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Abstract—The popularity of Android platform on mobile
devices has attracted much attention from many developers and
researchers, as well as malware writers. Recently, Jamrozik et al.
proposed a technique to secure Android applications referred to
as mining sandboxes. They used an automated test case generation
technique to explore the behavior of the app under test and
then extracted a set of sensitive APIs that were called. Based
on the extracted sensitive APIs, they built a sandbox that can
block access to APIs not used during testing. However, they
only evaluated the proposed technique with benign apps but
not investigated whether it was effective in detecting malicious
behavior of malware that infects benign apps. Furthermore, they
only investigated one test case generation tool (i.e., Droidmate)
to build the sandbox, while many others have been proposed in
the literature.

In this work, we complement Jamrozik et al.’s work in two
ways: (1) we evaluate the effectiveness of mining sandboxes on
detecting malicious behaviors; (2) we investigate the effective-
ness of multiple automated test case generation tools to mine
sandboxes. To investigate effectiveness of mining sandboxes in
detecting malicious behaviors, we make use of pairs of malware
and benign app it infects. We build a sandbox based on sensitive
APIs called by the benign app and check if it can identify
malicious behaviors in the corresponding malware. To generate
inputs to apps, we investigate five popular test case generation
tools: Monkey, Droidmate, Droidbot, GUIRipper, and PUMA.
We conduct two experiments to evaluate the effectiveness and
efficiency of these test case generation tools on detecting malicious
behavior. In the first experiment, we select 10 apps and allow test
case generation tools to run for one hour; while in the second
experiment, we select 102 pairs of apps and allow the test case
generation tools to run for one minute. Our experiments highlight
that 75.5%–77.2% of malware in our dataset can be uncovered by
mining sandboxes – showing its power to protect Android apps.
We also find that Droidbot performs best in generating test cases
for mining sandboxes, and its effectiveness can be further boosted
when coupled with other test case generation tools.

Index Terms—Mining Sandboxing, Android Malware, Auto-
mated Test Case Generation

I. INTRODUCTION

Android has become the most dominant mobile platform
today. A report from Gartner highlighted that 81.7% of mobile
devices run on Android platform in the 4th quarter of 20161.
With the availability of a huge number of Android apps in
multiple marketplaces (e.g., Google Play), users are given a
wide range of options to select useful apps for their work
and entertainment. Unfortunately, mobile devices running on
Android are increasingly targeted by attackers. Truong et
al. reported that around 0.25% of Android devices were

1https://www.gartner.com/newsroom/id/3609817
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infected with malware [1], which is still a large number in
consideration of the total number of Android devices. To secure
Android app users, Android platform provides a permission
based mechanism to protect sensitive resources (e.g., contacts,
networks, locations, etc.). However, these permissions are often
too coarse-grained to prevent malicious behaviors.

Recently, Jamrozik et al. proposed Boxmate [2] to secure
Android apps by mining sandboxes that can protect resources
at a fine-grained level by limiting access to sensitive APIs.
Boxmate can protect against unexpected behaviors introduced
by either an attacker “injecting malware” to a benign app2

or introducing a malicious app that looks benign into an app
market. Figure 1 presents the process of Boxmate for mining
sandboxes. This technique first employs Droidmate [4], which
is an automated test case generation tool, to explore behaviors
of an Android app. During its operation, Boxmate identifies
sensitive Android APIs called during the execution of test
cases and uses them to form a sandbox. The sandbox will
then block calls to sensitive APIs unseen during testing. They
evaluated the proposed technique using twelve apps from the
top downloads of the Google Play Store. They found that the
set of sensitive APIs were quickly saturated by automated test

2Xiao et al. have demonstrated that “an attacker can easily insert malicious
codes into any valid APK, without breaking its signature” using various attack
mechanisms [3].

https://www.gartner.com/newsroom/id/3609817


generation. They also found that there were few false alarms
by checking Boxmate against 18 use cases reflecting typical
app usage.3

Jamrozik et al.’s work still leave some room for future work.
First, Jamrozik et al. only evaluated the proposed technique
using twelve benign apps. There was no malware evaluated
in their experiment. Thus, there is a need for additional
studies to further demonstrate the applicability of mined
sandboxes to detect and prevent malicious behaviors. Second,
Jamrozik et al. only used one automated test case generation
tool, i.e., Droidmate [4], to build a sandbox. Since there are
many automated test case generation tools proposed in the
literature, e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], more
investigation is needed to assess: (1) which among these test
case generation tools is more effective for building sandboxes,
and (2) whether they can be used together to mine better
sandboxes.

This study aims to address the above mentioned needs. In
particular, we investigate (1) effectiveness of mining sandboxes
in detecting malicious behaviors, and (2) effectiveness of
multiple automated test case generation tools to mine sandboxes.
Our study makes use of pairs of malware and benign app it
infects. We build a sandbox based on sensitive APIs called
by the benign app and check if it can identify malicious
behaviors in the corresponding malware. To generate inputs to
apps, we investigate five popular and state-of-the-art test case
generation tools: one tool from industry (i.e., Monkey [14]) and
four tools from academia (i.e., Droidmate [4], Droidbot [15],
GuiRipper [7], PUMA [10]).

