
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

9-2018

Rule-based specification mining leveraging learning to rank Rule-based specification mining leveraging learning to rank

Zherui CAO
Zhejiang University

Yuan TIAN
Singapore Management University, ytian@smu.edu.sg

Bui Tien Duy LE
Singapore Management University, btdle@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
CAO, Zherui; TIAN, Yuan; LE, Bui Tien Duy; and LO, David. Rule-based specification mining leveraging
learning to rank. (2018). Automated Software Engineering. 25, (3), 501-530. Research Collection School
Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3988

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Autom Softw Eng
https://doi.org/10.1007/s10515-018-0231-z

Rule-based specification mining leveraging learning to
rank

Zherui Cao1 · Yuan Tian2 · Tien-Duy B. Le2 ·
David Lo2

Received: 17 January 2017 / Accepted: 19 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Software systems are often released without formal specifications. To deal
with the problem of lack of and outdated specifications, rule-based specification min-
ing approaches have been proposed. These approaches analyze execution traces of a
system to infer the rules that characterize the protocols, typically of a library, that its
clients must obey. Rule-based specification mining approaches work by exploring the
search space of all possible rules and use interestingnessmeasures to differentiate spec-
ifications from false positives. Previous rule-based specification mining approaches
often rely on one or two interestingness measures, while the potential benefit of com-
biningmultiple available interestingness measures is not yet investigated. In this work,
we propose a learning to rank based approach that automatically learns a good combi-
nation of 38 interestingness measures. Our experiments show that the learning to rank
based approach outperforms the best performing approach leveraging single interest-
ingness measure by up to 66%.

Zherui Cao and Yuan Tian have contributed equally to this work.

This work was done while the author was visiting Singapore Management University.

B Yuan Tian
ytian@smu.edu.sg

Zherui Cao
caozherui@zju.edu.cn

Tien-Duy B. Le
btdle.2012@smu.edu.sg

David Lo
davidlo@smu.edu.sg

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2 School of Information Systems, Singapore Management University, Singapore, Singapore

123

Published in Automated Software Engineering, 2018 September, 25 (3), 501-530.
https://doi.org/10.1007/s10515-018-0231-z

Autom Softw Eng

Keywords Specification mining · Learning to rank · Automated software develop-
ment · Software maintenance and evolution

1 Introduction

Ideally, a software system should have clearly documented specifications to avoid,
detect and correct bugs. However, due to the hard deadlines and agile nature of many
projects, software is often released and evolved without clear and complete speci-
fications. Formal specifications are especially lacking since developers often do not
have the necessary skill or motivation to write them (Knight et al. 1997). Even if a
system includes formal specifications, these specifications can quickly get outdated
as a software evolves (Zhong and Su 2013). To address the issue of the lack of and
outdated specifications, specification mining approaches have been proposed (Yang
et al. 2006; Lo and Khoo 2006; Lo et al. 2008, 2012; Li et al. 2010; Beschastnikh et al.
2011; Lo and Maoz 2012; Krka et al. 2014; Le et al. 2015; Le and Lo 2015; Lemieux
et al. 2015).

This paper focuses on a family of specification mining techniques, namely rule-
based specification mining, that analyze execution traces of systems and infer
specifications in the form of rules, e.g., “whenever IoAcquireRemoveLock is called,
IoReleaseRemoveLock must eventually be called”, “whenever File.read() is called,
File.open() must have been called before”, etc. Dwyer et al. refer to these rules as
response and precedence patterns, and they correspond to widely used temporal logic
expressions for verification purpose (Dwyer et al. 1999). Since these rules describe
temporal ordering of events (i.e., method calls), they are often referred to as temporal
rules (Lo et al. 2008, 2012). These specification rules are valuable and have been used
for a wide range of practical tasks, such as debugging (Gabel and Su 2010; Microsoft
2016), malware detection (Yang et al. 2014), and data structure repair (Demsky et al.
2006).

Rule-based specification mining approaches typically work by enumerating can-
didate rules in a search space of all possible rules, and evaluating the likelihood of
each rule to be true based on some interestingness measures (Safyallah and Sartipi
2006; Yang et al. 2006; Lo et al. 2008; Lemieux et al. 2015). Among these interest-
ingness measures, Support and Confidence are the most frequently considered ones.
The Support measure calculates the number of times a candidate rule is satisfied in the
execution traces, and the Confidencemeasure calculates how likely the post-condition
of a rule is followed, when its pre-condition occurred in an execution trace. Recently,
Le and Lo conducted an empirical study to examine the performance of applying 38
different interestingness measures to identify specifications for a set of classes in the
Java SDK (Le and Lo 2015). They found that Support and Confidence mediocrely
performed among the 38 measures, and they are unable to rank many correct rules
before incorrect ones. However, in Le and Lo’s empirical study, they only considered
identifying rules based on a single measure, which leaves an important question unan-
swered, i.e., could we compose all the 38 available interestingness measures together
to improve the performance of automated rule-based specification mining based on a
single interestingness measure? This question motivates our study.

123

Autom Softw Eng

In this study, we propose a learning to rank based approach to compose the 38
measures together. Learning to rank is a machine learning technique that learns an
appropriate combination of features for ranking objects (Liu 2009). Specifically, for
the ranking engine of our approach, we consider eight learning to rank algorithms
to learn a composition of the 38 measures based on a training set of classes, whose
specifications are known. The composite measures are then used to identify correct
specifications for a new system or library given its execution traces.

We have evaluated the effectiveness of our learning to rank based approach for
identifying correct specifications of a number of popular API classes previously con-
sidered byLe andLo (2015).Weuse execution traces generated by running theDaCapo
benchmark (Blackburn et al. 2006) and input these to our approach and the baselines.
We find that the best-performing learning to rank approach can achieve much better
performance (i.e., up to 66.22% improvement) than the best performance achieved by
using a single measure alone.

The contributions of this paper include:

1. We propose a learning to rank approach to measure the likelihood of a candi-
date rule being a specification leveraging 38 interestingness measures. This work
extends the priorwork byLe andLo (2015),which is the first to use the 38measures
for specification mining.

2. We investigate the effect of varying learning to rank algorithms for our approach.
Our experiments demonstrate that the best performing variant of our approach can
improve the best performing baseline by up to 66%.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce rule-
based specification mining and list the 38 interestingness measures considered in this
work. In Sect. 3, we describe the details of our learning to rank based specification
mining approaches. In Sect. 4, we present the settings and results of experiments that
evaluate the effectiveness of our proposed approach. We discuss additional topics in
Sect. 5. Related works are presented in Sect. 6. We conclude and mention future work
in Sect. 7.

2 Rule-based specification mining: a primer

In this section, we briefly introduce backgroundmaterials on temporal rules (Sect. 2.1)
and interestingness measures (Sect. 2.2).

2.1 Temporal rules

A temporal rule is defined to contain a series of events that are observed in program
execution traces. Each rule represents a particular property between two ormore events
and possibly be expressed in linear temporal logic (LTL). We list the definitions of
some important notations of LTL in Table 1.

In this study, similar to Le and Lo (2015) and Yang et al. (2006), we focus on infer-
ring two-event temporal rules since these rules the most commonly used specification

123

Autom Softw Eng

Table 1 Some linear temporal logics notation. Φ and Ω correspond to a linear temporal logic expression

Operator name Usage Description

G (Globally) G Φ Φ must hold at every point along the execution trace

X (Next) X Φ Φ must hold at the next point of the current point

F (Finally) F Φ Φ eventually must hold at a point along the execution trace

W (Week Until/Unless) Φ W Ω Φ holds until Ω hold. As long as Φ does not hold, Ω must hold

rules. We focus on two temporal rules relating two events (i.e., method calls) A and
B:

1. A is always followed by B (denoted by A→B): an occurrence of event A must be
eventually followed by an event B in the execution trace. For example, whenever
an android.os.PowerManager.WakeLock object is acquired by calling
acquire() method, eventually the WakeLock object has to be released by
calling release() method.1 We refer to A→B as a forward-eventually rule
where A is the precondition and B is the postcondition of the rule. In LTL, this
rule is expressed as: G(A → XF B).

