
Characterizing Common and Domain-Specific
Package Bugs: A Case Study on Ubuntu

Xiaoxue Ren∗, Qiao Huang∗, Xin Xia†, Zhenchang Xing‡, Lingfeng Bao∗, and David Lo§
∗College of Computer Science and Technology, Zhejiang University, China

†Faculty of Information Technology, Monash University, Australia
‡College of Engineering and Computer Science, Australian National University, Australia

§School of Information Systems, Singapore Management University, Singapore
{xxren, tkdsheep, lingfengbao}@zju.edu.cn, xin.xia@monash.edu, Zhenchang.Xing@anu.edu.au, davidlo@smu.edu.sg

Abstract—Ubuntu is an open source software platform that
runs everywhere from the smartphone, the tablet and the PC
to the server and the cloud. In Ubuntu, there are many self-
contained or third-party software packages for different use, and
a bug report in Ubuntu could affect one or more packages simul-
taneously. Identifying the common package bugs in Ubuntu can
help both developers and users better understand the packages
they are developing or using, and also provide further guidelines
to developers of similar packages in the future. In this paper,
we perform a large-scale empirical study of common package
bugs on Ubuntu by leveraging topic modeling. By analyzing
a total of 240,097 bug reports, we identify 3 general bugs
that are common to all Ubuntu packages, i.e., Graphical User
Interface (GUI), Maintenance, and Runtime bugs. Moreover, we
categorize top-100 packages with most number of bug reports
into 6 categories (i.e., graphics, internet, office, sound and video,
system management, and kernel), and identify domain-specific
bugs for each category.

Index Terms—Empirical Study, Bug Report Summarization,
Topic Model

I. INTRODUCTION

Due to the complexity of software development, bugs are
inevitable. Bug fixing is one of the most important activities in
the whole life cycle of software development and maintenance.
In this case, understanding bugs in a software system could
help developers and users understand the system further, and
also provide further guidelines to developers of similar systems
in the future [1].

Ubuntu, one of the world’s most popular Linux distributions
for desktop and laptop PCs, is a large project with a huge
number of bug reports. Although Ubuntu has its own bug
tracking system (i.e., Launchpad1), it cannot tell developers
what are the common problems that are mentioned by a large
number of bug reports. We notice that Launchpad allows
developers to assign “tags” for each bug report. However,
most tags are in a coarse granularity, which only contain
limited information (e.g., the mostly used tags are about
release version, type of CPU and etc). Thus, in this paper,
we are interested to summarize bug reports in Ubuntu and
identify common problems for different packages. Identifying
these problems through bug reports can help developers better
understand the packages they are developing, and also provide

1https://bugs.launchpad.net/ubuntu

further guidelines to developers of similar packages in the
future [2]–[5]. Besides, the package users can also be benefited
when they need to choose the most suitable package from
several comparable packages [6].

Previous studies (e.g., [7]) have proposed techniques to
automatically summarize bug reports. However, these work
mainly focus on summarizing an extractive abstract of the
problem in an individual bug report. Still there lacks of tech-
niques to identify high-level problems that are mentioned by
a large number of bug reports [8]. In this paper, we propose a
semi-automated approach to summarize bug reports in Ubuntu
and identify common problems for different packages. First,
we preprocess the textual fields of all bug reports and apply
topic model [9] on that whole dataset to extract n topics. Topic
model is a widely used generative model, which is a modeling
method for text implicit topics. Here we treat each topic
as a candidate problem. Then for each candidate problem,
we manually summarize a high-level abstract by reading bug
reports related to this topic. Finally, we manually select typical
problems among all candidate problems.

By leveraging topic models, we conduct an empirical study
on a total of 240,097 bug reports collected from Ubuntu. First,
we manually identify 3 common problems that are common
to see in different Ubuntu packages, i.e., Graphical User
Interface (GUI), Maintenance, and Runtime. GUI problem
mainly concerns the quality of user interface in a package
and the user experience of interactions. Maintenance problem
mainly relates to package installation, upgrade, and configu-
ration. Runtime problem mainly concerns the availability of
a package. Then, we categorize the top-100 packages with
most number of bug reports into six categories, and further
investigate them to identify some domain-specific problems.

