
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

EnTagRec++: An Enhanced Tag Recommendation
System for Software Information Sites

Shaowei Wang · David Lo ·
Bogdan Vasilescu · Alexander Serebrenik

Received: date / Accepted: date

Abstract Software engineers share experiences with modern technologies using soft-
ware information sites, such as Stack Overflow. These sites allow developers to label
posted content, referred to as software objects, with short descriptions, known as
tags. Tags help to improve the organization of questions and simplify the browsing
of questions for users. However, tags assigned to objects tend to be noisy and some
objects are not well tagged. For instance, 14.7% of the questions that were posted in
2015 on Stack Overflow needed tag re-editing after the initial assignment.

To improve the quality of tags in software information sites, we propose EnTag-
Rec++, which is an advanced version of our prior work EnTagRec. Different from
EnTagRec, EnTagRec++ does not only integrate the historical tag assignments to
software objects, but also leverages the information of users, and an initial set of tags
that a user may provide for tag recommendation. We evaluate its performance on
five software information sites, Stack Overflow, Ask Ubuntu, Ask Different,
Super User, and Freecode. We observe that even without considering an initial
set of tags that a user provides, it achieves Recall@5 scores of 0.821, 0.822, 0.891,
0.818 and 0.651, and Recall@10 scores of 0.873, 0.886, 0.956, 0.887 and 0.761, on
Stack Overflow, Ask Ubuntu, Ask Different, Super User, and Freecode,
respectively. In terms of Recall@5 and Recall@10 , averaging across the 5 datasets, it
improves upon TagCombine, which is the prior state-of-the-art approach, by 29.3%
and 14.5% respectively. Moreover, the performance of our approach is further boosted
if users provide some initial tags that our approach can leverage to infer additional
tags: when an initial set of tags is given, Recall@5 is improved by 10%.

Keywords Software Information Sites · Recommendation Systems · Tagging

S. Wang (shaowei@cs.queensu.ca)
SAIL, Queen’s University, Canada

D. Lo (davidlo@smu.edu.sg)
School of Information Systems, Singapore Management University, Singapore

B. Vasilescu (vasilescu@cmu.edu)
School of Computer Science, Carnegie Mellon University, United States.

A. Serebrenik (a.serebrenik@tue.nl)
Department of Mathematics and Computer Science, Eindhoven University of Technology, The
Netherlands.

2 Shaowei Wang et al.

1 Introduction

The growing online media has significantly changed the way people communicate,
collaborate, and share information with one another [42]. This is also true for soft-
ware developers, who create and maintain software by standing on the shoulders of
others [37], reuse components and libraries originating from Open Source reposito-
ries (e.g., GitHub, Freecode, SourceForge), and forage online for information
that will help them in their tasks [10]. When foraging for information, developers
often turn to programming question and answer (Q&A) communities such as Stack
Overflow, Ask Ubuntu, and Ask Different. Such sites supporting commu-
nication, collaboration, and information sharing among developers are known as
software information sites, while their contents (e.g., questions and answers, project
descriptions)—as software objects [51].

Typically, tags are short labels not more than a few words long, provided as meta-
data to software objects in software information sites. Users can attach tags to various
software objects, effectively linking them and creating topic-related structure. Tags
are therefore useful for providing a soft categorization of the software objects and
facilitating search for relevant information. To accommodate new content, most soft-
ware information sites allow users to create tags freely. However, this freedom comes
at a cost, as tags can be idiosyncratic due to users’ personal terminology [17]. As
tagging is inherently a distributed and uncoordinated process, often similar objects
are tagged differently [51]. Idiosyncrasy reduces the usefulness of tags, since related
objects are not linked together by a common tag and relevant information becomes
more difficult to retrieve. Furthermore, some software information sites (e.g., Stack
Overflow) require users to add tags at the time of posting a question, even if they
are unfamiliar with the tags in circulation at that time. Due to differences in personal
terminology and tagging purpose, it is often difficult for users to select appropriate
tags for their content. Having a tag recommendation system that can suggest tags to
a new object (e.g., based on how other similar objects have been tagged in the past)
could (i) help users select appropriate tags easily and quickly, and (ii) in time help
homogenize the entire collection of tags such that similar objects are linked together
by common tags more frequently.

To illustrate the importance of tags for the well functioning of a software infor-
mation site, we note the considerable amount of discussion related to tags on Meta
Stack Overflow, a Q&A site with the same user interface as Stack Overflow,
that focuses Stack Overflow’s functioning and administration: e.g., at the time
of writing there were more than 4,587 questions related to tags,1 as opposed to only
1,312 related to user interface. Furthermore, tags on Stack Exchange sites receive
considerable attention from the user community, with between 14.4% and 22.5% of
questions in our experiments involving tag re-editing (see Table 1). Finally, we also
note that since the earlier, conference version of our work [46], Stack Overflow
has been experimenting with, and gradually phasing in across the Stack Exchange
network, a tag recommendation system of their own.2

In this work, we introduce an automatic tag recommendation system called En-
TagRec++, an enhanced version of our previous approach EnTagRec [46]. En-
TagRec learns from historical software objects and their tags, and recommends

1 http://meta.stackexchange.com/questions/tagged/tags
2 http://meta.stackexchange.com/questions/206907/how-are-suggested-tags-chosen

http://meta.stackexchange.com/questions/tagged/tags
http://meta.stackexchange.com/questions/206907/how-are-suggested-tags-chosen

EnTagRec++: An Enhanced Tag Recommendation System 3

appropriate tags for new objects based on words that appear in the software objects.
EnTagRec consists of two inference components, Bayesian and frequentist, and tries
to combine the advantages of the two opposite yet complementary lines of thought
in the statistics community [33].

To improve EnTagRec, in EnTagRec++, we integrate two additional com-
ponents into EnTagRec: User Information Component (UIC) and Additional Tag
Component (ATC). We refer to EnTagRec integrated with UIC alone as EnTag-
Rec+. The intuition behind these two components is as follows:

– Users in software information sites tend to exhibit particular interests, thus soft-
ware objects posted by them are likely to focus on specific domains. In UIC, we
leverage this intuition to improve tag recommendation. We first link historical
software objects posted by the same user together. Next, for new software ob-
jects posted by the same user, we make use of software objects that the user has
posted before, to help identify tags that are associated with the new object.