2. A is always preceded by B (denoted by B←A): an occurrence of event A must
be preceded by event B in the execution trace. For example, every invocation of a
non-static method foo of a Java object must be preceded by the initialization of
that object (i.e., init←foo). We refer to B←A as a backward-eventually rule
where A is the precondition and B is the postcondition of the rule. In LTL, the rule
is expressed as: ¬A W B.

2.2 Interestingness measures

Most rule-based specification mining approaches employ traditional interestingness
measures (i.e., support and confidence) to help differentiate correct specifications
from spurious rules (Fahland et al. 2013; Li and Zhou 2005; Lo et al. 2008, 2012;
Lo and Maoz 2012; Yang et al. 2006). Nevertheless, besides support and confidence,
many other interestingness measures have been proposed in statistics, data mining,
and machine learning areas (Geng and Hamilton 2006). For instances, odds ratio is
often used to indicate the odds of a particular event to occur (e.g., a health outcome)
after a particular medical treatment has been given or an exposure to a particular
substance (Stampfer 2009; Henning and Pfeiffer 2009). Prevalence is often adopted
in epidemiology (Rothman 2012). For example, it has been used to study a proportion
of a population that is affected by a disease (Mutegi et al. 2009). These measures
are potentially applicable to mine specifications. Recently, Le and Lo have evaluated
the performance of 38 interestingness measures including support and confidence for
inferring temporal rules (Le and Lo 2015). Their comparative study indicates that odds
ratio, and other measures outperform support and confidence in many cases.

1 https://developer.android.com/training/scheduling/wakelock.html.

123

Autom Softw Eng

Table 2 Interestingness measures—part I

ID Interestingness
measure

Formula Range

M1 Support P(AB) [0, 1]
M2 Confidence/

Precision
P(B | A) [0, 1]

M3 Coverage P(A) [0, 1]
M4 Prevalence P(B) [0, 1]
M5 Recall P(A | B) [0, 1]

M6 Specificity P(¬B | ¬A) [0, 1]
M7 Accuracy P(AB) + P(¬A¬B) [0, 1]
M8 Lift/Interest P(AB)

P(A)P(B)
[0,+ ∞)

M9 Leverage P(B | A) − P(A)P(B) [− 1, 1]
M10 Added value/

Change of
support

P(B | A) − P(B) [− 1, 1]

M11 Relative risk P(B|A)
P(B|¬A)

[0,+ ∞)

M12 Jaccard P(AB)
P(A)+P(B)−P(AB)

(−∞, + ∞)

M13 Certainty factor P(B|A)−P(B)
1−P(B)

(−∞, + ∞)

M14 Odds ratio P(AB)P(¬A¬B)
P(A¬B)P(¬BA)

[0,+ ∞)

M15 Yule’s Q P(AB)P(¬A¬B)−P(A¬B)P(¬AB)
P(AB)P(¬A¬B)+P(A¬B)P(¬AB)

(−∞, + ∞)

M16 Yule’s Y
√
P(AB)P(¬A¬B)−√

P(A¬B)P(¬AB)√
P(AB)P(¬A¬B)+√

P(A¬B)P(¬AB)
(−∞, + ∞)

M17 Klosgen
√
P(AB) × max(P(B | A) − P(B), P(A | B) − P(A)) [− 1, 1]

M18 Conviction P(A)P(¬B)
P(A¬B)

[0,+ ∞)

M19 Interestingness
weighting

(
P(AB)

P(A)P(B)
)k − 1) × P(AB)m [0,+ ∞)

Dependency (We assume k = 2 and m = 2)

M20 Collective
strength

P(AB)+P(¬B|¬A)
P(A)P(B)+P(¬A)P(¬B)

× 1−P(A)P(B)−P(¬A)P(¬B)
1−P(AB)−P(¬B|¬A)

(−∞, + ∞)

M21 Laplace correction N (AB)+1
N (A)+2 [0.5, 1]

Tables 2 and 3 list the definitions and ranges of the 38 interestingness measures
that are considered by Le and Lo (2015). These measures are formulated based on
probabilities, and their outputs correspond to the interestingness of a rule consisting
of two parts A and B, where A is the precondition and B is the postcondition of
the rule (Geng and Hamilton 2006). In the two tables, P(A) is the probability that
precondition A occurs; similarly, P(B) is the probability that postcondition B occurs
etc. The other symbols follow standard probability notations. For example, support
is defined as the probability of A and B to occur together (i.e., the proportion of
instances where the precondition A is followed by the postcondition B); similarly,

123

Autom Softw Eng

Table 3 Interestingness measures—part II

ID Interestingness measure Formula Range

M22 Gini index
P(A) × (P(B | A)2 + P(¬B | A)2)+
P(¬A) × (P(B | ¬A)2 + P(¬B | ¬A)2)

−P(B)2 − P(¬B)2
[−2, 2]

M23 Goodman and Kruskal

∑
i max j P(Ai B j)+

∑
j maxi P(Ai B j)

2−maxi P(Ai)−max j P(B j)

− maxi P(Ai)+max j P(B j)

2−maxi P(Ai)−max j P(B j)

[0,+ ∞)

M24 Normalized mutual
information

∑
i
∑

j P(Ai B j)×log2
P(Ai B j)

P(Ai)P(B j)

(− ∑
i P(Ai) log2 P(Ai))

(−∞, + ∞)

M25 J-Measure
P(AB) log P(B|A)

P(B)

+P(A¬B) log P(¬B|A)
P(¬B)

(−∞, + ∞)

M26 One-way support P(B | A) log2
P(AB)

P(A)P(B)
(−∞, + ∞)

M27 Two-way support P(AB) log2
P(AB)

P(A)P(B)
(−∞, + ∞)

M28 Two-way support variation

P(AB) log2
P(AB)

P(A)P(B)

+P(A¬B) log2
P(A¬B)

P(A)P(¬B)

+P(¬AB) log2
P(¬AB)

P(¬A)P(B)

+P(¬A¬B) log2
P(¬A¬B)

P(¬A)P(¬B)

(−∞, + ∞)

M29 φ − Coefficient (Linear
correlation coefficient)

P(AB)−P(A)P(B)√
P(A)P(B)P(¬A)P(¬B)

(−∞, + ∞)

M30 Piatetsky-Shapiro P(AB) − P(A)P(B) [− 1, 1]
M31 Cosine P(AB)√

P(A)P(B)
[0,+ ∞)

M32 Loevinger 1 − P(A)P(¬B)
P(A¬B)

(−∞, 1]
M33 Information gain log P(AB)

P(A)P(B)
(−∞, + ∞)

M34 Sebag-Schoenauer P(AB)
P(A¬B)

[0,+ ∞)

M35 Least contradiction P(AB)−P(A¬B)
P(B)

(−∞, + ∞)

M36 Odd multiplier P(AB)P(¬B)
P(B)P(A¬B)

[0,+ ∞)

M37 Example and counterexample
rate

1 − P(A¬B)
P(AB)

(−∞, 1]

M38 Zhang P(AB)−P(A)P(B)
max(P(AB)P(¬B),P(B)P(A¬B))

(−∞, + ∞)

recall is defined as the probability of A given B (i.e., the proportion of instances
where the postcondition A occurs among instances where the precondition B takes
place).

We employ Le and Lo’s mining algorithm (Le and Lo 2015) to estimate these prob-
abilities (i.e., P(A), P(B), P(AB), etc.) from execution traces. First, the algorithm
splits the execution traces into sliding windows of size 5. Next, it computes the num-
ber of sliding windows where different conditions hold (see Table 4). Based on these
numbers, we can then estimate various probabilities. For instances, P(A) = Nw(A)

Nw

123

Autom Softw Eng

Table 4 Notions for sliding
window related counting

Notion Description

Nw(A) Number of sliding windows where A exists

Nw(¬A) Number of sliding windows where A does
not exist

Nw(B) Number of sliding windows where B exists

Nw(¬B) Number of sliding windows where B does
not exist

Nw(AB) Number of sliding windows where A is
followed by B

Nw(A¬B) Number of sliding windows where A exists,
but B does not exists + Number of sliding
windows where both A and B exist, but A
is not followed by B

Nw(¬AB) Number of sliding windows where A does
not exist, but B exists

Nw(¬A¬B) Number of sliding windows where A does
not exist, and B does not exist

Nw Total number of sliding windows

where Nw(A) is the number of sliding windows where A exists and Nw is the total
number of sliding windows.