We conduct two experiments in this work. One of the
experiments is computationally expensive and only considers
a small number of app pairs (SmallE), while another is
computationally inexpensive and considers a larger number
of app pairs (LargeI). In the first experiment, we run the
selected test case generation tools on 10 app pairs for one hour.
Each pair contains one malicious app and one benign app it
infects. We instrument all the tested apps using a tool named
DROIDFAX [16] for collecting the API traces. In the second
experiment, we run these selected tools on 102 pairs of apps
for only one minute. All the apps used in our study are from
a real life piggybacked Android app dataset collected by Li et
al. [17]. Piggybacked apps are built by attackers by unpacking
benign apps and then grafting some malicious code to them.
Most malware is piggybacked of benign apps, e.g., 80% of
the malicious samples in the MalGenome dataset [18] are built
through repackaging.

The first experiment shows that 8 out of 10 malicious apps
can be detected by the sandbox constructed by combining all
the automated test case generation tools, which indicates the
power of mining sandboxes in protecting apps. We notice that
there is only little variation in the effectiveness of the test

3Jamrozik et al. also evaluated the effectiveness of a stricter variant of their
proposed approach that involves per-event access control (wrt. the 18 use
cases), and the readability of the mined sandbox (through a qualitative study
of a sandbox mined from Snapchat). In this work, we focus on per-app access
control and do not consider readability of mined sandboxes.

case generation tools; the numbers of malicious apps detected
by sandboxes constructed by running Monkey, Droidmate,
Droidbot, GUIRipper, and PUMA were 7, 6, 6, 6, and 5,
respectively. We also find that all these tools except Monkey
can detect the malicious behavior within a short amount of
time (i.e., less than one minute). This indicates that sandboxes
built by the test case generation tools can detect malicious
apps efficiently. Then, in the second experiment, we find that
75.5% (77 out of 102) of malicious apps are detected by the
sandbox constructed by combining all these tools. Among these
tools, the sandbox constructed by running Droidbot had the
best performance, i.e., 68 malicious apps were detected. We
also find that if we combined Droidbot with another tool, the
number of detected malicious apps was highly increased, i.e.,
73, 74, 77, and 71 for Monkey, Droidmate, GUIRipper, and
PUMA, respectively.

This paper makes the following main contributions:
• We evaluate mining sandboxes with malware that infects

benign apps. We conduct two experiments with a consid-
erable amount of malware and benign apps they infect,
i.e., 10 app pairs and 102 app pairs, respectively.

• We investigate the effectiveness of five test case generation
tools to construct sandboxes. Our experiments highlight
that the sandboxes constructed by running these tools can
detect malicious apps effectively, i.e., 8 out of 10 malicious
apps in the first experiment and 77 of the 102 malicious
apps in the second experiment are successfully detected.
Also, composition of multiple test case generation tools
can boost the effectiveness of constructed sandboxes.

The remainder of the paper is structured as follows. Section II
presents background materials on Android, sandboxing, and five
automated test case generation techniques. Section III describes
the experiment setup. Section IV presents the experiment results.
Section V discusses some implications and threats to validity
of this work. Section VI reviews related work. Section VII
concludes the paper and discusses future directions.

II. BACKGROUND

A. Android

Android applications are mainly written in Java then com-
piled into Java bytecode and finally converted into Dalvik
bytecode in dex file format. The dex file, native code (if any),
and other resource files are packaged into an APK file for
distribution and installation. Despite being GUI-based and
mainly written in Java, Android apps significantly differ from
Java standalone GUI applications. Android apps have no main
methods but many entry points that are methods implicitly
called by the Android framework. The Android OS defines
a complete lifecycle for all components in an app. There are
four different kinds of components an app developer can
define: Activity, Service, Content Provider, and Broadcast
Receiver; these are the top-level abstractions of user interface,
background service, response to broadcasts, and data storage,
respectively. The Android framework communicates with
applications and manages application executions via various



callbacks, including lifecycle methods and event handlers. The
inter-component communication (ICC) in Android OS is via
passing messages called intents. ICCs could be explicit (i.e.,
the targeted component is specified in the intent) or implicit
(i.e., determined by the Android framework at runtime).

There are some resources or data that are deemed private or
security sensitive in mobile devices, e.g., device ID, contacts,
locations, etc. Android provides a permission mechanism to
protect these sensitive data; that is, an app is only allowed to call
certain APIs accessing a particular sensitive data (or resource),
if it has obtained an explicit permission governing access to the
sensitive data, from an authorized user of the Android device
where the app is run on. These sensitive APIs often include
operations that are security-critical as they may lead to private
data leakage. In our study, we use the set of sensitive APIs
defined in the AppGuard privacy-control framework [19]; it
declares a total of 97 APIs that allow access to crucial private
data (or resources) that an average user should be concerned
about as sensitive.

B. Sandboxing

A sandbox is an environment in which the actions of a
guest application are restricted according to a security policy.
Typically, it provides a tightly controlled set of resources (e.g.,
disk, memory, network access, etc.) for the guest applications
to run in. Android apps run on a VM (Virtual Machine), and
are completely isolated from another due to the permissions
Android gives each app. This VM guarded by permissions
functions like a “sandbox”. Unfortunately, Android default
permissions are often too coarse-grained. Moreover, Android
developers often request more permissions than their apps
would actually require – this causes the issue of overprivileged
apps. Felt et al. reported that 33% of Android apps were
overprivileged [20]. One reason that causes overprivileged
apps is the fact that the official Android documentation for
APIs and permissions is incomplete [21]. To address this
limitation, recently, Jamrozik et al. proposed novel approach,
referred to as mining sandboxes; the proposed approach: (1)
runs automated test case generation tools to generate test
cases that are used to explore a target app; (2) monitors
sensitive APIs that are called during the execution of the test
cases; (3) uses the set of sensitive APIs as a sandbox that
can be deployed to prevent execution of additional sensitive
APIs. Thus, the constructed sandboxes of Jamrozik et al. are
capable of detecting and preventing unexpected changes in app
behaviors. In our study, we want to investigate whether the
proposed sandboxing technique is effective to detect malicious
behavior in malware, as well as investigate the effectiveness
of several automated test case generation tools in constructing
sandboxes.