The main contributions of this paper are:

• We perform an empirical study on a total of 240,097 bug
reports collected from Ubuntu. We identify 3 common
problems that are common to see in different Ubuntu
packages, namely: Graphical User Interface (GUI), Main-
tenance, and Runtime.

• We further investigate six categories that contain the
top-100 packages with most number of bug reports and
identify domain-specific problems for each category.



TABLE I
CATEGORIES THAT CONTAINS TOP-100 PACKAGES AND THEIR BRIEF

DESCRIPTIONS.

Category Name Bug Report-
s Numbers

Description

Graphics 24745 The category of Graphics include the pack-
ages that are related to the user interface,
such as unity.

Internet 13667 The packages in the category of Internet are
mainly used to help users to get resource
from network with the used of Internet, such
as browsers or some e-mail tools.

Office 5215 It mainly refers to the office tool, includ-
ing word processing, table processing, slide
processing and so on.

Sound and Video 8648 The category of Sound and Video is a vital
part of Multi-Media in computer system that
deliver sound and animation to users, such
as some players.

System Management 43251 Systems management includes the packages
that help users to config and manage the
computer systems, just like the file and
plug-in management tool and so on.

Kernel 16507 Kernel (operating system) refers to the cen-
tral component of Ubuntu.

Fig. 1. Number of bug reports with different importance

II. CASE STUDY SETUP

In this section, we describe the details of how we collect
the data, and present basic statistics of our dataset. Then we
propose our semi-automated common package bug detection
approach, and the two research questions of our study.

A. Data Collection

Ubuntu uses Launchpad to report, record, and manage
its bugs. We write a web crawler to traverse and store the
HTML file of each bug report. For each bug report, we parse
the HTML file to extract useful fields, including ID, title,
description, affects, status and importance.

Since a bug can simultaneously affect multiple packages
with different status and importance. For such bug report,
we divide it into multiple bug reports with corresponding
packages. In this way, we end up with 240,097 bug reports in
total. We also extract the name of each affected packages. Two
packages are considered different if they have different names
(e.g., unity and unity-2d are different packages). In total, we
extract 16,098 packages with different names.

B. Data Statistics

Calculating the basic statistics of the whole dataset can help
us better understand Ubuntu bug reports. We would like to

Fig. 2. Number of bug reports with different status

Fig. 3. The distribution of bug reports among top-200 packages

know the number of bug reports with different importance and
status. We also want to know the distribution of bug reports
among different packages. More specifically, we want to find
out the top-100 packages that have the biggest number of bug
reports for further investigation.

We first calculate the number of bug reports with different
importance and status, as shown in Figure 1 and Figure 2,
respectively. The number of “undecided” bug reports ranks
the first, followed by “medium” bug reports. The number of
“critical” bug reports is quite low,about 1.65% of all bug
reports. The top-5 status of bug reports are “Fixed Released”,
“Confirmed”, “New”, “Triaged” and “Invalid”, respectively.
Other status of bug reports account for only about 2.7% in
total. When summarizing bug reports, we only consider “Fixed
Released”, “Confirmed” or “Triaged” status.

Then we calculate the number of bug reports for each
package. We sort all packages in descending order according
to the number of bug reports affecting each package. Figure 3
shows the distribution of bug reports among top-200 packages.
Other packages are omitted in Figure 3 due to space limitation.
The number of bug reports in top-200 packages (1.24%
of all packages) accounted for 38.07% of all bug reports.
The distribution is very similar to the long-tail distribution.
Additionally, there are 13,625 packages having no more than
10 bug reports. In our experiment, for simplicity reasons (i.e.,
to reduce manual analysis efforts and execution time), we
manually select the top-100 packages with most number of
bug reports. Table II presents the name of categories that these
top-100 packages belong to2, and the number of bug reports.

C. Semi-automated Common Package Bugs Detection

2The category of these 100 packages can be found in the Ubuntu software-
center.