3 Combining multiple metrics leveraging learning to rank

In this section, we first introduce the overall framework of this study and then elaborate
the details of major components.

3.1 Overall framework

Figure 1 shows the framework of the proposed approach. It consists of two phases:
training and deployment. In the training phase, our approach takes as input traces
containing invocations of methods from classes whose specifications are known. The
goal of the training phase is to learn a ranking model that composes the 38 measures
such that correct rules can be ranked first before false positives (spurious rules). In
the deployment phase, our approach takes as input traces containing invocations of
methods from classes whose specifications are unknown. Our approach would then
generate and rank rules using the ranking model learned in the training phase.

Four major components are part of the framework: candidate rule generator, score
normalizer, learning to rank engine, and ranking model. We describe the functionality
of each component as follows:

(1) Candidate rule generator This component runs Le and Lo’s algorithm (Le and
Lo 2015) to generate all possible temporal rules following the templates described

123

Autom Softw Eng

Training Phase

Deployment Phase

Learning-to-
Rank Engine

Ranked
Rules

Candidate Rule
Generator

Ranking
Model

Score
Normalizer

Execution
Traces

Candidate Rule
Generator

Score
Normalizer

Known
Specifications

Execution
Traces

Fig. 1 Overall framework

in Sect. 2.1. For each temporal rule, it outputs 38 interestingness scores computed
based on the input execution traces.
(2) Score normalizer Different interestingness measures have scores in different
ranges. This component normalizes the scores of each measure so that they are in
the same range, i.e., [0,1]. The normalized score S_normi of the i th measure is
calculated as:

S_normi = Si − min_Si
max_Si − min_Si

In the above equation, Si refers to the raw score of measure i .min_Si andmax_Si
represent the minimum and maximum value of Si .
(3) Learning to rank engine This component takes as input a set of rules. For each
rule, we have the scores of each of the 38 interestingness measures along with the
ground truth label (i.e., whether it is a specification or not). Based on this input,
it produces a ranking model that combines the different interestingness measures
into one. Various machine learning algorithms can be used to produce this ranking
model. We experiment with eight of them and describe their details in Sect. 3.2.
(4) Ranking model The ranking model is produced by the learning to rank engine.
It takes as input a set of rules; for each rule, we have 38 scores corresponding to
the 38 interestingness measures. It outputs a ranked list of rules computed based
on the combination of the 38 scores.

3.2 Learning to rank algorithms

In the literature, many algorithms have been proposed to learn a good ranking model
given a set of labeled data. These algorithms could be divided into three categories,

123

Autom Softw Eng

i.e., point-wise, pair-wise, and list-wise, based on the optimization objective of the
algorithm. Belowwe describe how each category of learning-to-rank algorithmsworks
on rule-based specification mining task.

(1) Point-wise algorithms Point-wise algorithms treat ranking as a regular classi-
fication problem. In the context of rule-based specification mining, they create a
model that can predict the correct label of each potential specification rule in the
training data, with each rule being considered independently. The training loss that
this type of algorithm minimize is:

L pointwise =
N∑

i=1

loss(f (xi), li)

where xi is the feature vector representation one candidate rule, and li is the
ground truth label, i.e., if the candidate rule is a specification, li = 1, otherwise
li = 0. N is the total number of candidate rules in the training data. The function
loss(f (xi), li) can be defined as the loss function of a classification problem or a
regression problem.
(2) Pair-wise algorithms Pair-wise algorithms consider the order of rules in candi-
date rule pairs. Note that, candidate rule pairs are created within a set, in our case,
a set means a class. The correct label of a candidate rule pair is a value representing
the relative relevance of the two rules, e.g., whether one of them is more likely to
be a specification than the other. Pair-wise approaches aim to learn a model that
can minimize the number of pairs which are wrongly ordered (i.e., correct spec-
ifications are ordered after false positives). The candidate rules are then ranked
based on the relative order predicted by the learned model. The training loss that
this type of algorithm minimize is:

L pairwise =
Q∑

q=1

loss(f (xqi), f (xq j), lqi , lq j)

where q represents one target class (e.g., java.net.Socket). Q is the total number of
considered classes. Function loss(f (xi), f (x j), li , l j) is a binary indicator func-
tion which tells whether the pair of candidate specification rules, i.e., xqi and xq j ,
are correctly ranked or not.
(3) List-wise algorithms List-wise algorithms are similar to pair-wise algorithms
as they also consider the relationships among rules. However, different from pair-
wise algorithms, they learn a model that minimizes a loss function which looks at
the ordering of all candidate rules rather than just rule pairs. The training loss that
this type of algorithm minimize is:

Llistwise =
Q∑

q=1

loss(f (xq1), . . . , f (xqnq), lq1, . . . , lqnq)

123

Autom Softw Eng

where nq means the number of candidate rules in target class q. Function
loss(f (xq1), . . . , f (xqnq), lq1, . . . , lqnq) measures the degree of disagreement
between the true ranked list of all documents associated with a query and the
predicted ranked list of the same set of documents.

In this study, we consider the following eight learning to rank algorithms from the
three categories.

Random forest (point-wise) Random forest is an ensemble learner2 that creates many
decision tree classifiers from subsets of training data and learns optimal weights of
these trees to build a strong prediction model for unseen data (Breiman 2001). In
software engineering, random forest has been widely applied and demonstrated its
strong predictive power—c.f., (da Costa et al. 2014; Tian et al. 2015). The algorithm
works in several steps. First draw a set of bootstrap samples from the training data.
Then, for each of the samples, grow an unpruned classification or regression tree,
with the following modification: at each node, rather than choosing the best split
among all predictors, randomly sample some of the predictors and choose the best
split from among those variables. In the testing phrase, the algorithm predicts the
label of new data by aggregating the predictions of the sampled trees (i.e., majority
votes for classification, average for regression).

MART (point-wise) MART is short for Multiple Additive Regression Trees, which is
another ensemble learner built upon decision trees (Friedman 2001). Different from
random forest that learns fully grown decision trees from subsets of data, MART
combines weak decision trees, like shallow trees (i.e., low depth trees) to form a
strong classifier.

RankNet (pair-wise) RankNet aims to minimize the number of inversions in rank-
ing (Burges et al. 2005). An inversion means an incorrect order among a pair of
results, i.e. when we rank a lower rated result above a higher rated result in a ranked
list. RankNet uses a neural network combined with gradient descent steps to control
the learning rate in each iteration step. The neural network has two hidden layers and
uses backpropagation to minimize a cost function to perform the pairwise ranking.

RankBoost (pair-wise) RankBoost (Freund et al. 2003) is a boosting method that
combines multiple weak rankers into a strong one. Boosting is a general technique
for improving the accuracies of machine learning algorithms. The idea of boosting
is to repeatedly construct “weak learners” by re-weighting training data, and to form
an ensemble of weak learners such that the total performance of the ensemble is
“boosted”. RankBoost works in several iterations. At each iteration, a weak ranker is
learned to optimize the ordering of rule pairs in the training data given their weights.
The weight of a training rule pair corresponds to the importance of correctly predicting
its label. Initially, the weights of all rule pairs are kept the same. At the end of each
iteration, these weights are updated. Pairs that are incorrectly learned are emphasized
in the next iteration by increasing their weights. The algorithm eventually produces

2 Ensemble learners combine multiple learning algorithms to achieve higher classification accuracy.

123

Autom Softw Eng

a ranking model which is an ensemble of weak rankers, weighted based on their
effectiveness in ranking rules in the training data.

Coordinate Ascent (list-wise) Coordinate Ascent is an algorithm that learns a ranking
model, in the form of a linear combination of interestingness measures, which max-
imizes Mean Average Precision (MAP) when applied on the training data (Metzler
and Croft 2007). MAP is a standard metric to evaluate the quality of a ranked list—its
description is provided in Sect. 4.2. The value of MAP would be perfect (i.e., 1) if all
specification rules are ranked higher than all non specification rules.

AdaRank (list-wise) AdaRank learns an ensemble of rankers which maximizes MAP
when applied on the training data (Xu and Li 2007). AdaRank runs several rounds and
at each round it creates a weak ranker and maintains a distribution of weights over
the queries in the training data. Initially, AdaRank sets equal weights to the candidate
rules. At each round, it increases the weights of those rules that are not ranked well
by the current model. As a result, the learning at the next round will be focused on the
creation of a weak ranker that can work on the ranking of those ’hard’ rules. Finally,
it outputs a ranking model by linearly combining the weak rankers.