C. Automated Test Case Generation Tools for Android

There are a number of automated test generation tools for
Android proposed in the literature. The primary goal of these
tools is to detect existing faults in Android apps. The test
case generation tools could have different strategies to explore

the behavior of an app under test. Choudhary et al. [22]
have performed a comparative study to evaluate six automated
test case generation tools, i.e., Monkey [14], ACTEve [23],
Dynodroid [5], A3E-Depth-first [8], GUIRipper [7], and
PUMA [10]. They put these tools into three categories, i.e.,
random, model-based, and systematic. Random tools are the
most straightforward; they randomly generate inputs to test
Android apps. A widely used tool named Monkey [14] belongs
to the random category. Random tools may generate a very
large number of test cases. Model-based tools first construct
a model (typically in the form of finite state machines) based
on the GUI of an app; this model is then explored to create
test cases. GUIRipper [7], PUMA [10] and A3E-Depth-first [8]
belong to this category. The final category (i.e., systematic) of
tools uses often complicated and expensive techniques (e.g.,
symbolic execution, evolutionary algorithm) in an effort to more
systematically generate test cases that can possibly achieve
higher coverage. Among the six tools that Choudhary et al.
have investigated, ACTeve [23] belongs to this category.

In this study, we include one random tool (i.e., Mon-
key [14]), and two model-based tools (i.e., GUIRipper [8]
and PUMA [10]) from Choudhary et al.’s study. We exclude
ACTEve, Dynodroid, and A3E-Depth-first because we cannot
run them on our experimental machine due to compatibility
issues. After Choudhary et al.’s study, additional test case
generation tools are proposed in the literature. Therefore, we
include two other tools, i.e., Droidmate [4] and Droidbot [15].
Simple descriptions of the selected tools are given below:

Monkey [14] generates pseudo-random streams of user events
such as clicks, touches, or gestures, as well as a number of
system-level events. As Monkey has become a part of the
Android developer toolkit, it is easy to install and use Monkey.
Users need to configure by specifying the number of events
they want Monkey to generate.

GUIRipper [7] uses a model-based exploration strategy to test
apps and generates test cases in JUnit format. It builds a model
of the app under test on the fly by collecting the information
of the GUI of the app. Each state in the model keeps a list of
events that can be generated. GUIRipper performs a depth-first
search (DFS) procedure to generate input events from the model.
During the DFS procedure, it restarts the exploration from the
starting state when it cannot find new states. GUIRipper can
only generate UI events but not system events; this may limit
its ability to explore some app behaviors.

PUMA [10] is a generic framework that enables scalable
and programmable UI automation. It supports the random
exploration that is implemented by Monkey, as well as model-
based exploration by providing a finite state machine (FSM)
representation of an app under test and allowing users to modify
the FSM and specify logic to generate events from the FSM.
We use a version of PUMA packaged by Choudhary et al. [22]
that is configured to generate test cases by exploring GUI
models of apps.



Droidmate [4] implements an GUI-state based exploration
strategy, which is inspired by Dynodroid [5]. The key idea
of its exploration strategy is to interact with views (GUI
elements) randomly, but give precedence to views that have
been interacted with the least amount of times so far. Droidmate
monitors sensitive APIs and user resources accessed by the app
under test. During the exploration progress, Droidmate uses
all the observed and monitored behavior of the app to decide
which GUI element to interact with next or if the exploration is
to be terminated. Droidmate terminates when a user-specified
time limit is reached or when there are no views that can
be interacted after two resets in a row. Droidmate needs to
preprocess an app under test to make it inlined, that is, the
app undergoes a slight Dalvik bytecode modification to enable
Droidmate to monitor Android SDK’s API calls.

Droidbot [15] dynamically builds a GUI model of an app
under test by collecting GUI information and running process
information. The model is a state transition graph, in which
each node represents a device state, and each edge between
two nodes represents the test case event that triggers the
state transition. Droidbot uses a simple DFS procedure to
generate test cases. Different from many other model-based
tools, Droidbot is lightweight and does not require system
modification or app instrumentation.

III. EXPERIMENT SETUP

To validate the effectiveness of mining sandboxes, we run
test case generation tools, construct sandboxes for benign apps
based on sensitive APIs called in the execution of the generated
test cases, and investigate the ability of those sandboxes to
detect malicious behaviors in the malware that piggybacks the
corresponding benign apps. Figure 2 presents the experiment
setup process. The following subsections describe our app
instrumentation strategy that we use to identify sensitive APIs
that are called during test case execution, how we run the
different test case generation tools, how we select the benign-
malicious app pairs that we include in this study, and the details
of our two experiments.

A. App Instrumentation

To collect API call traces of the selected apps when running
test case generation tools, we use DROIDFAX proposed by
Cai et al. [16]. DROIDFAX instruments the Android (Dalvik)
bytecode of each app for API call profiling and inter-component
communication (ICC) intent tracing using static program
analysis. DROIDFAX uses Android logging utility and the
logcat 4 tool to record API calls. Each API call recorded
by DROIDFAX is in the format of caller → callee. Based on
generated API call traces, we can build a dynamic call graph.
Each node of the graph is an API (executed as a caller or
callee), and each edge represents an API call which is the
number of times the API is called in the traces.

4https://developer.android.com/studio/command-line/logcat.html
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Fig. 2. Experiment Setup.