– We believe that it may be easier for a user to assign one or a few initial tags to a
question he/she posts, but more difficult for her to provide a comprehensive set
of tags. In ATC, we make use of an initial set of tags provided by a user to help
identify additional relevant tags.

We evaluate EnTagRec+ on datasets from five popular software information
sites, Stack Overflow, Ask Ubuntu, Ask Different, Super User, and Free-
code, by comparing it to TagCombine [48,51].3 Our experimental results show that
even without considering an initial set of tags that a user provides, our approach
achieves Recall@5 scores of 0.821, 0.822, 0.891, 0.818, and 0.651, and Recall@10
scores of 0.873, 0.886, 0.956, 0.887, 0.761 on Stack Overflow, Ask Ubuntu,
Ask Different, Super User, and Freecode, respectively. Compared with Tag-
Combine, EnTagRec+ improves TagCombine by 29.3% and 14.5% in terms of
Recall@5 and Recall@10 , respectively. Furthermore, to evaluate the effectiveness of
ATC, we compare EnTagRec+, with EnTagRec++. We find that when an initial
set of tags is given, on average EnTagRec++ improves EnTagRec+ by 10.0% in
terms of Recall@5 .

Our main contributions are:

– We propose EnTagRec++, a novel automatic tag recommendation system for
software information sites. EnTagRec++ composes a state-of-the-art Bayesian
inference technique (labeled LDA), an enhanced frequentist inference technique
that leverages a POS tagger and the spreading activation algorithm, and two
other components that analyze the user who posts a software object and the
initial set of tags that the user provides, to further boost the recommendation
performance.

– We evaluate our proposed approach on datasets from five popular software in-
formation sites. Our study shows that our approach can achieve high recall,
especially for Stack Overflow, Ask Ubuntu, Super User, and Ask Dif-
ferent, and outperforms a prior state-of-the-art approach.

The rest of this article is organized as follows. We provide more background on
tags in several software information sites and approaches to tag recommendation

3 Since the implementation of Stack Overflow’s proprietary system is, to the best of our
knowledge, not documented publicly, a meaningful comparison was not possible.

4 Shaowei Wang et al.

in Section 2. We present the high-level architecture of EnTagRec++ in Section 3,
followed by detailed descriptions of the Bayesian, frequentist, user information, and
additional tag inference components in Sections 4, 5, 6 and 7 respectively, and the
specifics of how to integrate the four components in Section 8. We present our eval-
uation results in Section 9. Finally, we highlight related work in Section 10 and
conclude in Section 11.

2 Preliminaries and Examples

In this section, we first describe some preliminary information on tags in software
information sites. Then, we present some recent works on tag recommendation on
software information sites. Finally, we show some motivating examples to illustrate
why it is useful to consider incorporating user information and preliminary tags in
the recommendation.

2.1 Tags in Software Information Sites

To facilitate navigation, search, and filtering, contents are marked with descriptive
terms [17], known as tags; e.g., libraries associate books with authors’ names and key-
words, while scientific publishers require the authors to choose keywords themselves.
In the digital world, tags can be used, e.g., to annotate weblog posts and shared
links. Numerous software information sites employ tags, e.g., SourceForge4 for
code projects, Eclipse MarketPlace5 for plugins, Snipplr6 for code fragments, and
Stack Overflow for questions.

An example Stack Overflow question is presented in Figure 1. The ques-
tion pertains to the creation of an Eclipse plugin and it has two tags, represent-
ing the technical context of the question (eclipse) and a specific subject area
(eclipse-plugin). Figure 2 shows the Freecode description of Apache Ant: in ad-
dition to the textual description, two general tags are present, Software Development
(describing the general domain of Apache Ant) and Build Tools (indicating a more
specific functionality of Apache Ant, namely building Java programs).

Comparing Figures 1 and 2 we observe that while the basic purpose of tagging—to
facilitate navigation, search, and content filtering through the association of related
contents via linked descriptive terms—is common to both, specific policies how the
tags should be used differ from site to site. For instance, Freecode has no restriction
on the number of tags per project, while Stack Exchange sites restrict the total
number of tags given to a question to five.

Most software information sites allow users to provide “free text tags”. Not being
subject to the formal requirements of the sites, such tags can be expected to represent
user intent in a more flexible way. However, tagging becomes a distributed and
uncoordinated process, introducing different tags for similar objects, which might
persist despite moderation or the ongoing correction efforts. For example, questions
on Stack Overflow entitled “SIFT and SURF feature extraction implementation

4 http://sourceforge.net/
5 http://marketplace.eclipse.org/
6 http://snipplr.com/

http://sourceforge.net/
http://marketplace.eclipse.org/
http://snipplr.com/

EnTagRec++: An Enhanced Tag Recommendation System 5

enfix
611 3 15 34

2 Answers

Ither
1,240 1 10 29

i need a complete tutorial about Eclipse plugin. My plugin has not a graphical interface, but i need to use
his function insiede another plugin or java app.
I use eclipse ONLY to load this plugin, but must work in eclipse.
It should be easy, but i don't know how to do this.

eclipse eclipse-plugin

asked Oct 6 '10 at 9:35

add comment

start a bounty

I often found Lars Vogel's tutorials really useful and simple. This tutorial may be a good start point but be
sure to check out the complete list too.

answered Oct 6 '10 at 13:55

add comment

Very well designed wizards are available in eclipse itself. You just say new->plug-in project, and then after
going through the wizard steps you can choose from templates like "plugin with popup menu, or "hello

How to create an Eclipse plugin

267 1 15

help

Fig. 1 An example question in Stack Overflow and its tags.

Fig. 2 An example project in Freecode and its tags.

using MATLAB”7 and “Matlab implementation of Haar feature extraction”8 are
both related to image feature extraction but only the second one is labeled with the
corresponding tag, i.e., feature-extraction.