ListNet (list-wise) ListNet is a version of RankNet which uses gradient descent to
minimize a loss function given a ranking problem (Cao et al. 2007). Different from
RankNet, ListNet optimizes directly for lists rather than rule pairs. ListNet implements
the rank function as a neural network (NN), with the objective function set to be the
cross entropy between two probability distributions over the object permutations,
one derived from the human-labelled scores and the other derived from the model
prediction (network output).

LambdaMART (both pair-wise and list-wise) LambdaMART (Wu et al. 2010) com-
bines a tree-boosting algorithmMARTwith LambdaRank (Quoc and Le 2007), which
is extended fromRankNet. LambdaMART is one of the state-of-the-art learning to rank
techniques and has been shown to be very successful in solving real world document
retrieval problems (Svore et al. 2011).

4 Experiment

In this section, we first describe the evaluation dataset. Next, we introduce the metrics
for evaluating the performance of a ranking approach. Subsequently, we describe our
experiment setups. At the end of this section, we present three research questions and
analyze experiments results by answering them.

4.1 Dataset

All experiments of this study are conducted on the benchmark dataset created by Le
and Lo (2015). This data corpus contains manual identified specification rules for 28
classes from Java 6 SDK. These rules are inferred from the executions of 14 projects

123

Autom Softw Eng

Table 5 List of investigated classes from Java SDK

Class name # Specification rules # Candidate rules

java.net.Socket 19 240

java.net.URL 13 182

java.net.URLConnection 0 16

java.util.ArrayList 12 156

java.util.Collection 11 132

java.util.Deque 13 148

java.util.EnumMap 2 6

java.util.EnumSet 3 12

java.util.Formatter 2 6

java.util.HashMap 11 132

java.util.HashSet 10 110

java.util.Hashtable 13 168

java.util.IdentityHashMap 5 30

java.util.LinkedHashMap 11 132

java.util.LinkedHashSet 9 90

java.util.LinkedList 18 294

java.util.List 14 208

java.util.Map 11 132

java.util.NavigableMap 13 156

java.util.NavigableSet 9 90

java.util.Queue 9 72

java.util.Set 9 90

java.util.SortedMap 12 130

java.util.SortedSet 9 90

java.util.StringTokenizer 5 28

java.util.TreeMap 14 180

java.util.TreeSet 10 110

java.util.WeakHashMap 7 32

Total 274 3172

in DaCapo benchmark.3 Table 5 summarizes the basic statistics of the dataset. In total,
we consider 3,172 temporal rules with 274 of them being specifications.

4.2 Evaluation metrics

We consider three evaluation metrics: Mean Average Precision (MAP), Success@N,
and Effort@P. Their definitions are given below.

3 http://dacapobench.org/.

123

Autom Softw Eng

1. Mean Average Precision (MAP)MAP is a popular evaluation metric for evaluating
a ranking approach. It is computed by taking the mean of the average precision of
all ranked lists produced by an approach. In our setting, each ranker would produce
a ranked list for each class that we consider. The average precision of a ranked list
of rules produced for a given class is computed as:

AP = 1

totals

totals∑

i=1

i

Ranki

In the above equation, totals refers to the total number of specification rules (i.e.,
true positives) in the ranked list, and Ranki is the position of the i-th specification
rule in the ranked list. After calculating AP for each ranked list, the Mean Average
Precision (MAP) is the mean of APs over all ranked lists, i.e.,

MAP =
∑N

i=1 AP

N

In the above equation, N is the number of classes that are considered for evaluation.
2. Success@N Success@N is defined as the number of specification rules (i.e., true

positives) found in the top-N rules returned by a ranking approach. This metric
is preferred if developers only check a few possible specification rules provided
by a tool. Success@N is referred to as Correct Rule@K in Le and Lo’s paper (Le
and Lo 2015), and it is also referred to as accuracy@N (Tamrawi et al. 2011), or
Hit@N (Wang and Lo 2014).

3. Effort@P Effort@P is defined as the number of rules examined before finding P
(e.g., 90%) of specification rules (i.e., true positives). This metric measures the
amount of effort that needs to be spent on checking results returned by a ranking
approach in order to retrieve a specific amount of specification rules.

4.3 Experiment settings

Weuse the implementations of the eight learning to rank algorithms in RankLib (Dang
2016). We modify RankLib source code to facilitate calculation of Effort@P, which
is not implemented inside RankLib.

We perform K-fold cross validation to evaluate each ranker. The dataset is divided
into K folds, and the whole evaluation process is repeated K times. For each time,
one of the K folds is used as the test set while the other K -1 folds are combined to
form a training set. In this study, the default value of K is set to 2, which means 50%
of the data are used in the training phase (i.e., 14 out of the 28 classes) and the rest
are used in the testing phase. To further reduce threats to validity, we run K-fold cross
validation 10 times and calculate the average performance of all runs.

123

Autom Softw Eng

4.4 Research questions

In this study, we investigate the following three research questions.
(RQ1) How effective is our learning to rank based approach?

This question aims to investigate the performance of our learning to rank based
approach compared to using a single interestingness measure. Considering that we
have eight learning to rank algorithms to investigate, we answer RQ1 in two steps:

1. RQ1-a: Which learning to rank algorithm performs the best?
2. RQ1-b: Could the best performing learning to rank algorithm perform better than

ranking based on a single interestingness measure?

In the first sub-question, i.e., RQ1-a, we investigate the performance of different
learning to rank algorithms to determine which one is the most appropriate one for our
problem. In the second sub-question, i.e., RQ1-b, we compare the performance of the
best learning to rank based approach with that of ranking using a single interestingness
measure.
(RQ2) What are the most important measures for the best performing ranking model?

Previously, Le and Lo shows that among the 38 possible interestingness measures,
many of them are better than the frequently considered measures, i.e., support and
confidence (Le and Lo 2015). However, when all the measures are considered together
in our learning to rank based approach, it is unclear whether the most effective single
measures are still important for identifying specification rules or not. Thus in this
research question, we would like to know which measures contribute the most for the
best performing ranking model.
(RQ3)Howdodifferent inputs and settings influence the performance of our approach?

In this research question,we investigate the impact of varying the amount of training
data, and the need of performing score normalization. This question can be divided
into two sub-questions:

1. RQ3-a: Does the amount of training data impact the performance of our model?
2. RQ3-b: Is normalization needed before training the model?

4.5 Experiment results

We present our experimental results as answers to the three research questions: RQ1-
RQ3.

4.5.1 (RQ1) How effective is our learning to rank based approach?

(RQ1-a) Which learning to rank algorithm performs the best?

Approach To answer this question, we compare the performance of the eight ranking
algorithms introduced in Sect. 3, i.e., Random Forest, MART, RankNet, RankBoost,
AdaRank, Coordinate Ascent, LambdaMART, and ListNet, on our dataset. To evaluate
the performanceof a ranking algorithm,weconsider threemetrics introduced inSect. 3,
i.e., Mean Average Precision (MAP), Success@N, and Effort@P. For Success@N

123

Autom Softw Eng

Fig. 2 Mean Average Precision
of each ranking algorithm. CA is
short for Coordinate Ascent
algorithm

Fig. 3 Success@N of each ranking algorithm. CA is short for Coordinate Ascent algorithm. Note that we
have 274 correct specifications in our dataset

metric, we consider the following values of K: 5, 10, 15, and 20. For Effort@P, we
consider the following values of P: 50, 75, 90, and 100%.

Result Figure 2 shows theMeanAverage Precision for the eight ranking algorithms.
This table shows that the Random Forest ranking algorithm performs the best with a
MAP of 0.45, followed by RankBoost and LambdaMART.

Figure 3 shows the Success@N of the eight ranking algorithms. We find that Ran-
dom Forest, RankBoost, and LambdaMART performs better than the other algorithms
for all considered K values. When K is set to 15 and 20, MART also performs well,
even better than LambdaMART. From the results, one can find that when K is set to
a small value, e.g., 5, the performance of the best ranking algorithms, e.g., MART,
Lambda MART, RankBoost and Random Forest, do not differ much, however when
K is increased to 15 and 20, the results are substantially different for these algorithms.