TABLE II
CATEGORIES OF TOP-100 PACKAGES.

Category Name #Packages
Graphics unity, compiz, unity8, xorg, ubuntu-ui-toolkit, gnome-panel, kdebase, xorg-server, gdm,gtk+2.0, mir, gnome-terminal, unity-

greeter, f-spot, kdebase-workspace, gnome-shell, kdepim, mesa
Internet firefox, network-manager, evolution, empathy, firefox-3.0, thunderbird, webbrowser-app, samba, pidgin, ubuntuone-client,

gwibber, network-manager-applet, chromium-browser, eucalyptus
Office openoffice.org, libreoffice, evince, ubuntu-docs, gedit
Sound and Video alsa-driver, rhythmbox, xserver-xorg-video-intel, pulseaudio, totem, banshee, xserver-xorg-video-ati, fglrx-installer, vlc
System Management ubiquity, nautilus, update-manager, software-center, gnome-control-center, apport, ubuntu-system-settings, gnome-settings-

daemon, gvfs, apt, grub2, gnome-power-manager, synaptic, lightdm, ubuntu-release-upgrader, brasero, debian-installer,
udev, gnome-system-tools, apparmor, update-notifier, libvirt, initramfs-tools, acpi-support, software-properties, cups, lxc,
file-roller, usb-creator

Kernal linux, linux-source-2.6.15, linux-source-2.6.20, linux-ti-omap4, linux-source-2.6.22, linux-armadaxp, linux-lts-utopic,
linux-mvl-dove (Ubuntu) 532, linux-lts-raring (Ubuntu) 529, linux-lts-trusty (Ubuntu) 526, linux-fsl-imx51 (Ubuntu) 526,
linux-ec2 (Ubuntu) 512, linux-mako (Ubuntu) 511, linux-lts-saucy (Ubuntu) 508, linux-lts-quantal (Ubuntu) 502, linux-
goldfish (Ubuntu) 502, linux-manta (Ubuntu) 499, linux-lts-vivid, linux-flo, linux-raspi2, linux-lts-backport-maverick, linux-
lts-backport-natty, linux-lts-wily, linux-lts-xenial

Bug Reports

Text
Preprocessing

Topic
Model

Topic 1

Top
Keywords

Related
Bug Reports

Manual
Summarization

Topic 2

Top
Keywords

Related
Bug Reports

Manual
Summarization

Topic n

Top
Keywords

Related
Bug Reports

Manual
Summarization

Selected
Problems

Fig. 4. Overall framework of our approach

TABLE III
AN EXAMPLE OF TOPIC MODEL RESULT

Keywords crash debug sigsegv happen gnome report startup
signal disappear

#21775 nautilus fails to load on gnome-session startup
#49605 nautilus crashes sometime
#27758 nautilus closed while accessing one ftp server
#63350 since last updates of edgy on 1st october, i can’t start

nautilus anymore
#36225 nautilus crashes
#75669 nautilus crash upon create folder from file menu
#66368 nautilus crashed with no particular reason
#29315 crash on copy operation

1) Overall Framework: Figure 4 presents the overall frame-
work of our approach, which takes a set of bug reports as input.
Our framework first preprocesses the title and description to
extract the words in each bug report. Then we build topic
model on the preprocessed dataset and we end up with n
topics (i.e., candidate problems). For each topic, we extract
the top-k keywords that are most likely to appear in that topic.
Next, we manually summarize a short abstract of each topic
and eliminate topics that do not contain enough bug reports
or useful information for summarization. Finally, we select
typical topics to represent significant problems. Notice that
some similar topics may be merged to form a higher-level
problem. Table III presents an example of topic model result.

D. Text Preprocessing

Topic model requires extracting words appearing in a bug
report’s title and description. We concatenate title and descrip-
tion to extract words in 3 parts, namely Tokenization (only

keep tokens that contain English letters), Stop-word Removal
(use stop word list from Snowball project3) and Stemming
(use Porter stemmer4)

E. Topic Model

In machine learning and natural language processing, a topic
model [10] is a typical statistical model for discovering the
hidden semantic structures (i.e., abstract “topics”) that occur
in a collection of documents. Intuitively, given that a bug
report is about a particular problem (i.e., topic), one would
expect particular words to appear in the bug report more or
less frequently: “connect” and “wifi” will appear more often
in bug reports about network problem.