Table 1 Objects with tag re-editing on Stack Overflow, Ask Different, Ask Ubuntu
and Super User.
Dataset Period Questions

Involving Tag
Re-Editing

Total
Questions

Tag Re-
Editing
Ratio

Tag Ad-
dition
Ratio

Stack Overflow 2015.1.1 -
2015.12.31

331,667 2,250,745 14.7% 72.1%

Ask Different Before 2016.1 11,243 63,276 17.7% 87.2%
Ask Ubuntu Before 2016.1 48,942 191,191 25.6% 69.8%
Super User Before 2016.1 82,618 284,559 29.0% 63.1%

2.2 Tag Recommendation

Tags have been shown to aid users in navigating a site [8, 13, 20, 53]. Thus, more
complete tags can help in a number of scenarios, e.g.: (1) More complete tags may
shorten the time it takes for a question to receive an answer. On sites such as Stack
Exchange, users are allowed to browse unanswered questions via tags. Giving more
complete tags to a question may increase its chance to be discovered by a suitable
user who can answer it well. (2) More complete tags also support developer learning.
Developers can use the tags to browse through relevant questions and problems that
others have encountered. This can help them avoid making similar mistakes and

7 http://stackoverflow.com/q/5550896
8 http://stackoverflow.com/q/2058138

http://stackoverflow.com/q/5550896
http://stackoverflow.com/q/2058138

6 Shaowei Wang et al.

improve their programming and problem solving skills. (3) More complete tags may
help reduce duplicated questions. Moderators can use the tags to identify related
questions; by checking these related questions, moderators can decide whether a
question is a duplicated one, and if so, it can be marked accordingly. Additionally,
before posting new questions, users can use tags to browse for related ones, and avoid
posting questions that were answered before.

Indeed, users of Stack Exchange edited tags that were originally assigned to
questions demonstrating that they appreciate more complete tags. Table 1 presents
the ratio of questions involving tag re-editing on Stack Overflow, Ask Differ-
ent, Ask Ubuntu, and Super User. From the table, we can see that tag re-editing
happens often. From the table, we can also notice that among the tag re-editing cases,
63.1-87.2% of the questions involve tag addition, which implies that tag addition is
the major tag re-editing scenario.

A considerable number of studies have been done on tag recommendation for
software information sites [1, 51]. Among these studies, the approach TagCombine
that was proposed by Xia et al. is shown to be the state-of-the-art [51] on software
information sites. TagCombine combines three components: a multi-label ranking
component, a similarity-based ranking component, and a tag-term based ranking
component. The multi-label ranking component employs a multi-label classification
algorithm (i.e., binary relevance method with naive Bayes as the underlying classifier)
to predict the likelihood of a tag to be assigned to a software object. The similarity-
based ranking component predicts the likelihood of a tag (to be assigned to a software
object) by analyzing the tags that are given to the top-k most similar software
objects that were tagged before. The tag-term based ranking component predicts
the likelihood of a tag (to be assigned to a software object) by analyzing the number
of times a tag has been used to tag a software object containing a term (i.e., a
word) before. The multi-label ranking component of TagCombine constructs many
one-versus-rest Naive Bayes classifiers, one for each tag. Each Naive Bayes classifier
simply predicts the likelihood of a software object to be assigned a particular tag.
However, mixture models have been shown to outperform one-versus-rest traditional
multi-label classification approaches [16,30,31]. Thus, in our approach, we construct
only one classifier which is amixture model that considers all tags together to improve
the effectiveness of the tag recommendation.

2.3 Motivating Examples

2.3.1 User Information

In addition to user-agnostic features (e.g., tag frequency), we also expect the in-
formation about the user posting the question to be useful when predicting tags.
Indeed, one can conjecture that users have specific interests or expertise with certain
technology and these interests or expertise are likely to manifest in the tags of their
questions. To verify this conjecture we queried the users that asked more than one
question on Stack Overflow9 and found that 51% of them have asked at least
two questions labeled with the same tag. This suggests that users may post objects
associated to some particular tags, rather than all tags, based on their personal
background and interests.

9 https://data.stackexchange.com/stackoverflow/queries

EnTagRec++: An Enhanced Tag Recommendation System 7

Fig. 3 Highest rated tags associated to questions/answers posted by a user in Stack Over-
flow.

Fig. 4 An example of adding a tag in Stack Overflow.

For illustration, Figure 3 presents the highest rated tags of a user in Stack
Overflow.10 As of December 7, 2016, the user posted a number of questions/answers
spanning 326 tags, and 215 of the user’s posts are tagged “java”, this user’s most
commonly used tag. We can, therefore, conjecture that future software objects posted
by the same user are more likely to be tagged with “java” tag, rather than other
tags. Based on this observation, we can leverage user information to facilitate tag
recommendation.

2.3.2 Additional Tag

In practice, it may be easy for users to label a question they post with a few tags.
However, the set of initial tags may not be sufficient and for such cases, extra tags

10 http://stackoverflow.com/users/137369/thirler?tab=tags

http://stackoverflow.com/users/137369/thirler?tab=tags

8 Shaowei Wang et al.

need to be added later - see Table 1. Intuitively, the initial tags can provide hints in
the identification of missing tags.

We notice that some tags usually appear together. We could leverage tag co-
occurrences to infer additional tags based on the initial tags that a user gave. Figure 4
presents an example of tag editing in Stack Overflow. The set of tags assigned to
the question was refined – a tag “javascript” was added to the initial set of tags:
“promise” and “pg-promise”. When we search questions that contain tags “promise”,
and “pg-promise” and at least one other tag, we find 10 of such questions and 6
of them are also tagged with “javascript”. This suggests given an initial set of tags
“promise” and “pg-promise”, it is likely that “javascript” should be included as well.
This observation motivates us to recommend additional tags to users by analyzing
the initial set of tags and leveraging tag co-occurrence.

3 General Architecture

In this section we describe the general architecture of our EnTagRec++ approach.
EnTagRec++ contains six processing components: Preprocessing Component (PC),
Bayesian Inference Component (BIC), Frequentist Inference Component (FIC), User
Information Component (UIC), Additional Tag Component (ATC), and Composer
Component (CC). Figure 5 presents the framework of EnTagRec++.

Input software objects are processed by PC to generate a common representation.
These textual documents are then input to the four main processing engines, namely
BIC, FIC, UIC, and ATC. BIC and FIC infer tags based on words appearing in a
software object. UIC infers tags based on the user who posts a software object; it
works based on the assumption that a user tends to post similar software objects over
time. ATC infers additional tags based on an initial set of tags given to a software
object, by considering co-occurrences of tags. For some software objects, users who
post them have provided some initial tags, and these tags can be used to better infer
missing tags. CC combines the BIC, FIC, UIC, and ATC components.

EnTagRec++ works in two phases, a training phase and a deployment phase,
as shown in Figure 5(a) and (b), respectively. In the training phase, EnTagRec++

trains several of its components using training software objects and corresponding
tags. In the deployment phase, the trained EnTagRec++ is used to recommend
tags for untagged software objects.