B. Running Automated Test Case Generation Tools

We use 5 automated test case generation tools in our
experiment: Monkey, Droidmate, Droidbot, GUIRipper, and
PUMA. Monkey is part of Android SDK, which requires no
additional effort to install on our experiment environment.
We download the source codes of Droidmate5 and Droidbot6

from their GitHub repositories then installed them according to
instructions included in the repositories. We get GUIRipper and
PUMA from the replication package released by Choudhary
et al. [22] and modify their configuration to make them run in
our experiment machine. As both Droidmate and PUMA work
on Android SDK version 19, we configure the emulator to run
Android SDK version 19. An exception is made for running
GUIRipper; it is not open source and the version that we have
based on Choudhary et al.’s study [22] only works for Android
SDK version 10. Thus, for experiments involving GUIRipper,
we configure our emulator to run Android SDK version 10.
Our emulator is also configured to have 2GB of RAM with
Intel x86 CPU architecture. The emulator in turn is run on a
Mac OS 10.12 (Sierra) laptop running Intel Core i5 CPU (2.3
GHz).

C. App Selection

To investigate the effectiveness of mining sandboxes, we need
pairs of benign app and malicious app that infects the benign
app. The malicious apps used in our study are piggybacked
apps, which are built by unpacking benign apps and grafting
some malicious code to them. Previous studies shows most
malware is piggybacked of benign apps, e.g., 80% of the
malicious samples in the dataset MalGenome [18] are built
through repackaging. Thus, we believe pairs of benign app and
a malicious app that piggybacks it is a good dataset for our
study. We used a piggybacked Android app dataset collected

5https://github.com/konrad-jamrozik/droidmate
6https://github.com/honeynet/droidbot

https://github.com/konrad-jamrozik/droidmate
https://github.com/honeynet/droidbot


TABLE I
TEN PAIRS OF MALICIOUS-BENIGN APPS USED IN OUR FIRST EXPERIMENT.

Pair Index Package Category Functionality

P1 com.google.android.diskusage Tools Find files and directories on storage card
P2 org.pyload.android.client System An Android client for pyload, which is a download manager written in Python
P3 com.chinat2t10513zw.templte Lifestyle Provides wedding ceremony information
P4 com.content.ugly.meter Entertainment Take faces of people and give a rating on ugly scale
P5 andrei.brusentcov.lnguagepazzle.en Education Learn English words by looking pictures then choosing corresponding characters
P6 com.northpark.beautycamera Beauty Take selfie photos and make the photo look more beautiful
P7 pl.netigen.bestbassguitarfree Music & Audio A guitar simulator
P8 oms.wmessage Communication Send text messaging and provide some Chinese text message templates
P9 cz.romario.opensudoku Puzzle An open source sudoku game.
P10 com.nesnet.android.cantonese Book & Reference A cantonese dictionary

by Li et al. [17], which contains 2,750 Android apps and 1,497
app pairs7. Each pair has one benign app and one malicious
app, which is piggybacked on the benign app.

However, not all apps in the dataset can be used in our
study. First, DROIDFAX cannot instrument some apps. Out of
the 2,750 apps, only 844 can be successfully instrumented by
DROIDFAX. Among these 844 apps, we fail to install a number
of them on the emulator used in our study due to various
compatibility issues with the SDK version and other settings
of our emulators. These incompatibilities cause errors to be
thrown or apps end gracefully right after they are started. After
removing incompatible apps, we are left with 112 app pairs
which we use for this study8

D. Two Experiments: SmallE and LargeI

We have two experiments in our study. In the first experiment
(SmallE), to explore behavior of the app under test, we
configure each automated test case generation tool to run for
each individual app for one hour and repeat this process 5
times. We randomly select 10 app pairs for this experiment
since it is not possible to run all 112 pairs of apps in limited
time and resources (112 × 2 apps × 5 tools × 5 runs × 1
hour ≈ 233 days). Table I presents the information of these
selected apps. The columns in the table correspond to short
acronyms that we use to refer to the app pairs (Pair Index),
package names of the app pairs (Package), categories of the
app pairs (Category), and descriptions of the functionalities of
the app pairs (Functionality). These 10 pairs of apps belong
to different categories and have different functionalities. For
example, both of P1 and P2 can access the storage of mobile
devices since they need to manage files; P4 and P6 can take
photos; P5 and P9 are game apps. In the second experiment
(LargeI), we run the remaining 102 pairs but each automated
test case generation tool is only allowed to run for one minute
on each app.

IV. EXPERIMENT RESULTS

In this section, we first present the results of the first
experiment (SmallE). Then, we present the results of the

7All apps can be downloaded from Androzoo [24], which is a collection of
Android applications collected from multiple markets.

8https://github.com/baolingfeng/SANER2018Sandboxes

6

8

10

12

14

Monkey Droidmate Droidbot GuiRipper PUMA

Th
e 

lo
ga

ri
th

m
 o

f 
th

e
 n

u
m

b
er

 o
f 

A
P

I t
ra

ce
s

benign malicious

Fig. 3. Total Number of API Traces Generated by the Five Test Case Generation
Tools.

second experiment that runs inexpensive analysis on 102 app
pairs (LargeI).