A document (i.e., bug report) typically concerns multiple
topics (i.e., problems) in different proportions [11]–[16]. In
this paper, we apply Latent Dirichlet allocation (LDA) [9],
[17] to extract topics from bug reports.

F. Manual Summarization

Using topic model, we end up with n topics (n = 200 in
our experiment). We treat each topic as a candidate problem,
which needs manual checking. The manual summarization
process is performed by the first author and another two
graduate students. In this case, we use card sorting and the
specific steps are as follows: Opening card sorting, Labeling
problems and Summarizing typical problems.

G. Research Questions

With the collected dataset, in this paper, we are interested
in answering the following 2 research questions:
RQ1: What are the common package bugs?

Extracting and understanding the common package bugs
could help developers understand Ubuntu better, and also help
developers to avoid these common problems when designing
a new package for a Linux operating system [18]. To answer
RQ1, we use the semi-automated approach to summarize bug
reports and identify the common problems.

3http://snowball.tartarus.org/algorithms/english/stop.txt
4http://tartarus.org/martin/PorterStemmer/



TABLE IV
COMMON PACKAGE BUGS AND THEIR CORRESPONDING KEYWORDS.

Problem Keywords
GUI menu dialog button panel bar scroll cursor view

display layout desktop keyboard mouse monitor click
drag

Maintenance install upgrade remove build config version boot
patch dpkg apt depend

Runtime crash hang freeze suspend memory leak cpu slow
segment segfault exception

RQ2: What are the domain-specific package bugs for
different package categories?

Summarizing domain-specific bugs for packages of each
category can help developers avoid these domain-specific bugs
when developing a new package. In RQ2, we select top-100
packages in Ubuntu, and the 100 packages are categorized into
six categories. Similar to RQ1, we use the semi-automated
approach proposed in the previous section to summarize bug
reports, and identify the domain-specific problems.

III. CASE STUDY RESULTS

A. RQ1: What are the common problems?

After manual summarization, we identify 3 common prob-
lems: Graphical User Interface (GUI), Maintenance and Run-
time. Since a common problem covers a wide scope, we divide
each common problem into several sub-problems for better
understanding. For each common problem, the titles of some
representative bug reports for different sub-problems below:

1) GUI: We divide GUI problem into 2 sub-problems:
• Unexpected results of interactions

– screen fades out twice when log out dialog is displayed

• Quality of GUI widget
– navigation button in package list view is not visible enough

From the above examples, we find that these bugs are about
interaction and the performance between the combination of
widgets (e.g., button, list view, etc.). This kind of problem is
closely related to the user experience, and it will directly affect
the quality of packages.

2) Maintenance: We divide maintenance problem into 2
sub-problems:

• Problem during maintenance
– oem-config-firstboot runs on every reboot

• Problem after maintenance
– oem-config isn’t removed after completion

From the above examples, we notice that problems may
occur during maintenance phase (e.g., package installation,
upgrade, configuration, etc.). These problems can make a
package unable to work.

3) Runtime: We divide runtime problem into 3 sub-
problems:

• Crash problem
– subprocess pre-installation script killed by signal (segmen-

tation fault), core dumped
• System response problem

TABLE V
DISTRIBUTION OF COMMON PACKAGE BUGS OF THE SIX CATEGORIES.

