33 83.33 80.00 81.63

(i.e., BoxmateA and BoxmateE) on 25 pairs of Android apps
considering various evaluation metrics. From the table, we
note that our approach achieves the highest True Alarm Rate
(i.e., 80%), lowest False Alarm Rate (i.e., 5.33%), as well as
highest Precision (i.e., 83.33%), Recall (i.e., 80.00%), and F-
measure (i.e., 81.63%). Noticeably, our approach outperforms
the best baselines by 42.87%, 129.18%, and 81.64% in terms
of False Alarm Rate, Precision, and F-measure, respectively.
Overall, our approach achieves the best performance compared
to the two variants of Boxmate.

b) RQ2 – Contributions of Extracted Parameters & Per-
missions: Table IV shows the effectiveness of our proposed
approach considering various subsets of extracted parameters
and permissions. From the table, we find that the exclusion
of sensitive resource parameters significantly reduce the ef-
fectiveness of our approach in terms of all evaluation metrics
compared to the default setting. Furthermore, we note that
extracted permissions have substantial impact on the effec-
tiveness on our approach since TAR, Precision, Recall, and
F-measure decrease when permissions are excluded. Overall,
sensitive resource parameters and permissions have a high
impact on the effectiveness of our sandbox mining approach.

We find that exclusion of parameters passed to reflection
and BroadcastReceiver APIs has no significant impact on the
effectiveness our approach. We still retain these parameters
since our dataset of Android app pairs might not be large
enough to capture the importance of these two types of
parameters. Moreover, previous research studies show that
Android malware can use reflection and BroadcastReceiver
APIs to perform harmful activities [28], [29]. For example,
Aafer et al. [28] highlight that Android malware may utilize
reflection APIs to easily obfuscate dangerous API calls and
thus bypass static analyses employed to identify these dan-
gerous API invocations. Additionally, Feng et al. [29] show
that a broadcast receiver can be used by malwares to launch a
service upon the completion of system events (e.g., incoming
SMS messages or outgoing calls) for forwarding users’ private
information (e.g., IMEI number, subscriber id, etc.) to a remote
server.

c) RQ3 – AVD vs. EVM: Table V shows the effectiveness
of Exact Value Matcher (EVM) and Anomalous Value Detec-
tor (AVD). From the table, we note that EVM results in a
higher False Alarm Rate than the default setting and AVD (by
50.09%). On the hand, AVD has lower True Alarm Rate than
EVM and the default setting (by 20%). Overall, we believe

TABLE IV: Contributions of extracted parameters and per-
missions. “FR” represents False Alarm Rate, and “TR” stands
for True Alarm Rate; “P” is Precision, “R” is Recall, “F” is
F-measure, and “OA” stands for our approach.

Approach TR(%) FR(%) P(%) R(%) F(%)
OA − Resource 48.00 4.00 80.00 48.00 60.00
OA − Reflection 80.00 5.33 83.33 80.00 81.63
OA − BroadcastReceiver 80.00 5.33 83.33 80.00 81.63
OA − SharedPreference 76.00 5.33 82.61 76.00 79.17
OA − Permission 72.00 5.33 81.82 72.00 76.60
OA 80.00 5.33 83.33 80.00 81.63

TABLE V: Effectiveness of Exact Value Matcher (EVM)
and Anomalous Value Detector (AVD). “FR” represents False
Alarm Rate, and “TR” stands for True Alarm Rate; “P” is
Precision, “R” is Recall, and “F” is F-measure.

Approach TR(%) FR(%) P(%) R(%) F(%)
EVM 80.00 8.00 76.92 80.00 78.43
AVD 64.00 5.33 80.00 64.00 71.11
EVM + AVD 80.00 5.33 83.33 80.00 81.63

that EVM and AVD achieve the best performance when they
are combined together.

E. Threats to Validity

Internal Validity. Threats to internal validity relate to errors
in implementation. We carefully inspected our scripts and
source code, but there might be errors that we missed. There
are also potential threats related to accuracy of Android
permission mappings to system APIs. In our experiments, we
used mappings12 provided by PScout [17]. We have manually
checked these mappings, but there could be wrong or missed
mappings that we did not notice.

External Validity. Threats to external validity correspond to
the generalizability of our findings. Our study only leverages
Droidbot to generate test inputs for mining sandboxes. For
each app, we execute Droidbot with time limit of one hour to
discover runtime behaviors of the app. Additionally, we only
analyze 25 pairs of benign and malicious apps due to limited
resources. Still, our number of investigated apps is comparable
to those examined by past studies that also conduct dynamic
analysis on Android apps [10], [14], [30]. All malicious apps
in our work are collected from the piggybacked app dataset
released by Li et al. [31]. These piggybacked apps are not
guaranteed to cover all types of Android malware. Still, most
malwares are piggybacked of benign apps; for instances, 80%
of malicious samples in MalGenome [20] are created by
repackaging.

As future work, we plan to include more Android apps
and malwares as well as leverage more automated test case
generation tools that are popular in industry and academia in
order to reduce these threats to external validity.