The common component in the training and deployment phase is PC, which
converts each software object into a bag (or multiset) of words. The PC starts from
the textual description of a software object and performs tokenization, identifier
splitting, number removal, stop word removal, and stemming. Tokenization breaks
a document into word tokens. Identifier splitting breaks a source code identifier into
multiple words. We split a token using two splitters: 1) Camel Casing splitter [2],
e.g., the identifier “getMethodName” will be split into “get”, “method”, and “name”;
2) special sign splitter that splits tokens based on special signs (i.e., _, −), e.g.,
the identifier “get_method_name” will be split into “get”, “method”, and “name”.
Number removal deletes numbers. Stop word removal11 deletes words that are used
in almost every document and, therefore, carry little document-specific meaning,

11 Based on http://www.textfixer.com/resources/common-english-words.txt

http://www.textfixer.com/resources/common-english-words.txt

EnTagRec++: An Enhanced Tag Recommendation System 9

Training	Sw.	
Obj.	&	Tags	

(a)	Training (b)	Deployment

Bayesian	
Inference	
Comp.	
(BIC)

Freq.	
Inference	
Comp.	(FIC) Preproc.	

Comp.	
(PC)

Composer	
Comp.	
(CC)

Trained	
BIC

Trained	
FIC

		
Trained	
CC

Recomm.	
Tags

Preproc.	
Comp.	
(PC)

User	
Inference	

Comp.	(UIC)

AddiFonal	
Tag		Comp.	

(ATC)

Trained	
UIC

		

Trained	
ATC

		

Untagged	
Sw.	Obj.	

Fig. 5 EnTagRec++ Architecture

e.g., “the”, “is”, etc. Finally, stemming reduces words to their root form. We use the
Porter stemming algorithm [29].

In the training phase, BIC, FIC, UIC, ATC, and CC are trained based on the
training data. BIC uses the bag-of-words representation of the software objects and
their corresponding tags to train itself. The result is a statistical model which takes as
input a bag of words representing a software object, and produces a ranked list of tags
along with their probabilities of being related to the input software object. FIC also
processes the bag-of-words representations and the corresponding tags to train itself;
it produces a statistical model (albeit in a different way than BIC) which also takes
as input a bag of words, and outputs a ranked list of tags with their probabilities.
UIC processes data about users who posted various software objects, to model the
peculiar behaviors of the various users; it creates a statistical model which takes as
input a user who posted a particular software object, and outputs a ranked list of
tags with their probabilities. ATC takes as input a set of tags appearing together
in the past. The result is a conditional statistical model, which takes an initial set
of tags given by a user as input, and produces a ranked list of additional tags, with
their probabilities. CC learns four weights for BIC, FIC, ATC, and UIC to generate
a near-optimal combination of these four components from the training data.

After EnTagRec++ is trained, it is used in the deployment phase to recommend
tags for untagged objects. For each such object, we first use PC to convert it to a
bag of words. Next, we feed this bag of words, including the user information and
additional tags (if available), to the trained BIC, FIC, UIC, and ATC. Each of them
will produce a list of tags with their likelihood scores. CC will compute the final
likelihood score for the tags based on the weights that it has learned in the training

10 Shaowei Wang et al.

phase. The top few tags with the highest likelihood scores will be output as the
predicted tags of an input untagged or partially tagged software object.

The following sections detail each of the five major components of EnTagRec++,
BIC, FIC, UIC, ATC, and CC.

4 Bayesian Inference

The goal of BIC is to compute the probabilities of various tags, given a bag of words
representing a software object, using Bayesian inference. Given a tag t and a software
object o, BIC computes the conditional probability of t being assigned to o, given
the words {w1, . . . , wn} that appear in o. This is denoted as P (t|w1 . . . wn). Using
the Bayes theorem [15], this probability can be computed as:

P (t|w1 . . . wn) = P (w1 . . . wn|t)× P (t)
P (w1 . . . wn) (1)

The probabilities on the right hand side of the above equation can be estimated
based on training data.

A state-of-the-art Bayesian inference algorithm is Latent Dirichlet Allocation
(LDA) [9]. LDA has been shown effective to process various software engineering data
for various tasks, e.g., [3, 4, 26,27,32]. LDA takes as input a set of documents and a
number of topics K, and outputs the probability distribution of topics per document.
Our problem can be readily mapped to LDA, where a document corresponds to a
software object, and a topic corresponds to a tag. Using this setting, LDA outputs
the probability distribution of tags for a software object.

However, LDA is an unsupervised learning algorithm. It does not take as input
any training data and it is not possible to pre-define a set of tags as the target
topics to be assigned to documents. Fortunately, recent advances in the natural lan-
guage processing community introduced extensions to LDA, such as Labeled LDA
(L-LDA) [31]. For L-LDA, the labels can be predefined and a training set of doc-
uments can be used to train the LDA, such that it will compute the probability
distribution of topics, coming from a predefined label set (tags, in our case), for a
document (a software object, in our case), based on a set of labeled training data.
In this work, we use L-LDA as the basis for the Bayesian inference component.

BIC works on two phases: training and deployment. In the training phase, BIC
takes as input a set of bags of words representing software objects, and their associ-
ated tags. These are used to train an L-LDA model. In the deployment phase, given
a bag of words corresponding to a software object, the trained L-LDA model is used
to infer the set of tags for the input software object along with their probabilities.
In the end, the top KBayesian inferred tags for the object will be output and fed to
the Composer Component (CC).
Example. Consider an object has following words {install, eclipse} and a tag
eclipse. In order to compute the probability P (eclipse|install, eclipse), we
need to estimate the value of P (install, eclipse|eclipse), P (eclipse), and
P (install, eclipse) first based on the Equation 1. By using L-LDA, we could
estimate the the value of P (install, eclipse|eclipse), P (install, eclipse)
and P (eclipse). Suppose the estimated value of P (install, eclipse|eclipse) =
0.02, P (install, eclipse) = 0.001, and P (eclipse) = 0.005, thus the value of
P (eclipse|install, eclipse) is 0.1.

EnTagRec++: An Enhanced Tag Recommendation System 11

5 Frequentist Inference

FIC computes the probability that a software object is assigned a particular tag
based on the words that appear in the software object, while taking into account
the number of words that appear along with the tag in software objects in a training
set. Section 5.1 describes our basic approach and several extensions are presented in
Section 5.2. Hereafter, unless stated otherwise, FIC refers to the extended approach.