Figure 4 shows the Effort@P for the eight ranking algorithms. As the value of P
increases, the number of rules needed to be examined increases too. Among the eight
algorithms, Random Forest and RankBoost, consistently requires developers to spend
less effort to identify 50, 75, 90, and 100% specification rules. RankBoost performs
the best when P is set to 50 and 100%, while Random Forest performs the best when
P is set to 75 and 90%.

123

Autom Softw Eng

Fig. 4 Effort@P of each
ranking algorithm. CA is short
for Coordinate Ascent algorithm.
Note that we have 3172
candidate rules in our dataset

Table 6 Performances of learning to rank based on random forest and single measure approaches

Evaluation
metric

Learning to
rank (random
forest)

Best single
(measure name)

p value Confidence Support

MAP 0.45 0.27 (Odds ratio) 0.0009 0.24 0.23

Success@5 49.2 37 (Odds ratio) 0.0028 25 30

Success@10 98.8 64 (Odds ratio) 0.0028 44 54

Success@15 135.6 82 (Odds ratio) 0.0028 70 69

Success@20 167.2 102 (Odds ratio) 0.0029 95 90

Effort@50% 527.1 753 (Prevalence) 0.0029 772 991

Effort@75% 686.1 836 (Prevalence) 0.0010 1247 1493

Effort@90% 827.6 938 (Prevalence) 0.0029 1818 2202

Effort@100% 1016.6 1052 (Prevalence) 0.0029 2351 2668

p value is calculated by performing Wilcoxon Signed-Rank Test

Overall, Random Forest in general outperforms the other seven ranking algorithms
considering the three metrics.
(RQ1-b) Could the best performing learning to rank algorithm performs better than
ranking based on any single interestingness measure?
Approach To answer this research question, we compare the effectiveness of the best
learning to rankbasedmodel (i.e., RandomForest based)with the performance of using
any single interestingness measure. Similar to RQ1-a, we consider MAP, Success@5,
10, 15, 20 and Effort@50%, 75, 90, and 100%.

Result Table 6 shows the comparison of our learning to rank approach (based on
Random Forest) and the approaches based on a single measure. Besides the perfor-
mance of the best single measure based approach, we also present the performances
of two commonly used single measures, i.e., Confidence and Support in Table 6. The
experiment results show that among all the single measure based approaches, Odds
Ratio has the highestMAP score and Success@Nscores,while Prevalence has the low-
est Effort@P scores. Compared to the best single measure, our approach can achieve a
much better performance, i.e., 35.41–66.22% improvement in terms of MAP and Suc-
cess@N. We also find that our learning to rank based approach can reduce 3.37–30%
of the effort needed to identify the same number of specification rules.We also perform

123

Autom Softw Eng

Wilcoxon signed-rank test (Wilcoxon 1945) based on 10 runs results. For MAP and
Success@N metrics, we test the alternative hypothesis: “The scores of our learning-
to-rank based approach are greater than the best single measure based approach”.
For Effort@P, we test the alternative hypothesis: “The scores of our learning-to-rank
based approach are less than the best single measure based approach”. The p values
produced by our Wilcoxon signed-rank test are included in Table 6. Considering a
commonly-used significance-level of 0.05, the p values show that our approach sta-
tistically significantly outperforms the best single measure approach.

Table 6 also shows that in term of Success@5, the benefit of applying learning to
rank approach is not as high as the other Success@N, which might suggest that for all
ranking approaches, getting a very high Success@5 score is very hard. Similarly when
the value of P in Effort@P increases from 90 to 100%, the benefit of using learning
to rank drops rapidly, which suggests that some specifications are hard to identify by
all approaches.

Learning to rank approach based on Random Forest generally performs the best
among the other alternative ranking algorithms. It can improve the MAP and
Success@N of ranking using a single measure by 35.41%-66.22% and reduce
Effort@P by 3.37%-30.00%.

4.5.2 (RQ2) What are the most important measures for the best performing ranking
model?

Approach For Random Forest, the output learned model is a forest made of many deci-
sion trees. To compute the importance of each measure, we consider Mean Decrease
Gini (IG(Measure)), which measures how each variable contributes to the homo-
geneity of the nodes and leaves in the resulting forest (Louppe et al. 2013).

Given a decision tree, which is the basic unit of the learned Random Forest model,
the Gini impurity, i.e., G(i) of a splitting node i is defined as:

G(i) = 1 − p1
2 − p0

2

In the above equation, pk(k = 0, 1) is defined as nk/n, where 0 and 1 refers to non-
specification rules (false positives) and specification rules (true positives) respectively.
nk is the number of rules at node i with class k, and n is the total number of rules
at node i . For example, if at a decision node, 10 rules reach this node following the
decision tree, and 3 of them are specification rules and the other 7 are non-specification
rules, then the Gini impurity of this node is 1 − 0.32 − 0.72 = 0.42.

The decrease of Gini impurity, i.e., δG(i) at the splitting node i is then defined as:

δG(i) = G(i) − p_le f t ∗ G(i_le f t) − p_right ∗ G(i_right)

In the above equation, p_le f t and p_right represent the percentage of data split to
the left/right side child of the current node. For example given the current node with
metric support and threshold 10, rules satisfying support < 10 should go to the left

123

Autom Softw Eng

side of this splitting node; similarly, rules satisfying support > 10 should go to the
right side of this node. G(i_le f t) and G(i_right) refer to the Gini impurity of the
left child node and right child node of the current splitting node.

Finally, the Mean Decrease Gini of an interestingness measure, i.e., IG(Measure),
is computed by traversing all the decision trees built from training data and averaging
sum of the weighted δG(i) for every node related to the measure:

IG(Measure) = 1

M

∑

m

∑

i

Ni

N
δG(i)

In the above equation, M is the total number of trees in the forest, where Ni
N refers

to the percentage of rules at node i .

Result We compute the average IG(Measure) for the 38 interesting measures over
the five runs of our learning to rank based approach. After each run, we rank the
38 measures based on their Mean Decrease Gini importance scores in descending
order, i.e., the most important metric has a rank of 1. The average rank of each single
metric is shown in Table 7. This figure shows that Prevalence is the most important
measure for the Random Forest ranking model, followed by Certainty Factor and
Specificity.

Prevalence (M4) is the most importance interestingness measure for the Random
Forest based learning to rank approach, followed by Certainty Factor (M13) and
Specificity (M6).

4.5.3 (RQ3) How do different inputs and settings influence the performance of our
approach?

(RQ3-a) Does the amount of training data impact the performance of our model?

Approach To answer this research question, we vary the K of K-fold cross validation
from 2 to 10, and investigate how the variation of K impacts the performance of our
approach. With a larger value of K, we have more training data.

Result Figures 5, 6 and 7 show howRandomForest learning to rank approach performs
whenwe increase the value ofK.Wefind that results of allmetrics aremostly consistent
when K varies, i.e., when K=4–9, performance is stable and better than when K=2,3,
and 10 for all three metrics. We also perform Wilcoxon signed-rank test (Wilcoxon
1945) based on 10 runs results, to compare the results for K=2,3 and 10 with the
best results (K = 9). We consider 3 evaluation metrics, i.e., MAP, Success@10, and
Effort@90%. For MAP and Success@10 metrics, we test the alternative hypothesis:
“The scores of our model under 9-fold setting are greater than our model under 2/3/10-
fold setting”. For Effort@P, we test the alternative hypothesis: “The scores of our
model under 9-fold setting are less than our model under 2/3/10-fold setting”. The p
values produced by our Wilcoxon signed-rank test are shown in Table 8. Considering
a commonly-used significance-level of 0.05, the p values show that the model when

123

Autom Softw Eng

Table 7 Importance of each single metric for learning to rank approach based on Random Forest