Top-100 Packages Categories #GUI #Maintenance #Runtime #All
Graphics 9188 (37.13%) 1079 (4.36%) 3113 (12.58%) 13219 (53.42%)
Internet 3258 (23.84%) 731 (5.35%) 3517 (25.73%) 8031 (58.76%)
Office 789 (15.13%) 429 (8.22%) 1474 (28.26%) 2519 (48.31%)
Sound and Video 839 (9.70%) 1286 (14.87%) 2364 (27.34%) 4442 (51.36%)
System Management 6591 (15.24%) 21954 (50.76%) 8373 (19.36%) 26310 (60.83%)
Kernal 5216 (3.16%) 2052 (12.43%) 2841 (17.21%) 4531 (27.45%)

– response too slow when clicking “provided by ubuntu”
subitem of “installed software”

• Performance problem
– xserver sometimes hangs (100% cpu) when closing a

window on r500/video-ati

From the above examples, we notice that a package may
crash in different situations. Similar to the crash problem,
sometimes the package just becomes very slow or even loses
response if it is operated in a specific way. Finally, a package
may take up too much system resources (e.g., 100% CPU
usage, memory leak, etc).

4) Common package bugs in the six category of Top-100
packages: Table IV shows the keywords we selected for the
three types of common package bugs. Table V presents the
distribution of common package bugs of the six categories.
The last column shows the total number and percentages of
bug reports when considering all 3 common package bugs
together. Notice that a bug report may assigned to multiple
kinds of common package bugs.

For GUI problem, the percentage ranges between 3.16%
and 37.13%. Specifically, Graphics has the highest percentage
of bug reports on GUI problem, while Kernel has only 3.16%
bug reports on GUI problems. One possible reason is that
the packages in the category of Graphics are mainly related
to graphical shells. On the other hand, the packages under
the category of Kernel are most working in the background.
Besides, Internet also have more than 20% bug reports belong-
ing to GUI problem, it dues to the fact that in the category,
there are also many problems about the UI performance and so
on. For maintenance problem, the percentage ranges between
4.36% and 50.76%. System Management and Sound and Video
have relatively high percentage (50.76 % and 14.87%) of bug
reports belonging to maintenance problem. The main reason
for the high percentage in System Management is that there are
many cases of installation and upgrading. In the category of
Sound and Video, the problems often belong to the second type
of problem in maintenance, namely the so-called problem after
maintenance. However, in contrast, the category of Graphics
only has 4.36% bug reports about maintenance. One possible
reason is that Graphics includes many packages that are the
official file manager for the GNOME desktop, which are
stable to use. Comparing to GUI and maintenance problem,
the runtime problem has a relatively uniform distribution
among the top-100 packages. The percentage ranges between
12.58% and 28.26%. By manual investigation, we find that
all packages have a substantial number of bug reports about
crash and response problems. Thus, we believe that runtime
problem is common to see in different packages. Finally, we
notice that, in Kernel, only 27.45% bug reports belong to all



3 common problems, which indicates this package may have
more domain-specific problems, which are as follows.

B. RQ2: What are the domain-specific package bugs for
different package categories?

The top-100 packages are categorized into six categories,
i.e., graphics, Internet, office, sound and video, system man-
agement, and kernel. In RQ2, we analyze the domain-specific
package bugs in these six categories, and we exclude the three
types of common package bugs as shown in RQ1.

1) Internet: we summarized three domain-specific prob-
lems, including network problem, message problem and print-
er problem. These problems mainly happen at the time of using
the Internet to get resources through the network.

• Network problem (It refers to the problems that often
happen when connecting the network, which occupy
about 52.65% of all the problems in the category.)

– IPv6 Information confusing with multiple IPv6 addresses

• Message problem (It refers to the problems about the re-
sponse or warnings when using the Internet which occupy
about 15.92% of all the problems in the category.)

– Messages lost when too long

• Printer problem (It refers to the problem that happen
when using the printer, which occupy about 6.43% of all
the problems in the category.)

– Cannot print from print preview even when
print.whileinPrintPreview is set to true

From the above, it can be seen that the bugs on Printer are
happening in some specific browsers, e.g., Firefox.

2) Graphics: we summarized five domain-specific prob-
lems, including File problem, Lock Screen and Workspace
problem.

• File problem (It refers to the problems about file opera-
tions, it takes about 22.43% among all the problems in
this category.)

– The “open file” dialog doesn’t treat saved searches as
folders

• Lock Screen (It refers to the problems that happen when
locking screen, which takes about 9.70% among all the
problems in this category.)