5.1 Basic Approach

Consider software object o with n words: {w1, w2, . . . , wn} and a tag t, the weight of
tag t for object o can be computed as the proportion of the n words that co-appear
with tag t in the training data. More formally, the weight is defined as

W (o, t) =
∑

wi∈o I(t, wi)
|o|

, (2)

where

I(t, wi) =

{
1, ∃ o ∈ TRAIN | o contains wi & o tagged with t
0, otherwise

(3)

The higher the weight W (o, t), the more representative FIC deems tag t to be
for software object o.

5.2 Extended Approach

There are several problems with the basic approach. First, often not all words in
a software object are related to the tags that are assigned to the software object.
Although the pre-processing component (PC) has removed stop words, still many
non-stop words are unrelated to software object tags, thus need to be removed.
Second, we have a data sparsity problem, since many tags are not used frequently in
the training set. Thus, often a tag is not characterized by sufficiently many words.
To address this problem, we leverage the relationships among tags to recommend
additional associated tags to an input untagged software object.

5.2.1 Removing Unrelated Words with POS Tagger

One problem in estimating the probabilities P (t|wi) is that not all words that appear
in a software object are related to the tags. We use the example in Figure 1 to
illustrate this. Words “need” and “work” are not stop words, but they are unrelated
to the tags eclipse and eclipse-plugin. Thus, there is a need to filter out these
unrelated words before we estimate the probabilities.

We observe that nouns and noun phrases are often more related to the tags than
other kinds of words. Past studies have also found that nouns are often the most
important words [12,34]. Thus, in this extension, we remove all words except nouns

12 Shaowei Wang et al.

and noun phrases. To identify these nouns and noun phrases, we use the Part-Of-
Speech (POS) Tagger [39] to infer the POS of each word in the representative bag
of words of a software object. In this paper, we use the Stanford Log-linear Part-
Of-Speech Tagger.12 To illustrate this extension, consider the words that appear in
the software object shown in Figure 1. After this step, only the words “tutorial”,
“eclipse”, “plugin”, “interface”, “function”, “java”, and “app” remain.

Note that we only did this for FIC and not BIC as L-LDA assigns different
probabilities to words that are associated to a topic (i.e., a tag). Unrelated words will
receive low probabilities. In FIC, the words that appear in objects tagged with tag
t are treated as equally important. Thus, we only perform this extended processing
step for FIC.

We refer to the basic approach extended by this processing step as FrePOS. Given
an untagged software object, FrePOS outputs the top KFrequentist tags.

5.2.2 Finding Associated Tag with Spreading Activation

Due to the data sparseness problem, FrePOS might miss some important tags that
are not adequately represented in the training data. To find additional tags, we
leverage relationships among tags using a technique named spreading activation [14].
Spreading activation takes as input a network containing weighted nodes that are
connected with one another with weighted edges, and a set of starting nodes. Initially,
all nodes except the starting nodes are assigned weight 0. Spreading activation then
processes the starting nodes, one at a time. For each starting node, it spreads (or
propagates) the node’s weight to its neighboring nodes which are at most MH hops
away from it (where MH is a user-defined threshold). At the end of the process, we
output all nodes with non zero weights and their associated weights. In our context,
the network is a tag network, the starting nodes are the nodes corresponding to tags
returned by FrePOS, and the weights of these starting nodes are the probabilities
assigned to the corresponding tags by FrePOS.

To perform spreading activation, we first need to construct a network of tags.
Each node in the network corresponds to a tag, and each edge connecting two nodes
in the network corresponds to the relationship between the corresponding tags. The
weight of each edge measures how similar two tags are. We measure this based on
the co-occurrence of tags in software objects in the training set. Consider a set of
tags where each of them is used to label at least one software object in the training
set. We denote this set as: Tags = {t1, t2, t3, ..., tk}, where k is the total number of
unique tags. We denote an edge between two tags ti and tj as eti,tj . The weight of
eti,tj depends on the number of software objects that are tagged by ti and tj in the
training set. It can be calculated as follows:

weight(eti,tj) = |Doc(tj)
⋂

Doc(ti)|
|Doc(ti)

⋃
Doc(tj)|

(4)

where Doc(ti) and Doc(tj) are the sets of objects tagged with ti and tj , respectively,
and | · | denotes cardinality.

The edge connecting two tags is assigned a higher weight if the tags appear
together more frequently, which means they are more associated with each other.
We denote the set of edges connecting pairs of nodes as Links. The tag network is
12 http://nlp.stanford.edu/software/tagger.shtml

http://nlp.stanford.edu/software/tagger.shtml

EnTagRec++: An Enhanced Tag Recommendation System 13

Algorithm 1 Find associated tags
1: FindAssociatedTags
2: Input:
3: TN: Tag network
4: SST: Set of starting tags
5: MH: Maximum hop
6: Output: Set of candidate tags
7: Method:
8: Initialize the weight of each tag in TN with 0
9: for each tag t in SST do
10: Set weight (TN[t]) = Probability of tag t inferred by FrePOS
11: end for
12: for each tag t in SST do
13: Call SpreadingActivation(TN, TN[t], 0, MH)
14: end for
15: return SST ∪ {t|weight(TN[t]) > 0}

Algorithm 2 Spreading activation for a node
1: SpreadingActivation
2: Input:
3: TN: Tag network
4: N : Current node
5: CH: Current hop
6: MH Maximum hop
7: Method:
8: if CH > MH or weight(N) = 0 then
9: return
10: end if
11: for each node N ′ that is directly connected to N do
12: Set w = weight(N)× weight(E(N ′, N))
13: if weight(N ′) < w then
14: weight(N ′) = w
15: SpreadingActivation(TN, N ′,CH+1,MH)
16: end if
17: end for

then a graph TN defined as (Tags,Links). Given a tag t, we denote the node in TN
corresponding to t as TN [t]. Given a node n and an edge E(n1, n2), we denote their
weights as weight(n) and weight(E(n1, n2)), respectively.

The pseudocode of our approach to infer associated tags from the initial set of
tags returned by FrePOS is shown in Algorithm 1. The algorithm takes as input a tag
network TN constructed from all tags in the training data, a set of starting tags SST
returned by FrePOS, and a threshold MH that restricts the weight propagation to a
maximum number of hops. Then, it initializes the weights of nodes corresponding to
tags in the set of starting tags with the probabilities returned by FrePOS, and it sets
the weights of other nodes to 0 (Lines 8–11). For each starting tag, our algorithm
then performs spreading activation starting from the corresponding node in the tag
network by calling the procedure SpreadingActivation (Lines 12–14). Finally, the
algorithm outputs all nodes in the set of starting tags, along with the associated
tags, which correspond to nodes in TN whose weights are larger than zero (Line 15).