A. Experiment One: SmallE

Statistics. We present some statistics based on the API traces
generated by running test cases produced by the five test case
generation tools. Figure 3 shows the number of API traces
across the 10 pairs of apps under test for each tool9. The y-axis
of this plot is the logarithm of the number of API traces as
the range of the number of API traces is too large. Among the
five test case generation tools, Monkey can generate the largest
number of API traces in our experiment (i.e., more than one
million API traces per run). This is because Monkey follows a
random exploration strategy that might generate a large number
of invalid inputs while all the other tools use model-based
exploration strategy. PUMA has the smallest number of API

9Note that the black dots in the boxplots correspond to outliers.

https://github.com/baolingfeng/SANER2018Sandboxes
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Fig. 4. Averaged Code Coverage of the Five Test Case Generation Tools.

traces and its average number of API traces is approximately
75,000. The numbers of generated API traces for different apps
are also significantly different. For example, the number of
API traces for apps in pair P4 is much smaller than that of
other pairs.

We also measure the code coverage achieved by the test
case generation tools. We focus on method-level code coverage,
i.e., proportion of methods covered by the generated test cases.
Figure 4 presents the average code coverage of the five test
case generation tools respectively. Although Monkey uses a
simple random exploration strategy to explore the behavior
of the app under test, it achieves the highest code coverage
(0.27 on average for both benign and malicious apps). All the
other tools have similar code coverage. One reason for the low
code coverage might be that many of the unexecuted parts of
the app are third party library code. Li et al. reported that on
average, 41% of an Android app code is contributed by third
party libraries [25]. It is expected that these library code are
not fully covered by the test cases because they are not fully
used by the app. Moreover, Choudhary et al. [22] have also
reported similar code coverage scores.

Effectiveness of Detecting Malicious Behavior. For each test
case generation tool, given a pair of apps, we generate test cases
and then we run them on the two apps. We next construct a
sandbox based on sensitive APIs called by the benign app in the
pair and check if this sandbox can identify the malicious app as
such. The malicious app is detected by the sandbox if it calls
other sensitive APIs but not called by the benign app. Figure 5
presents an example of the sensitive API calls identified from
the API traces generated for the benign and malicious apps
of pair P8. There is only one sensitive API call, i.e., call

Benign API
android.webkit.WebView.loadDataWithBaseURL(...)

Malicious APIs
android.webkit.WebView.loadDataWithBaseURL(...)
android.os.PowerManager$WakeLock.void acquire()
android.telephony.TelephonyManager.getDeviceId()
android.telephony.TelephonyManager.getSubscriberId()

Fig. 5. Sample Detected Malicious Behavior.

TABLE II
EFFECTIVENESS OF SANDBOXES CREATED BY RUNNING DIFFERENT TEST

CASE GENERATION TOOLS.

Pair Monkey Droidmate Droidbot GuiRipper PUMA
P1

√
⊗ ⊗ ⊗ ⊗

P2 ⊗ ⊗ ⊗ ⊗ ⊗

P3
√ √ √ √ √

P4
√ √ √ √ √

P5 ⊗ ⊗ ⊗
√

⊗

P6 ⊗ ⊗ ⊗ ⊗ ⊗

P7
√ √ √ √ √

P8
√ √ √

—
√

P9
√ √ √ √ √

P10
√ √ √ √

—
√

and ⊗ mean that whether or not the sandboxes created by running
these tool detect the malicious apps, respectively. — means the test
case generation tools fail to run the app.

to “android.webkit.WebView.loadDataWithBaseURL(...)”, in
the API traces of the benign app. However, three additional
sensitive APIs exist in the API traces of the malicious app,
which shows that the malicious app tries to run background
and steal the device and subscriber ID.

Table II presents the results on whether the sandboxes
constructed by running different test case generation tools
can identify the malicious apps. All the sandboxes constructed
by running these tools were able to identify the malicious
behaviors for four pairs, i.e., P3, P4, P7, P9. For pair P8
and P10, there were four tools of which the corresponding
sandboxes identified the malicious apps. GUIRipper and PUMA
failed to run the apps of pair P8 and P10, respectively. The
sandbox constructed by running the Monkey tool detected the
largest number (7) of malicious apps. Only it found that the
malicious app in pair P1, which invoked the sensitive API
“android.webkit.WebView.loadDataWithBaseURL(...)” – see
Table III. The sandboxes built by running Droidmate, Droidbot,
and GUIRipper detected the same number of malicious apps
(6). The malicious apps identified by sandboxes constructed
by running Droidmate and Droidbot were the same. Only the
sandbox built by running GUIRipper detected the malicious
apps for the pair P5. It identified three additional sensitive APIs
invoked by the malicious app – see Table III. The sandbox built
by running PUMA identified the smallest number of malicious
apps, i.e., 5. All the constructed sandboxes did not identify
the malicious apps in pair P2 and P6. This might be because



TABLE III
DETECTED SENSITIVE API CALLS THAT BREAK THE MINED SANDBOXES.

Sensitive API App Pairs

android.os.PowerManager$WakeLock.acquire() P5
android.telephony.TelephonyManager.getCellLocation() P10
android.telephony.TelephonyManager.getDeviceId() P3, P5, P10
android.telephony.TelephonyManager.getLine1Number() P8, P9
android.telephony.TelephonyManager.getSimSerialNumber() P8, P9
android.telephony.TelephonyManager.getSubscriberId() P5, P10
android.webkit.WebView.loadDataWithBaseURL(...) P1, P7
android.webkit.WebView.loadUrl(java.lang.String) P4
java.net.URL.openConnection() P9
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Fig. 6. Code Coverage of Test Cases Generated by the Five Tools over Time.

the malicious behavior of these two malicious apps were not
covered by the generated test cases or the malicious behavior
did not involve the use of additional sensitive APIs.