– Lockscreen capslock detection does’nt work well with
remapped capslocks

• Workspace problem (It refers to the UI problems happen
in the workspace, which takes about 12.36% among all
the problems in this category.)

– Workspaces on Gutsy switch incorrectly using Compiz with
left over Feisty settings

From the domain-specific problems listed above, it can be
seen that some of them are closely related to user experience,
e.g., the window UI bugs. These kinds of bugs should be paid
attention to achieve a better user experience.

3) System Management: we summarized five domain-
specific problems, including Trash, USB, Coding problem,
Rating, as well as Users and groups problem.

• Trash (It is obvious about problems that happen when
managing the trash, which takes about 15.36% among all
the problems in the category of System management.)

– nautilus does not ask for confirmation before emptying
trash

• USB (It refers to the problems about the management of
USB, which takes about 13.97% among all the problem.)

– Cannot see files on external USB drive, and Cannot
unmount drive

• Coding problem (It refers to the problems about different
types of coding methods, which takes about 18.16%
among all the problems.)

– Cannot un-stretch icon in a Nautilus window

4) Kernel: it has been concluded three domain-specific
problems as follows:

• Suspend/resume failure (It refers to the problems about
a certain part of the computer fails to suspend or resume,
which takes about 14.59% among all the problems.)

– System fails to resume from suspend ONLY when suspend-
ed by closing lid

• Disk problem (It refers to the problems about disk, such
as read errors and so on, which takes about 10.22%
among all the problems.)

– Disk Read Errors during boot-time caused by probe of
invalid partitions

• Card work problem (It refers to the problems about card
work, such as SD card and SDHC card, which takes about
12.52% among all the problems.)

– Linux doesn’t support ENE CB-712 SD card reader

From the problems listed above, these bugs are mainly
caused due to different computer configurations.

5) Office: apart from the common problems in RQ1, it has
been concluded three domain-specific problems.

• Language and spelling problemIt means that in Office
category, there may be no spelling check problems and
problems about different kinds of languages. It takes
about 12.47% among all the problems.)

– spell check uses wrong English dictionary

• Font problem (It refers to the problems about the font of
words in the office category, which takes about 10.21%.)

– [Upstream] Impress Font fuzzy in presentation mode when
Use hardware acceleration enabled

• File problem (It refers to the problem about opening and
saving of files in the office category, which takes about
11.83%.)

– [Upstream] I/O Error while opening file from WebDAV
over GVFS from Nautilus

6) Sound and Video: there are three domain-specific prob-
lems, including Radio problem, Playlist problem, Sound card
Problem as well. In addition, playlist problem may also belong
to the second kind of runtime problem, namely performance
problem. While for the sound and video category, playlist
problem should be highlight as a domain-specific problem.

• Radio problem (It refers to the problems about radio,
such as radio server and so on, which takes about 8.25%
among all the problems.)



– Broken internet radio playlist handling

• Playlist problem (It refers to the problems about playlist,
such as the not updating and so on, which takes about
23.41%.)

– banshee recursive smart playlist does not update

• Sound card Problem (It refers to the bad performance
of sound devices, which takes about 18.56%.)

– USB sound card always reports as hw:1 (even if it is the
only one)

C. Threats to Validity

Internal Validity. We perform a semi-automated process
to summarize common problems in Ubuntu packages. The
process may miss some typical problems that are not iden-
tified by manual reading the result of topic model. Besides,
the keywords of each common problem are also manually
selected, which may miss some important keywords or include
keywords that are “too general”. To reduce this threat to inter-
nal validity, three people perform this manual summarization
independently, and any conflict is resolved by three people.
External Validity. Although we summarize the common
problems by analyzing more than 200K bug reports, we only
use the top-100 packages to further investigate these problems.
In the future, we plan to further investigate more Ubuntu
packages and apply our approach to other projects.