The procedure SpreadingActivation spreads the weight of a node to its neigh-
bors. It takes as input a tag network TN, a starting node N , the current hop CH,
and the maximum hop MH. The procedure first checks if it needs to propagate the
weight of node N—it only propagates if the current hop CH does not exceed the
threshold MH, and the weight of the current node is larger than zero (Lines 8–10).
It then iterates through nodes N ′ that are directly connected to N (Lines 11–17).

14 Shaowei Wang et al.

Java

(a) (b) (c)

0.5

0.42

Eclipse

IDE Python

Linux

Project

0

0.42

0

0

0.5

0.42

Eclipse

IDE Python

Linux

Project

0.36

0.42

0.36

0

0.5

0

Eclipse

IDE Python

Linux

Project

0

0

0

0

Java Java

0.5

0.42

Eclipse

IDE Python

Linux

Project 0.42

0.36

 0

0.6

0.5

0.51

Eclipse

IDE Python

Linux

Project 0.42

0.51

 0

0.6

0.5

0.51

Eclipse

IDE Python

Linux

Project 0.42

0.51

0.43

0.6

Java Java Java

(d) (e) (f)

Fig. 6 Finding associated tags using spreading activation: an example.

For each such node, we compute a weight w which is a product of the weight of node
N and the weight of the edge N–N ′ (Line 12). If the weight of node N ′ is less than
w, we assign w as the weight of node N ′ (Lines 13–14). The procedure then tries to
propagate the weight of N ′ to its neighbors by a recursive call to itself (Line 15).

Example. Consider a set of starting tags SST = {Java = 0.5, Python = 0.6}
output by FrePOS, a tag network TN shown in Figure 6 and a threshold MH = 2.
Let us assume the weights of all edges in the tag network are 0.85. At the beginning,
our approach initializes the weight of the node corresponding to tag Java in TN
with 0.5 (Figure 6(a)). Then, the weight of node Java is propagated to its neighbors
Linux and Eclipse and their weights are both updated to 0.42 (Figure 6(b)). The
weight is recursively propagated to all neighbors of node Java of distance MH hops
or less (Figure 6(c)). Then, our approach processes tag Python, node Python’s
weight is updated to 0.6, which is the weight of tag Python output by FrePOS. (Fig-
ure 6(d)). Our approach then propagates the weight of node Python to its neigh-
bors. If a neighbor’s weight is lower than that which is propagated from Python,
the original weight is replaced with the new weight. Otherwise, the original weight
remains unchanged. Thus, the weights of Eclipse and IDE are updated to 0.51 (0.51
exceeds 0.425, the current weights of these tags, Figure 6(e)). The weight of node
Project is updated to 0.43 (Figure 6(f)). Finally, the tags Java = 0.5,Python =
0.6,Eclipse = 0.51, IDE = 0.51,Linux = 0.42, andProject = 0.43 will be output.

The spreading activation process requires a parameter MH (maximum hop); by
default, we set the parameter MH to 1, as the complexity of spreading activation is
exponential to the value of MH. At the end, our FIC component outputs candidate
tags that are output by FrePOS and the associated tags that are output by the
spreading activation procedure described above. These tags are input to the composer
component (CC).

Note that we only apply this spreading activation step to FIC and not BIC. L-
LDA used in BIC is more robust than FrePOS to the data sparsity problem. We find
that the application of this step to BIC does not improve its effectiveness.

EnTagRec++: An Enhanced Tag Recommendation System 15

6 User Information Component

In this component, we make use of tags attached to software objects that a user
has posted before, in order to infer tags for a new software object posted by the
same user. As we show in the Section 2.3.2, the user usually posts questions that
associated to certain specific tags. Based on this intuition, we compute the weight
of a tag t given a new software object o posted by a user u as:

w(t, o, u) =

|{o∈Doc(u)|o tagged with t}|∣∣Doc(u)

∣∣ , if t ∈ TBIC
⋃

FIC

0, otherwise
, (5)

where Doc(u) is the set of past objects posted by u, TBIC
⋃

FIC is the set of tags
with non-zero weights from BIC and FIC, and | · | denotes cardinality. Note that
we define w(t, o, u) as 0 for tags not in TBIC

⋃
FIC to avoid noise due to irrelevant

tags 13.
Example. To illustrate how UIC works, consider the user in Figure 3. Suppose she
posts a new question o. We first find questions and answers posted by her in the
past. Second, we use BIC and FIC to get a list of candidate tags for the question o,
say TBIC

⋃
FIC is {java, netbeans, string, algorithm}. Third, using Equation 5,

we compute the tags’ weights: java receives weight 203
317 , string 4

317 , algorithm
2

317 , and netbeans 2
317 (she happens to have used all four tags recommended by

BIC&FIC).

7 Additional Tag Component

In this component, we make use of an initial set of tags provided by a user to infer
additional tags based on historical tag co-occurrences. Consider a software object
o and a set of initial tags {t1, t2, ..., tk} provided by a user. The probability of the
object o to be assigned a tag t is:

P (o, t|t1, t2, ..., tk) =
k∏
i=1

P (o, t|ti) (6)

The above probabilities (P (o, t|ti) for 1 ≤ i ≤ k) can be estimated from the
training data as follows:

P (o, t|ti) = Number of objects labeled with t and ti
Number of objects labeled with ti

(7)

Example. Suppose a user posts a question o and provides an initial tag string. In
the training data, let us say there are 100 software objects labeled with tag string,
and among them 40, 30, 10, 20, and 10 posts are also labelled with tags java,
c#, io, javascript, and python, respectively. Using Equation 7, we estimate the
probabilities: P (o, java|string) = 0.4, P (o, c#|string) = 0.3, P (o, io|string) =
0.1, P (o, javascript|string) = 0.2 and P (o, python|string) = 0.1.