Final rank Measure name Average rank

1 M4: Prevalence 1.0

2 M13: Certainty factor 4.3

3 M6: Specificity 6.4

4 M33: Information gain 7.4

5 M7: Accuracy 7.6

6 M32: Loevinger 8.0

7 M15: Yule’Q 8.6

8 M37: Example and counterexample rate 9.9

9 M2: Confidence 11.9

10 M20: Collective strength 12.2

11 M23: Goodman and Kruskal 12.3

12 M38: Zhang 13.3

13 M14: OddsRatio 13.4

14 M21: Laplace correction 14.3

15 M10: Added value/change of support 15.1

16 M16: Yule’Y 15.5

17 M35: Least contradiction 16.6

18 M8: Lift/interest 18.7

19 M5: Recall 18.7

20 M9: Leverage 19.4

21 M24: Normalized mutual information 20.7

22 M34: Sebag-Schoenauer 21.4

23 M26: One-WaySupport 23.1

24 M29: φ − Coefficient (Linear correlation coefficient) 23.2

25 M31: Cosine 23.3

26 M36: Odd multiplier 23.8

27 M18: Conviction 24.4

28 M3: Coverage 24.8

29 M11: Relative risk 28.5

30 M27: Two-way support 29

31 M12: Jaccard 30.9

32 M28: Two-way support variation 31.5

33 M22: Gini index 31.7

34 M19: Interestingness weighting dependency 33.4

35 M30: Piatesky-Shapiro 33.9

36 M1: Support 33.9

37 M25: J-Measure 34

38 M17: Klosgen 34.7

123

Autom Softw Eng

Fig. 5 Mean Average Precision
(MAP) of our approach when
varying the value of K for
K-Fold cross validation

Fig. 6 Number of specification
rules found in Top-N rules
(Success@N) of our approach
when varying the value of K for
K-Fold cross validation

Fig. 7 Number of rules
examined before finding P of
specification rules (Effort@P) of
our approach when varying the
value of K for K-Fold cross
validation

123

Autom Softw Eng

Table 8 p Value of Wilcoxon signed-rank test when comparing K=2,3,10 with K=9 in K-fold cross
validation

MAP Success@10 Effort@90%

K=2 versus K=9 0.00097 0.00097 0.00097

K=3 versus K=9 0.00289 0.00288 0.00286

K=10 versus K=9 0.00097 0.00097 0.00097

Table 9 Performance with and
without normalization

MAP Success@10 Effort@90%

Without norm 0.41593 90.7 1098.9

With norm 0.45 98.8 827.6

Difference 7.42% 6.28% 23.83%

K=9 statistically significantly outperforms the model when K=2, 3, 10. One potential
reason to explain why the results for K=4–9 are better than those for K=2,3 is that the
training data may not be enough when K=2 and 3. And there might be an overfitting
problem when K=10.

(RQ3-b) Is normalization needed before training the model?

Approach To answer this question, we compare the performance of Random Forest
based learning to rank approach with and without score normalization.

Result Table 9 shows the performance of our approachwith andwithout normalization.
It shows that for MAP and Success@10, normalization can improve the performance
by 7.42 and 6.28% respectively. It can also reduce the amount of effort needed to
identify 90% specification rules by 23.83%.

The performance of our best performing learning to rank algorithm (i.e., Random
Forest) remains stable for different amount of training data (i.e., K=4-9). More-
over, the performance of our proposed approach is boosted when normalization
is employed.

5 Discussion

In this section, we first discuss how will our approach perform when only considering
the most important features. Next, we discuss an alternative to combine multiple
measures together, i.e., the unsupervised data fusion technique. In the end, we discuss
several threats to validity of this study.

123

Autom Softw Eng

Fig. 8 MAP when varying the
number of selected features

5.1 Learning-to-rank only using important measures

In Sect. 4.5.2, we have analyzed which features (i.e., interesting measures) are impor-
tant to the best performing rankingmodels. However, it is unknownwhether leveraging
the top-N most important features can result in construction of better ranking models,
compared to using all features. Thus in this subsection, we take top-5, 10, 15, 20, and
25 most important measures (shown in Table 7) as input features for training ranking
models. The results are shown in Figs. 8, 9 and 10. From the figures, we can note that
top-5 and top-10 features result in less effective models than the one trained by all
features in terms of MAP, Success@10, and Effort@90%. One possible reason might
be only using up to 10 interestingness measures could not cover all the major infor-
mation carried by the 38 interestingness measures. As we consider more interesting
measures, we find that (1) using all 38 metrics results in the best performing ranking
model in terms of MAP scores; (2) using top-15 and top-20 features give better results
than using all features in terms of Success@10; (3) using top-20 and top-25 features
give better results than using all features in terms of Effort@90%. Since there are no
consistent patterns for the best selection of top features to construct effective ranking
models, we suggest practitioners to train and test our proposed models on a fraction of
their own dataset to determine which set of features is best for training good models
for their data.

5.2 Alternative: unsupervised data fusion

In this paper, we consider a supervised machine learning technique, i.e., learning-
to-rank, to identify specification rules. As an alternative, one may choose to employ
unsupervised data fusion (Wu 2012) to combine the 38 interestingness measures.
To investigate the performance of using unsupervised machine learning techniques
for combining multiple interestingness measures, we did an initial experiment using
the same dataset as Sect. 4. Our initial investigation finds that a composite measure
created using data fusion technique is unable to outperform the best performing single
measure, not to mention our new learning to rank based approach.

123

Autom Softw Eng

Fig. 9 Success@10 when
varying the number of selected
features

Fig. 10 Effort@90% when
varying the number of selected
features

In our initial experiment, we have implemented five data fusion algorithms, includ-
ing CombSUM (Fox et al. 1993), CombMNZ (Fox et al. 1993), CombANZ (Fox et al.
1993), and two correlation-based methods corrA and corrB (Wu 2012). The first three
algorithms simply combine the scores from different measures by summing up all
values of measures, computing the average of the non-zero values, multiplying the
summation of all values with the number of measures that assign a non-zero value
to a rule, respectively. The last two algorithms first select a set of measures based on
the degree of overlap of their returned ranked list and combine the values provided by
selectedmeasures. Due to page limit, for a detailed description, please refer to Lucia et
al.’s work which applies data fusion techniques to combine interestingness measures
for locating faults (Lo et al. 2014).

Table 10 presents the results of the five data fusion approaches. It shows that unsu-
pervised data fusion approaches perform worse than the best single measure for all
considered metrics. A reason for the bad performance might be that some non-relevant
interestingness measures are selected and considered equally with relevant interest-
ingness measures.

123

Autom Softw Eng

Table 10 Data fusion approaches versus single measure approach

Evaluation metric Algorithm Data fusion
performance

Best single (measure name) Difference (%)

MAP CombSUM 0.22 0.27 (Odds ratio) −17.41

CombANZ 0.16 − 40.34

CombMNZ 0.23 − 14.07

CorrA 0.23 − 14.33

CorrB 0.23 − 15.54

Success@10 CombSUM 45 64 (Odds ratio) − 29.69

CombANZ 29 − 54.69

CombMNZ 46 − 28.13

CorrA 49 − 23.44

CorrB 44 − 31.25

Effort@90% CombSUM 2671 938 (Prevalence) − 184.75

CombANZ 2674 − 185.07

CombMNZ 2271 − 142.11

CorrA 2598 − 176.97

CorrB 2677 − 185.39

5.3 Threats to validity

Threats to construct validity refers to the suitability of our evaluation metrics. In this
study, to reduce threats introduced by evaluation metrics, we have considered three
general evaluationmetrics for ranking problem, i.e., MAP, Success@N, and Effort@P.
These metrics have been used in many prior software engineering works to measure
the effectiveness of a ranking approach (Liu 2011).

Threats to internal validity refers to potential errors in our experiments. The imple-
mentation of the learning to rank algorithms are taken from a mature library RankLib,
which has been integrated into the well-known Lemur open source project. Addition-
ally, we have checked our code, but there might still be errors that we did not notice.
To minimize a possible bias due to the randomness involved in splitting the data into K
folds, following the advice made by Arcuri and Briand (2014) to evaluate algorithms
involving a random process, we run K-fold cross validation 10 times. A similar strat-
egy was also performed by a number of prior work (Zhang et al. 2016; Ghotra et al.
2017). We have also checked the stability of results in the 10 runs. We have found
that the 10 runs results do not different much, i.e., the performance of our approach
under a fixed K-fold setting is stable. For instance, the ten Success@10 scores when
we perform 2-fold cross validation with Random Forest are: 103, 97, 96, 99, 99, 101,
99, 98, 99, and 97 (with an average of 98.8, as shown in Fig. 3).

Threats to external validity refers to the generalizability of our findings. In our
experiments,we consider the samebenchmark dataset considered byLe andLo (2015),
which contains specification rules of classes from Java 6 SDK. We plan to manually
label more specification rules and test our approach on a larger dataset in the future.