We also built a sandbox by combining all the five test case
generation tools together. For each app pair, we used the set
of sensitive APIs of the benign app detected by all the tools to
build a sandbox. Then, we run all the tools for the malicious app
and check if the sandbox could detect the malicious behavior.
This sandbox can identify 8 out of 10 malicious apps except
for the malicious apps in pair P2 and P6.

The sensitive APIs that differentiate the benign and malicious
apps are presented in Table III. They can be divided into
three categories: (1) power management (i.e., the method
“Wakelock.acquire()”), (2) sensitive data access (i.e., the meth-
ods in class “android.telephony.TelephonyManager”), and (3)
network connection (e.g., “java.net.URL.openConnection()”).
These sensitive APIs are often used by malware to execute
malicious operations; for example, a malware can use the APIs
of class “Wakelock” to run in the background, and then access
private data and send it over the network.

Mining sandbox method can effectively identify 8 out of
the 10 malicious apps as such.

TABLE IV
AMOUNT OF ELAPSED TIME TILL MALICIOUS APPS ARE DETECTED BY
MINED SANDBOXES. “—” MEANS THAT THE CORRESPONDING TOOL IS
UNABLE TO DETECT ADDITIONAL SENSITIVE APIS USED BY MALWARE.

Monkey Droidmate Droidbot GUIRipper PUMA

P1 3,412 — — — —
P2 — — — — —
P3 1,642 8 9 35 23
P4 81 10 15 37 24
P5 — — — 13 —
P6 — — — — —
P7 44 13 24 368 26
P8 192 9 37 — 35
P9 352 56 10 33 22
P10 775 7 11 33 —

mean 928.3 17.2 17.7 86.5 26.0
std 1,138.6 17.5 10.0 126.1 4.7

Efficiency of Detecting Malicious Behavior. We also want to
investigate how fast the sandboxes constructed by running these
test case generation tools can identify the malicious behaviors.
In the study of Jamrozik et al. [2], the sensitive APIs of
apps used in the experiment can be called by the test case
generation tool in several minutes [2]. Choudhary et al. [22]
also reported that six test case generation tools evaluated in
their study could hit the maximum coverage within a few
minutes. Figure 6 presents code coverage of these five test
case generation tools over time. The plot reports the mean
coverage across all the 10 pairs of apps over 5 runs. The
results are consistent with the results of Choudhary et al.’s
study. All the tools achieve a coverage value that is close to
the maximum value in one minute except GUIRipper. This is
because GUIRipper frequently restarts the exploration from the
starting state. This operation needs time to restart the emulator.

Next, we want to investigate the minimum amount of time
the generated sandbox can identify malicious apps using test
cases generated by the different test case generation tools. We
show the result in Table IV which is the average minimum
time of 5 runs. The symbol “–” in the table means that the tool
cannot detect additional sensitive APIs used by the malware.
There are no test case generation tools that detect malicious
behaviors for pair P2 and P6. The last two columns correspond
to the mean and standard deviation time across all detected
malicious apps. Test cases generated using Monkey are the least
efficient in detecting malicious apps. The shortest time it takes
to flag a malicious app as such is one minute (P7), while the
longest time is close to one hour (P1). This wide variation may
be caused due to the random nature of Monkey. Interestingly,
for the other tools that follow model-based exploration strategy,
the variation in detection time is small. The average time to
detect malicious apps using all other tools (except Monkey) is
less than two minutes. The efficiency of test cases generated
by Droidmate, Droidbot and PUMA are comparable (mean <
1 minute), while those generated by GUIRipper require a bit
more time to identify malicious behavior (mean ≈ 1.5 minutes).
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Fig. 7. Number of pairs of apps whose sets of sensitive APIs differ.

Sandboxes constructed by running four of the five test
case generation tools (except Monkey) can detect malicious
behaviors in less than two minutes.

B. Experiment Two: LargeI

The result of the first experiment (see Figure 6) shows that
almost all the tools achieve a coverage that is close to the
maximum value in one minute. So, in this experiment, we only
allow each tool to run on each individual app for one minute;
this setting allows us to investigate the effectiveness of mining
sandbox method on 102 pairs of apps.

Figure 7 presents the number of malicious apps detected by
sandboxes constructed by running each tool. Sandboxes built
by running Monkey, Droidmate, Droidbot, GUIRipper, and
PUMA identified 48, 54, 68, 54, and 51 malicious apps among
the 102 malicious apps, respectively. The sandboxes built by
running Droidbot identified the largest number of malicious
apps, which is much more than that of the sandboxes built
by the other tools. The sandboxes built by running the other
four tools have similar effectiveness – they detected 48-54
malicious apps. We also built sandboxes by combining multiple
test case generation tools together. As the sandbox built by
Droidbot had the best performance, we built sandboxes by
combining Droidbot with each of the other four tools. We
found that the number of identified malicious apps detected is
increased to 73 (Droidbot+Monkey), 74 (Droidbot+Droidmate),
77 (Droidbot+GUIRipper), 71 (Droidbot+PUMA), respectively.
We also combined all the five tools together. For this setting,
we found that 77 out of the 102 malicious apps were identified.

The failure cases can be put into two groups: (1) the sets
of sensitive APIs exercised by a test case generation tool for
a benign app and its corresponding piggybacked malware are
identical and non-empty, and (2) no sensitive APIs can be
exercised by a test case generation tool. Table V presents the
number of app pairs that fall into the two cases for each test
case generation tool. We find that most failure cases belong to
the first group.

TABLE V
FAILURE CASES.