13 Our experiments show that the effectiveness of UIC substantially degrades if it takes into
consideration all tags.

16 Shaowei Wang et al.

8 Composer Component

Given a target software object o and a tag t, BIC, FIC, UIC, and ATC each produces
a probability for the tag to be relevant. We need to combine these probabilities to
estimate the overall relevance of the tag. A simple solution is to take an average of the
four probabilities. However, this assumes that BIC, FIC, UIC, and ATC are equally
accurate in predicting tag relevance, which may not be the case. To accommodate
for differences in the effectiveness of the four components, we can assign weights to
them. More accurate components can be given higher weights, and these weights
can be learned from a training data. After these weights are learned, for every tag,
we can compute a weighted average of its probabilities and use it as its overall
relevance score. This score can then be used to produce a final ranked list of tags.
This strategy is commonly referred to as fusion via a linear combination of scores
which is a classical information retrieval technique [44].

More formally, we define EnTagRec++ ranking score as EnTagRec++
o(t) as

follows:

EnTagRec++
o(t) = α×Bo(t) + β × Fo(t) + γ × Uo(t) + δ ×Ao(t), (8)

where Bo(t), Fo(t), Uo(t), and Ao(t) are the probabilities of tag t computed by BIC,
FIC, UIC, and ATC, respectively, and α, β, γ,14 and δ ∈ [0, 1] are the weights
the composer component assigns to BIC, FIC, UIC, and ATC, respectively.15 Note
that if there is no additional tag provided by users, ATC will be deactivated and,
correspondingly, δ will be set to 0.

To automatically tune α, β, γ, and δ, we use a set of training software objects and
employ grid search [7]. The pseudocode of our weight tuning procedure is shown in
Algorithm 3. The weight tuning procedure takes as input the set of training software
objects TO, an evaluation criterion EC, and the four sets of tags returned by BIC,
FIC, UIC, and ATC (along with their probabilities). Our tuning procedure initializes
α, β, γ, and δ to 0 (Line 12). Then, it incrementally increases the value of α, β, γ, and
δ by 0.1 until they reach 1.0 (Lines 13–16). For each combination of four parameters
and each software object o in TO, our tuning procedure computes the EnTagRec++

scores for each tag returned by BIC, FIC, UIC, and ATC (Lines 17–19). Then tags
are ordered based on their EnTagRec++ scores (Line 21). This is the ranked list of
tags that are recommended for o. Next, our tuning procedure evaluates the quality
of the resulting ranking based on particular α, β, γ, and δ values using EC (Line 22).
The process is repeated for all objects in TO and again the quality of the resulting
ranking is evaluated using EC (Line 24). The process continues until all combinations
of α, β, γ, and δ have been exhausted and our tuning procedure finally outputs the
best combination of α, β, γ, and δ based on EC (Line 29).

Various evaluation criteria can be used in our weight tuning procedure. In this
paper, we make use of Recall@k, which has been used as the evaluation criterion in
many past tag recommendation studies, e.g., [1, 52]. Recall@k was also used in the
previous state-of-the-art study on tag inference for software information sites [51].

14 By construction, γ is an extra weight given to some of the tags in TBIC∪FIC.
15 Since EnTagRec++

o(t) is itself a probability score, it could also be expressed as a function
of only three coefficients α′, β′, and γ′, with the fourth being automatically 1−α′ −β′ −γ′. We
chose the four-coefficient expression to better reflect the four components of EnTagRec++.

EnTagRec++: An Enhanced Tag Recommendation System 17

Algorithm 3 Weight Tuning Algorithm
1: TuneWeights
2: Input:
3: TO: Training Tagged Software Objects
4: EC: Evaluation Criterion
5: TagsB : Set of tags inferred by BIC
6: TagsF : Set of tags inferred by FIC
7: TagsU : Set of tags inferred by UIC
8: TagsA: Set of tags inferred by ATC
9: Output:
10: α, β, γ, and δ
11: Method:
12: Set α = 0, β = 0, γ = 0, δ = 0
13: for each α from 0 to 1, each step increases α by 0.1 do
14: for each β from 0 to 1, each step increases β by 0.1 do
15: for each γ from 0 to 1, each step increases γ by 0.1 do
16: for each δ from 0 to 1, each step increases δ by 0.1 do
17: for each object o in TO do
18: for each tag t in TagsB

⋃
TagsF

⋃
TagsU

⋃
TagsA do

19: Compute EnTagRec++
o(t) according to Eq. 8

20: end for
21: Sort tags based on their EnTagRec++ scores (desc. order)
22: Evaluate the effectiveness of α, β, γ, and δ on o based on EC
23: end for
24: Evaluate the effectiveness of α, β, γ, and δ on TO based on EC
25: end for
26: end for
27: end for
28: end for
29: return the best α, β, γ, and δ based on EC

Definition 1 Consider a set of n software objects. For each object oi, let the set
of its correct (i.e., ground truth) tags be Tagscorrecti . Also, let TagstopKi be the top-
k ranked tags that are recommended by a tag recommendation approach for oi.
Recall@k for n is given by:

Recall@k = 1
n

n∑
i=1

|TagstopKi

⋂
Tagscorrecti |

|Tagscorrecti |
(9)

In the deployment phase, the composer component combines the recommenda-
tions made by the inference components by computing the EnTagRec++ scores
using Equation 8 for each recommended tag. It then sorts the tags based on their
EnTagRec++ scores (in descending order) and outputs the top-k ranked tags.

9 Experiments and Results

In this section, we first present our experiment settings in Section 9.1. Our experiment
results are then presented in Sections 9.2. We discuss some interesting points in
Section 9.3.

9.1 Experimental Setting

We evaluate EnTagRec++ on five datasets: Stack Overflow, Ask Ubuntu,
Ask Different, Super User (all four part of the Stack Exchange network),

18 Shaowei Wang et al.

Table 2 Basic Statistics of the Four Datasets.

Dataset Period Objects Tags Objects per tag Avg. age of
Max Avg users (days)

Stack Overflow 2008.6 - 2008.12 47,668 437 6,113 234.93 54
Freecode 2001.1 - 2012.6 39,231 243 9,615 545.08 NA
Ask Ubuntu Before 2012.4 37,354 346 6,169 234.03 237
Ask Different Before 2012.4 13,351 153 2,019 180.88 253
Super User Before 2012.4 47,996 460 7,009 245.7 745

and Freecode, which were used to evaluate EnTagRec [46]. Stack Overflow
is a Q&A site for software developers to post general programming questions. Ask
Different is a Q&A site related to Apple devices, e.g., iPhone, iPad, mac. Ask
Ubuntu is a Q&A site about Ubuntu. Super User is a Q&A site for systems
administrators and power users. Freecode is a site containing descriptions of many
software projects.