123

Autom Softw Eng

In this work, we evaluated and compared our approach with baselines on mining two-
events temporal rules, i.e., method call A is always followed by B and method call A
is always preceded by B. We focus on two-events rules because this type of rule is
mostly considered/used as specification rules (Yang et al. 2006). Additionally, most
complex rules can be composed by a set of simpler rules. In the future, we plan to
apply our approach for mining more types of rules.

6 Related work

In this section, we first introduce several work on specification mining. Next, we
introduce some applications of learning to rank technique in the Software Engineering
area.

6.1 Specification mining

There are several existing approaches that infer rules from program execution traces.
Yang et al. propose Perracotta that mines two-event temporal rules from execution
traces. To infer these rules, Perracotta uses a set of predefined rule templates and par-
titions input traces to several sub-traces. It computes satisfaction rate of a template,
which is the number of partitions satisfying the template divided by the number of total
partitions (Yang et al. 2006). Lo et al. extend Yang et al.’s approach by inferring from
execution traces temporal rules with arbitrary lengths instead of two-event rules (Lo
et al. 2008). Li et al. also extend Yang et al.’s work by extracting simple linear tem-
poral logic (LTL) rules from execution traces for hardware design (Li et al. 2010).
Gruska et al. extract temporal properties of API usage and employ these properties
to detect anomalies that deviate from the 6000 projects (Gruska et al. 2010). Lo et
al. mine length-2 quantified temporal rules which specify data-flow dependency con-
straints betweenmethod invocations (Lo et al. 2012). Lo et al. also infer rules following
the concept of Live Sequence Charts (LCSs), which are enriched with Daikon-style
constraints (Lo and Maoz 2012). Le and Lo investigate the effectiveness of several
interestingness measures from data mining community for inferring rule-based spec-
ifications. Their findings indicate that other measures besides support and confidence
can better detect correct two-event temporal rules from execution traces (Le and Lo
2015). Lemieux et al. introduce Texada that mines temporal specifications in the
form of linear temporal logic (LTL) of arbitrary length and complexity (Lemieux et al.
2015). Compared to existing rule-based specificationmining studies, our work utilizes
38 interestingness measures and leverages learning to rank algorithms to differentiate
specification rules (i.e., true positives) from spurious ones (i.e., false positives).

There are other existing studies that mine specifications in other formats. Lo et al.
propose SMArTIC that applies a variant of k-tails automaton learning algorithm (Bier-
mann andFeldman1972) to infer finite state automatons (FSAs) froma set of execution
traces (Lo and Khoo 2006). Walkinshaw et al. propose FSA inference framework that
enables developers to add their LTL constraints to reduce minimum amount of input
traces to mine reasonably precise specifications (Walkinshaw and Bogdanov 2008).
The Synoptic tool by Beschastnikh et al. automatically mines three types of temporal

123

Autom Softw Eng

rules from execution traces and uses them to generate a concise finite state automaton
(FSA) model that satisfies these rules (Beschastnikh et al. 2011). Krka et al. propose
several algorithms that mine FSA based specifications from execution traces and likely
invariants inferred by Daikon (Krka et al. 2014). Le et al. propose SpecForge that syn-
ergizes different FSA-based specification miners by introducing novel concepts of
model fission and model fusion (Le et al. 2015). Walkinshaw et al. employs data min-
ing classifiers in their proposed inference algorithm that mines Extended Finite State
Machines (EFSMs) from execution traces (Walkinshaw et al. 2016). Different from
the above studies, we infer specifications in forms of temporal rules rather than finite
state automata.

6.2 Learning to rank applications in software engineering

Learning to rank algorithms have been applied to several software engineering research
studies. Xuan et al. propose Multric that employs RankBoost algorithm (Freund et al.
2003) to combine scores computed by 25 spectrum-based fault localization formu-
las (Xuan and Monperrus 2014). Le et al. propose Savant that utilizes rankSVM
algorithm (Lee and Lin 2014) and likely invariants inferred by Daikon (Ernst et al.
2007) to localize faults (Le et al. 2016). Le et al. (2016)’s empirical evaluation indi-
cates that Savant outperforms many state-of-the-art spectrum-based fault localization
approaches includingMultric (Xuan andMonperrus 2014). Ye et al. propose a learning
to rank approach for information retrieval (IR) based bug localization using features
extracted from textual bug reports and source code files (Ye et al. 2014). Yang et al.
employs learning to rank and feature selection for software defect prediction (Yang
et al. 2015). Learning to rank algorithms are also utilized to improve the effective-
ness of information retrieval applications in software engineering. Binkley et al. apply
learning to rank algorithms to improve several feature location models for software
maintenance (Binkley and Lawrie 2014). Niu et al. propose a code example search
approach that employs a learning to rank technique to train a ranking schema (Niu et al.
2016). Zhou et al. design BugSim, a learning to rank based method to detect duplicate
bug reports from a dataset of 45,100 real bug reports of twelve Eclipse projects (Zhou
and Zhang 2012). Yuan et al. propose a learning to rank based model that leverages
information from both developers’ activities and output of bug report localization task
for bug report assignee recommendation (Tian et al. 2016). Learning to rank algo-
rithms have not been employed to mine specifications. Our study is the first to explore
the effectiveness of learning to rank solutions for rule-based specification mining.

7 Conclusion and future work

Rule-based specification mining focuses on mining specifications as a set of rules.
Current state-of-the-art rule-based specification mining approaches rely on interesting
measures, e.g., support and confidence, to predict the probability of a candidate rule
to be a true specification. However, a recent study by Le and Lo found that among
38 interestingness measures, the most frequently considered measures, i.e., support
and confidence, could not identify more specification rules than some of the other

123

Autom Softw Eng

interesting measure like Odds Ratio. Their finding suggests that developers should
carefully pick interestingness measure for mining specification rules.

In this paper, we extend the work of Le and Lo by proposing a learning to rank
based approach to consider all the 38 available interestingness measures together and
investigate whether such combination helps or not. Our learning to rank approach
takes a set of known specification rules as input and learns the best combination over
the 38 measures using random forest ranking algorithm. The experiment results for
classes from Java 6 SDK show that our learning to rank based approach can improve
the best performance of ranking using a single measure by up to 66%. We also find
that Prevalence, Certainty Factor, and Specificity are the most important measures for
our learning to rank based approach.

In the future, we plan to test our learning to rank approach by considering more
classes and libraries, and propose additional measures and strategies to better dif-
ferentiate specification rules from spurious ones. We would also like to investigate
effectiveness of techniques such as principal component analysis to reduce the feature
dimension for our approach. Furthermore, we plan to extend our approach further to
infer 3-event temporal rules. The space of possible 3-event temporal rules is larger
than that of 2-event ones, which poses accuracy and scalability challenges. It would
be harder to infer specification rules since there is a need to sieve them out from a
larger number of non-specification ones. The exploration of the larger search space
also implies a higher computational cost.

References

Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250 (2014)

Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging existing instrumentation
to automatically infer invariant-constrained models. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering, pp. 267–
277. ACM (2011)

Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior.
IEEE Trans. Comput. 100(6), 592–597 (1972)

Binkley, D., Lawrie, D.: Learning to rank improves IR in SE. In: Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 441–445. IEEE Computer Society (2014)

Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur, R., Diwan, A., Fein-
berg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L., Jump, M., Lee, H.B., Moss, J.E.B.,
Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo
benchmarks: java benchmarking development and analysis. In: Proceedings of the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22–26, 2006, Portland, Oregon, USA, pp. 169–190 (2006)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank

using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning,
pp. 89–96. ACM (2005)

Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach.
In: Proceedings of the 24th International Conference onMachine Learning, pp. 129–136. ACM (2007)

da Costa, D.A., Abebe, S.L., McIntosh, S., Kulesza, U., Hassan, A.E.: An empirical study of delays in the
integration of addressed issues. In: ICSME, pp. 281–290 (2014)

Dang, V.: Ranklib. https://sourceforge.net/p/lemur/wiki/RankLib/ (2016). Accessed 17 Sept 2016

123

Autom Softw Eng

Demsky, B., Ernst, M.D., Guo, P.J., McCamant, S., Perkins, J.H., Rinard, M.: Inference and enforcement
of data structure consistency specifications. In: Proceedings of the 2006 International Symposium on
Software Testing and Analysis, pp. 233–244. ACM (2006)

Dwyer,M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In:
Proceedings of the 1999 International Conference on Software Engineering, ICSE’ 99, Los Angeles,
CA, USA, May 16–22, 1999, pp. 411–420 (1999)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon
system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1–3), 35–45 (2007)

Fahland, D., Lo, D., Maoz, S.: Mining branching-time scenarios. In: ASE (2013)
Fox, E.A., Koushik, M.P., Shaw, J., Modlin, R., Rao, D., et al.: Combining evidence frommultiple searches.