Identical Non-Empty No Sensitive APIs
Set of Sensitive APIs

Monkey 34 20
Droidmate 24 24
Droidbot 16 18
GUIRipper 34 14
PUMA 27 24

Sandboxes generated by running automated test case gener-
ation tools for a short time (i.e., 1 minute) are able to detect
77 out of 102 malicious apps. The best test case generation
tool is Droidbot. Still, by combining the tools together we
can boost the performance further.

V. DISCUSSION

In this section, we describe some implications and threats
to validity of this work.

A. Implications

In the following paragraphs, we highlight some implications
based on the findings of the study:

Mining sandboxes can effectively detect malicious behav-
iors. Our experiments show that 75.5%–77.2% of malware we
investigated in this work can be detected by the sandboxes
constructed by running the five selected test case generation
tools. This complements the findings of Jamrozik et al. [2] that
highlight there are only a few false alarms when using mining
sandbox method to protect apps.

Multiple test case generation tools can be used to boost
effectiveness of mined sandboxes. We found that the sand-
boxes built by the studied test case generation tools are capable
of detecting different malicious behaviors for different apps.
In the first experiment SmallE, the sandboxes inferred by
running Monkey detects the largest number of malicious apps
(i.e., 7 out of the 10 malicious apps) despite of its simple
random exploration strategy. But the time it takes to detect
the additional sensitive API calls in the malicious apps is
much longer than that of the other tools. Additionally, if
we combine all the tools together to build sandboxes, we
can identify more malicious apps (i.e., 8 malicious apps). In
the second experiment LargeI, the sandbox constructed by
running Droidbot detects more malicious apps than the other
tools (i.e., 71 vs. 54, 54, 61, and 58 for Monkey, Droidmate,
GUIRipper, and PUMA, respectively). More importantly, we
discover that by combining Droidbot with the other tools
to construct a sandbox, the number of identified malicious
apps increases. Therefore, it is better to use several test case
generation tools together to build sandboxes.

More work is needed to further improve the effectiveness
of mining sandboxes. These following directions seem promis-
ing:



1) Better automated test generation tools are required to cover
more behavior of an app under test. Both Choudhary et
al.’s study [22] and our study show that the code coverage
of the automated test case generation tools is not high,
and needs improvement.

2) As Android platform evolves rapidly, some tools are not
compatible with latest Android versions. For example,
Droidmate [4] only supports the Android SDK version 19
or 23. Thus, more work needs to be invested in maintaining
automated test case generation tools so that they remain
up-to-date and easy to be used by practitioners.

3) Our sandboxes are simple – they are only collections
of allowable sensitive API calls. A number of malware
that goes undetected in this work may perform malicious
behaviors via a subset of sensitive APIs used by the
benign app. Thus, in the future, it would be interesting to
create more complex sandboxes that can capture additional
constraints. For example, the sandboxes could include
constraints between API calls specified in temporal logics,
etc. These more sophisticated sandboxes could potentially
identify more malware.

4) This work ignores parameter values. Future work can
investigate possibility of mining important constraints
governing parameter values of benign apps (e.g., by using
Daikon [26]).

B. Threats to Validity

Internal Validity. One of threats to internal validity relates to
implementation errors. We have carefully inspected our scripts
to run the selected test case generation tools. However, still
there could be errors that we do not detect. The randomness
involved in the test case generation tools might be a threat to
validity. To reduce this threat, we run each tool on each app
5 times and report the average effectiveness. In the second
experiment, we only run the test case generation tools for one
minute. It is possible that the coverage of the generated test
cases has not converged yet. Still, our first experiment finds
that the coverage of test cases generated by most tools reaches
close to the maximum value within one minute.

Another threat to validity is that we did not reuse the whole
implementation of Boxmate – we simply use its test case
generation tool, i.e., Droidmate. Integrating each test case
generation tool into Boxmate requires a lot of resource and
time, which we leave for future work. Additionally, different
from the original work by Jamrozik et al. that ignores most
parameter values, in this work, we ignore all parameter values.

External Validity. Threats to external validity relates to the
generalizability of our findings. We acknowledge the following
threats:

1) In our first experiment, we only analyzed 10 pairs of
APK files due to limited time and resources. Still, the
number of apps considered is similar to those considered
by many past studies that also perform dynamic analysis
on Android apps [7], [23], [9]. Moreover, to mitigate this

threat to external validity, we have performed a second
experiment which includes 102 more app pairs. In the
future, we plan to analyze more apps using the setting
of the first experiment by devoting more resources and
running the apps in parallel.

2) All the app pairs considered in this work are from piggy-
backed app dataset released by Li et al [17]. Piggybacked
apps do not cover all categories of Android malware. Still,
most malware is piggybacked of benign apps, e.g., 80%
of the malicious samples in the dataset MalGenome [18]
are built through repackaging.

3) We used 5 different test case generation tools to analyze
the selected apps. There are a number of other test case
generation tools that have been proposed in the literature
(see Section VI-B). We have not considered these other
tools.

In the future, we plan to reduce the threats to external
validity by investigating more mobile applications as well as
more automated test case generation tools from the industry
and academia.

VI. RELATED WORK

In this section, we highlight a number of previous research
studies that are related to our work. In section VI-A, we discuss
related works in sandbox mining. Next, Section VI-B describes
state-of-the-art and popular test case generation techniques for
Android apps. Then, we highlight works in adequacy of test
case generations techniques Section VI-C.