Construct Validity. Threats to construct validity relate to
our evaluation metrics. In our work, we have followed state-
of-the-art approaches in malware and privacy leak detection

12http://pscout.csl.toronto.edu/

http://pscout.csl.toronto.edu/


(e.g., [23]–[27]) that also use False Alarm Rate, True Alarm
Rate, Precision, Recall, and F-measure as evaluation metrics.

V. RELATED WORK

A. Sandboxing

The mining sandboxes on Android named Boxmate is first
proposed by Jamrozik et al. [2]. In their work, they evaluated
the effectiveness of Boxmate and demonstrated its low false
alarm rate on several benign apps downloaded from Google
Play. They found that the set of sensitive APIs were quickly
saturated by automated test generation. They also found that
there were few false alarms by checking Boxmate against 18
use cases reflecting typical app usage.

Jamrozik et al. did not validate the effectiveness of sandbox
mining with real malware. In our previous study [16], we
conducted an empirical study using five automated test case
generation tools to demonstrate the effectiveness of mining
sandboxes on detecting malicious apps. In that work, we
found that the sandboxes constructed based on sensitive APIs
called from benign apps can effectively detect more than 75%
malicious apps in the selected app pairs. Additionally, among
these automated test case generation tools, Droidbot can detect
the most malicious apps. However, that work did not consider
parameter values in the called APIs. In this work, we extend
our previous work by building more effective sandboxes by
combining multiple categories of APIs with string parameters.

There are several other works on developing and analyz-
ing sandboxes. For example, Cappos et al. [32] proposed a
more secure sandbox with a security layer that can prevent
attackers from leveraging bugs in privileged functionalities.
Also, Graziano et al. [33] proposed a technique to analyze
sandboxes that were available as public online services to
identify malware development activities in those sandboxes
so that preventive actions can be taken early. Wan et al. [34]
also use automated testing to extract system API calls of
operating systems and build a sandbox for Linux containers.
Different from our work, these studies either do not consider
mobile apps or do not construct sandboxes by analyzing app
behaviors.

B. Automated Test Case Generation for Android

Many automated test case generation tools have been pro-
posed for Android apps. Choudhary et al. [7] have performed
a comparative study to evaluate six automated test case gen-
eration tools, i.e., Monkey [8], ACTEve [14], Dynodroid [9],
A3E-Depth-first [35], GUIRipper [10], and PUMA [11]. They
also divided these automated test case generation tools into
three major behavior exploration strategies, i.e., random ex-
ploration [8], [9], [11], [12], model based exploration [10],
[13], [30], [35]–[38], and systematic exploration [15], [39],
[40].

Monkey [8] is a typical testing tool that uses the random
exploration strategy. It can generate pseudo-random streams
of user events such as clicks, touches, or gestures, as well
as a number of system-level events. As a part of Android
developer toolkit, it is easy to use and highly compatible

with different Android versions. Machiry et al. [9] proposed
Dynodroid, which leverages a novel “observe-select-execute”
strategy to efficiently generate random events and select the
ones related to current execution states of the apps.

There are a number of automated testing tools using a model
based exploration strategy. Amalfitano et al. [10] developed
GUIRipper that systematically explores GUIs of apps by
maintaining state-machine models of GUIs, named GUI Tree
models. Droidmate proposed by Jamrozik et al. implements
a GUI-state based exploration strategy, which is inspired by
Dynodroid [9]. The key idea of its exploration strategy is
to interact with views (GUI elements) randomly, but give
precedence to views that have been interacted the least amount
of times so far. Droidbot [13] dynamically builds a GUI model
of an app under test by collecting GUI information and running
process information. Different from many other model-based
tools, Droidbot is lightweight and does not require system
modification or app instrumentation. Our previous study has
shown that Droidbot can identify more malicious apps than
four other automated test case generation tools [16].

Systematic exploration strategy usually relies on some so-
phisticated techniques (e.g., symbolic execution and evolu-
tionary algorithms) to reveal some application behavior upon
specific inputs. Anand et al. [14] presented a new technique,
named ACTEve, that employs concolic execution for generat-
ing sequences of events for Android applications with available
source code. Mahmood et al. [15] introduced an evolutionary
algorithm based testing framework, named EvoDroid, for
generating relevant test cases for Android application.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a sandbox mining approach that
analyzes parameters passed to different types of APIs as well
as requested Android permissions to construct more accurate
sandboxes for malware detection. We leverage an automated
test case generation tool, named Droidbot [13], to generate
a rich set of GUI test cases for exploring behaviors of
benign apps. During execution of these test cases, we analyze
parameters passed to four different types of APIs: sensitive,
reflections, BroadcastReceiver, and SharedPreferences APIs.
Furthermore, we extract the set of Android permissions. We
utilize the collected parameters and requested Android per-
missions to construct a sandbox that can identify anomalous
activities which are potentially harmful to Android users.
We conduct our experiments on 25 pairs of malicious and
benign apps extracted from piggybacked apps dataset released
by Li et al. [31]. The empirical results indicate that our
approach is more effective than the best performing variant
of Boxmate [2] by 81.64% in terms of F-measure.

As future work, we plan to improve the effectiveness of our
approach further by considering additional types of parameters
and APIs aside from the ones used in this work. We also
plan to leverage many different automated test cases generation
tools to create a richer set of test cases to better construct
sandboxes.
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