IV. RELATED WORK

The work conducted by Rastkar et al. [7] is the most similar
work to ours. They designed a conversation-based extractive
summary generators to produce summaries for bug reports.
Their approach focuses on extract important sentences to
summarize an individual bug report, while our approach apply
topic model to aggregate similar bug reports to identify high-
level problems that are mentioned by many bug reports.

There have been a number of studies on software artifacts
summarization [19]–[24]. Guerrouj et al. used the context that
surrounds code elements in StackOverflow posts to summarize
the use and purpose of code elements [19], to help developers
to read the code more smoothly. Moreno et al. proposed a tech-
nique to automatically generate human readable summaries for
Java classes [20]. Gu et al. proposed a pattern-based parsing
technique which can parse complex app review sentences to
extract aspects and corresponding opinions [21]. However, our
work is different from these works, we focus on characteristics
of common and domain-specific package bugs in Ubuntu,
while the previous studies focus on summarization techniques.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a semi-automated approach to
summarize bug reports in Ubuntu and identify common prob-
lems for different packages. We conduct an empirical study
on a total of 240,097 bug reports collected from Ubuntu. By
manually summarization, we identify 3 common problems that
are common to see in different Ubuntu packages, namely:
Graphical User Interface (GUI), Maintenance, and Runtime.
Then, we categorize the top-100 packages with most number

of bug reports into six categories, and further investigate them
to identify some domain-specific problems for each category.
In future work, we plan to further investigate more packages
in Ubuntu and apply our approach to other projects.

REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in CSCW. ACM, 2010, pp. 291–300.

[2] Q. Huang, D. Lo, X. Xia, Q. Wang, and S. Li, “Which packages would
be affected by this bug report?” in ISSRE. IEEE, 2017, pp. 124–135.

[3] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,” in COMPSAC, 2014, pp. 97–106.

[4] T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer ranking
algorithm for automatic bug triage using topic model and developer
relations,” in APSEC, 2014, pp. 223–230.

[5] X. Sun, H. Yang, X. Xia, and B. Li, “Enhancing developer recommen-
dation with supplementary information via mining historical commits,”
JSS, vol. 134, pp. 355–368, 2017.

[6] N. K. Nagwani and S. Verma, “Generating intelligent summary terms for
improving knowledge discovery in software bug repositories,” in SEKE,
2016, pp. 827–844.

[7] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” TSE, vol. 40, no. 4, pp. 366–380, 2014.

[8] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug
report reading process to summarize bug reports,” in Empirical Software
Engineering, vol. 20, no. 2, 2015, pp. 516–548.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[10] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, 2012.

[11] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” TSE,
vol. 43, no. 3, pp. 272–297, 2017.

[12] R. P. Gopalan and A. Krishna, “Duplicate bug report detection using
clustering,” in australian software engineering conference. IEEE, 2014,
pp. 104–109.

[13] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, and A. Schroter,
“What makes a good bug report,” in TSE, vol. 36, no. 5, 2010, pp.
618–643.

[14] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” in EMSE, vol. 20, no. 5. IEEE,
2015, pp. 1354–1383.

[15] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and J. Klein, “Char-
acterizing malicious android apps by mining topic-specific data flow
signatures,” IST, vol. 90, pp. 27–39, 2017.

[16] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, no. 5, pp. 910–
924, 2016.

[17] X. Wei and W. B. Croft, “Lda-based document models for ad-hoc
retrieval,” in SIGIR, 2006, pp. 178–185.

[18] A. Sureka and K. V. Indukuri, “Linguistic analysis of bug report titles
with respect to the dimension of bug importance,” in bangalore annual
compute conference. IEEE, 2010.

[19] L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal
documentation to summarize classes and methods in context,” in ICSE,
vol. 2. IEEE, 2015, pp. 639–642.

[20] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in ICPC. IEEE, 2013, pp. 23–32.

[21] X. Gu and S. Kim, “” what parts of your apps are loved by users?”(t),”
in ASE. IEEE, 2015, pp. 760–770.

[22] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: automated generation
of answer summary to developersź technical questions,” in ASE. IEEE
Press, 2017, pp. 706–716.

[23] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in IJCAI, 2018.

[24] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in ICPC, 2018.