A. Sandboxing

Our work extends the first sandbox mining paper by
Jamrozik et al. [2]. While Jamrozik et al.’s have argued for the
effectiveness of Boxmate and demonstrated its low false alarm
rate, they have not evaluated it with real malware. This work
validates the effectiveness of sandbox mining with real malware.
Additionally, we investigated multiple test case generation tools
in addition to the one investigated in their work. There are a
number of other work on developing and analyzing sandboxes.
For example, Cappos et al. proposed a more secure sandbox
with a security layer that can prevent attackers from leveraging
bugs in privileged functionalities [27]. Also, Graziano et al.
proposed a technique to analyze sandboxes that were available
as public online services to identify malware development
activities in those sandboxes so that preventive actions can be
taken early [28].

B. Automated Test Case Generation for Android

Recently, there are several tools that are proposed to generate
test cases for mobile applications (or apps). There are three
major behavior exploration strategies employed by automated
test case generation approaches: random exploration (e.g., [14],
[5], [10], [4]), model based exploration (e.g., [8], [9], [7], [29],
[30], [15], [31]), and systematic exploration (e.g., [32], [12],
[33]) strategies.



Monkey is a well-known testing tool that comes with
Android Development Kit [14]. The tool is widely adopted
as it is easy to use and highly compatible with different
Android versions. Machiry et al. proposed Dynodroid generates
relevant inputs to apps under test. Dynodroid leverages a novel
“observe-select-execute” strategy to efficiently generate random
events and select the ones related to current execution states
of the apps [5]. Hao et al. proposed a novel tool, named
PUMA, that makes UI automation programmable, and allow
users to implement arbitrary dynamic analyses on Android
applications [10]. Jamrozik et al. proposed Droidmate which
is a fully automated GUI execution generator for Android
applications [4]. Droidmate dynamically monitors sensitive
APIs and resources assessed by an application, and decides
which GUI elements to during exploration process for test case
generation [4].

Azim et al. presented A3E that systematically explores
Android applications without assessing to their source code [8].
A3E contains two distinct exploration strategies: targeted and
depth-first exploration [8]. Choi et al. proposed a machine
learning based approach, named SwiftHand, to actively infer
finite-state machine based models of a GUI application [9].
Amalfitano et al. developed GUIRipper [7] that systematically
explores GUIs of apps by maintaining state-machine models
of GUIs, named GUI Tree models [7]. Amalfitano et al.
extended AndroidRipper to MobiGUITAR by defining new
test adequacy criteria that are based on state machines and
providing fully automated testing that works with mobile
platform security [29]. Yang et al. introduced ORBIT that
performs static analysis on source code to extract actions
associated with GUI states of Android applications [30]. Li et al.
presented a light-weight UI-guided test case generator, named
Droidbot, that supports model-based test case generation with
minimal extra requirements and require no instrumentation [15].
Baek et al. proposed an automated model-based Android GUI
testing framework, named GUICC, that supports multi-level
GUI Comparison Criteria to construct accurate GUI models
for test case generation [31].

Anand et al. presented a new technique, named ACTEve, that
employs concolic execution for generating sequences of events
for Android applications with available source code. Similarly,
Jensen et al. applied concolic execution to generate sequences
of user events that can reach to target states in an Android
application [32]. Mahmood et al. introduced an evolutionary
algorithm based testing framework, named EvoDroid, for
generating relevant test cases for Android application [12].
Wong et al. proposed IntelliDroid that leverages both static and
dynamic analyses to generate test cases for several Android
dynamic analysis tools. [33].

C. Adequacy of Test Case Generation Techniques

Choudhary et al. evaluated the effectiveness of six test
case generation tools for Android applications using different
metrics [22]. According to their findings, the studied tools
from academia are no better than Monkey when generating
test cases for open-source apps [22]. Zeng et al. conducted

an industrial case study by employing Monkey on WeChat as
well as propose a new approach to improve the limitations of
Monkey [34]. Gopinath et al. conducted an empirical study
on hundreds of open-source projects from Github and assess
quality of test cases given various coverage levels. In their
study, they leveraged both of human generated test cases as
well as Randoop [35] generated test cases [36]. According to
Gopinath et al.’s findings, statement coverage is a good indicator
of test suite effectiveness [36]. Inozemtseva et al. generated
31,000 test suites for five large-scale software systems that
contain up to 724,000 lines of source code, and, importantly,
discovered that test coverage is not a good indicator of test suite
effectiveness [37]. Kochhar et al. analyzed Apache HTTPClient
and Mozilla Rhino to understand the correlation between the
test suite coverage, size and effectiveness [38]. Zhang et al.
analyzed five large-scale open-source projects to investigate
the relationship between test suite effectiveness and number
of assertions, types of assertions and assertion coverage [39].

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the effectiveness of mining
sandboxes on detecting malicious apps using five test case
generation tools. We make use of pairs of malware and benign
app it infects to investigate whether the sandbox built based
on sensitive APIs called by the benign app can detect the
malicious behavior in the corresponding malware effectively.
We conduct two experiments. In the first experiment, we select
10 pairs of apps and allow test case generation tools to run for
one hour; while in the second experiment, we select 102 pairs
of apps and allow these tools to run for one minute. The results
of the first experiment show that the sandbox constructed by
combining all the five test case generation tools can identify 8
out of 10 malicious apps; while sandboxes built by running
Monkey, Droidmate, Droidbot, GUIRipper, and PUMA can
detect 7, 6, 6, 6, 5 malicious apps, respectively. In the second
experiment, 75.5% (77 out of 102) of malicious apps can be
identified by the sandbox constructed by combining all the five
test case generation tools. The best test case generation tool is
Droidbot. The performance can also be boosted by combing
the other tools together.

As future work, we plan to expand our study to better
address the threats to internal and external validity. We also
plan to build better sandboxes by designing improved test case
generation tools and inferring more sophisticated models of
benign behaviors.
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