In: The First Text Retrieval Conference (TREC-1), US Department of Commerce, National Institute
of Standards and Technology, vol. 500 (1993)

Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res. 4(Nov), 933–969 (2003)

Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232
(2001)

Gabel, M., Su, Z.: Online inference and enforcement of temporal properties. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, Vol. 1, pp. 15–24. ACM (2010)

Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACMComput. Surv. (CSUR)
38(3), 9 (2006)

Ghotra, B., Mcintosh, S., Hassan, A.E.: A large-scale study of the impact of feature selection techniques on
defect classification models. In: Proceedings of the 14th International Conference onMining Software
Repositories, pp. 146–157. IEEE Press (2017)

Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6, 000 projects: lightweight cross-project anomaly
detection. In: Proceedings of the Nineteenth International Symposium on Software Testing and Anal-
ysis, ISSTA 2010, pp. 119–130 (2010)

Henning, J., Pfeiffer, D.U., et al.: Risk factors and characteristics of H5N1 highly pathogenic avian influenza
(HPAI) post-vaccination outbreaks. Vet. Res. 40(3) (2009). https://www.vetres.org/articles/vetres/abs/
2009/03/v09120/v09120.html

Knight, J.C., DeJong, C.L., Gibble, M.S., Nakano, L.G.: Why are formal methods not used more widely?
In: Fourth NASA Formal Methods Workshop, pp. 1–12 (1997)

Krka, I., Brun, Y., Medvidovic, N.: Automatic mining of specifications from invocation traces and method
invariants. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 178–189. ACM (2014)

Le, T.D.B., Lo, D.: Beyond support and confidence: exploring interestingness measures for rule-based
specification mining. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pp. 331–340. IEEE (2015)

Le,T.D.B., Le,X.B.D., Lo,D.,Beschastnikh, I.: Synergizing specificationminers throughmodel fissions and
fusions (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 115–125. IEEE (2015)

Le, T.D., Lo,D., LeGoues, C., Grunske, L.: A learning-to-rank based fault localization approach using likely
invariants. In: Proceedings of the 25th International Symposium on Software Testing and Analysis,
pp. 177–188. ACM (2016)

Lee, C.P., Lin, C.J.: Large-scale linear ranksvm. Neural Comput. 26(4), 781–817 (2014)
Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (t). In: 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pp. 81–92. IEEE (2015)
Li, Z., Zhou, Y.: Pr-miner: automatically extracting implicit programming rules and detecting violations in

large software code. In: ESEC/SIGSOFT FSE (2005)
Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and diagnosis. In: Proceedings

of the 47th Design Automation Conference, pp. 755–760. ACM (2010)
Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009)
Liu, T.Y.: Learning to Rank for Information Retrieval. Springer, Berlin (2011)
Lo, D., Khoo, S.C.: Smartic: towards building an accurate, robust and scalable specification miner. In:

Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 265–275. ACM (2006)

Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better together. Autom. Softw. Eng.
19(4), 423–458 (2012)

123

Autom Softw Eng

Lo, D., Khoo, S.C., Liu, C.: Mining temporal rules for software maintenance. J. Softw. Maint. 20(4),
227–247 (2008)

Lo, D., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Mining quantified temporal rules: formalism,
algorithms, and evaluation. Sci. Comput. Program. 77, 743–759 (2012)

Lo, D., Xia, X., et al.: Fusion fault localizers. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 127–138. ACM (2014)

Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of
randomized trees. In: Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger,
K. Q. (eds.) Advances in Neural Information Processing Systems, pp. 431–439. Curran Asso-
ciates, Inc. (2013). http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-
of-randomized-trees.pdf

Metzler, D., Croft, W.B.: Linear feature-based models for information retrieval. Inf. Retr. 10(3), 257–274
(2007)

Microsoft.: Rules for WDM drivers. http://msdn.microsoft.com/en-us/library/windows/hardware/
ff551714(v=vs.85).aspx. Accessed 18 Oct 2016 (2016)

Mutegi, C., Ngugi, H., Hendriks, S., Jones, R.: Prevalence and factors associated with aflatoxin contami-
nation of peanuts from Western Kenya. Int. J. Food Microbiol. 130(1), 27–34 (2009)

Niu, H., Keivanloo, I., Zou, Y.: Learning to rank code examples for code search engines. Empir. Softw. Eng.
22(1), 259–291 (2016)

Quoc, C., Le, V.: Learning to rank with nonsmooth cost functions. Proc. Adv. Neural Inf. Process. Syst. 19,
193–200 (2007)

Rothman, K.J.: Epidemiology: An Introduction. Oxford university press, Oxford (2012)
Safyallah, H., Sartipi, K.: Dynamic analysis of software systems using execution pattern mining. In: 14th

International Conference on Program Comprehension (ICPC 2006), 14–16 June 2006, pp. 84–88.
Greece, Athens (2006)

Stampfer, M.J.: Welding occupations and mortality from Parkinson’s disease and other neurodegenerative
diseases among united states men, 1985–1999. J. Occup. Environ. Hyg. 6, 267–272 (2009)

Svore, K.M., Volkovs, M.N., Burges, C.J.: Learning to rank with multiple objective functions. In: Proceed-
ings of the 20th International Conference on World Wide Web, pp. 367–376. ACM (2011)

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Fuzzy set and cache-based approach for bug
triaging. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, pp. 365–375. ACM (2011)

Tian, Y., Nagappan, M., Lo, D., Hassan, A.E.: What are the characteristics of high-rated apps? A case study
on free android applications. In: 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 301–310. IEEE (2015)

Tian, Y., Wijedasa, D., Lo, D., Le Gouesy, C.: Learning to rank for bug report assignee recommendation. In:
2016 IEEE 24th International Conference on Program Comprehension (ICPC), pp 1–10. IEEE (2016)

Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with temporal constraints. In: Proceedings of
the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pp. 248–
257. IEEE Computer Society (2008)

Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine models from software
executions. Empir. Softw. Eng. 21(3), 811–853 (2016)

Wang, S., Lo, D.: Version history, similar report, and structure: putting them together for improved bug
localization. In: Proceedings of the 22nd International Conference on Program Comprehension, pp.
53–63. ACM (2014)

Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)
Wu, S.: Data Fusion in Information Retrieval, vol. 13. Springer, Berlin (2012)
Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Inf. Retr.

13(3), 254–270 (2010)
Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: Proceedings of the 30th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
391–398. ACM (2007)

Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics for fault localization. In: ICSME-
30th International Conference on Software Maintenance and Evolution (2014)

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules from imperfect
traces. In: Proceedings of the 28th International Conference on Software Engineering, pp. 282–291.
ACM (2006)

123

Autom Softw Eng

Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: Droidminer: Automated mining and characterization
of fine-grained malicious behaviors in android applications. In: European Symposium on Research in
Computer Security, pp. 163–182. Springer (2014)

Yang, X., Tang, K., Yao, X.: A learning-to-rank approach to software defect prediction. IEEE Trans. Reliab.
64(1), 234–246 (2015)

Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using domain knowledge.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 689–699. ACM (2014)

Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction using a connectivity-based
unsupervised classifier. In: Proceedings of the 38th International Conference on Software Engineering,
pp. 309–320. ACM (2016)

Zhong, H., Su, Z.: Detecting API documentation errors. In: Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2013, Part of SPLASH 2013, Indianapolis, IN, USA, October 26–31, 2013, pp. 803–816
(2013)

Zhou, J., Zhang, H.: Learning to rank duplicate bug reports. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, pp. 852–861. ACM (2012)

123

	Rule-based specification mining leveraging learning to rank
	Citation

	tmp.1559888798.pdf.P1TCS