Table 2 presents descriptive statistics of the four datasets, including period of the
data, number of objects, number of tags, maximum and average number of objects
for each per tag, and average elapsed time since registration of all studied users. The
Stack Overflow and Freecode datasets are obtained from Xia et al. and they
have been used to evaluate TagCombine [51]. The Ask Ubuntu, Ask Differ-
ent, and Super User datasets are new. We collect all questions in Ask Ubuntu,
Ask Different, Super User that are posted before April 2012. Following [51], to
remove noise corresponding to tags that are assigned idiosyncratically, we filter out
tags that are associated with less than 50 objects. These tags are less interesting since
not many people use them, and thus they are less useful to be used as representative
tags and recommending them does not help much in addressing the tag synonym
problem addressed by tag recommendation studies. The numbers summarized in
Table 2 are after filtering.

We perform ten-fold cross validation [19] for evaluation. We randomly split the
dataset into ten subsamples. Nine of them are used as training data, to train En-
TagRec++, and one subsample is used for testing. We repeat the process ten times
and use Recall@k as the evaluation metric. Note that we conduct ten-fold cross
validation 100 times and take averages as results.Unless otherwise stated, we set the
values ofKBayesian andKFrequentist at 70 as the setting in EnTagRec. We conduct all
our experiments on a Windows 2008 server with 8 Intel R©2.53GHz cores and 24GB
RAM.

9.2 Evaluation Results

The goal of our evaluation is to compare the effectiveness of EnTagRec++ with
those of EnTagRec and TagCombine. TagCombine is the tag recommendation
approach proposed by Xia et al [51]. EnTagRec is our earlier version of EnTag-
Rec++ [46], which did not include the user information component and the addi-
tional tag component. Our goal can be refined into the following research questions:

RQ1. How effective is EnTagRec+ compared to EnTagRec and TagCombine in
terms of Recall@k?

EnTagRec++: An Enhanced Tag Recommendation System 19

Table 3 Basic Statistics of Questions Involving Tag Re-Editing on Stack Overflow, Ask
Ubuntu, Super User, and Ask Different.

Dataset Tags Objects Avg. initial tag set size Avg. edited tag set size
Stack Overflow 649 42,493 2.9 3.4
Ask Ubuntu 483 31,881 2.4 2.8
Ask Different 157 7,762 2.3 3.1
Super User 196 13,796 2.0 2.7

To answer this research question, we perform ten-fold cross validation, and com-
pare EnTagRec++, EnTagRec and TagCombine in terms of Recall@5 and Re-
call@10 . To make the comparison fair, we do not provide an initial set of tags to
EnTagRec++ because EnTagRec and TagCombine cannot accept an initial set
of tags as input. We refer to the version of EnTagRec++ without additional tags
as EnTagRec+.

RQ2. Does the additional tag component improve the effectiveness of EnTagRec+?

The additional tag component makes use of the additional tags provided by a user to
recommend associated tags. We want to investigate whether this component improves
EnTagRec+. To answer this research question, we collect the questions whose tags
have been updated in the past from Stack Overflow, Ask Ubuntu, and Ask
Different. In the experiment, we take the initial tags labeled by users when they
created the questions, and use the recent tags of the question as the ground truth.
We also remove the tags that are associated with less than 50 objects, as before in
RQ1. We use the datasets in Table 1 for this experiment; the number of tags and
objects after filtering is shown at Table 3. For Ask Ubuntu, Ask Different and
Super User, we collect all questions involving tag re-editing before December 2015.
After filtering, we are left with 483 tags and 31,881 objects associated with the tags
from Ask Ubuntu, with 157 tags and 7,762 objects from Ask Different, and with
196 tags and 13,796 objects from Super User. For Stack Overflow, because the
number of questions involving tag re-editing is too large, we randomly sample 50,000
questions; after filtering, we are left with 649 tags and 42,493 objects. We do not
consider Freecode for this experiment because we cannot obtain historical tag data
from Freecode.

9.2.1 RQ1: Overall Effectiveness of EnTagRec+

We compare EnTagRec+ with competing approaches: TagCombine proposed by
Xia et al. [51] and EnTagRec by Wang et al [46].

Table 4 summarizes the comparison between EnTagRec+, EnTagRec, and
TagCombine. We also show the beanplots of the comparison between those three
approaches in Figure 7. We performed ten-fold cross-validation 100 times and evalu-
ated the approaches in terms of the average Recall@5 and Recall@10 . EnTagRec+

achieves sizeable improvements over TagCombine for the Stack Exchange datasets
(more than 34.7% for Recall@5 and more than 18.3% for Recall@10), and performs
comparably to TagCombine on Freecode. Averaging across the 5 datasets, En-
TagRec+ improves TagCombine in terms of Recall@5 and Recall@10 by 27.8%
and 14.1% respectively. We perform a Wilcoxon signed-rank test [50] to test the sig-
nificance of the differences in the performance of TagCombine and EnTagRec+

20 Shaowei Wang et al.
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Ask Different

Recall@5 Recall@10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Ask Ubuntu

Recall@5 Recall@10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Free Code

Recall@5 Recall@10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Stack Overflow

Recall@5 Recall@10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Super User

Recall@5 Recall@10

EnTagRec+ EnTagRec TagCombine

Fig. 7 Beanplots of EnTagRec+, EnTagRec and TagCombine in terms of Recall@5 and
Recall@10 .

Table 4 The Comparison of EnTagRec+, EnTagRec and TagCombine in terms of Recall@5
and Recall@10 . The highest value is typeset in boldface.

Recall@5
Dataset EnTagRec EnTagRec+ TagCombine

Stack Overflow 0.805 0.821 0.595
Ask Ubuntu 0.815 0.822 0.568

Ask Different 0.882 0.891 0.675
Super User 0.810 0.818 0.627
Freecode 0.642 0.651 0.639

Recall@10
Dataset EnTagRec EnTagRec+ TagCombine

Stack Overflow 0.868 0.873 0.724
Ask Ubuntu 0.882 0.886 0.727

Ask Different 0.951 0.956 0.821
Super User 0.879 0.887 0.763
Freecode 0.754 0.761 0.777

measured in terms of Recall@5 and Recall@10 . We also perform Benjamini Yeku-
tieli procedure [6] to adjust the p-value obtained from Wilcoxon signed-rank test
to deal with the impact of multiple comparisons. For the Stack Exchange datasets
(Stack Overflow, Ask Ubuntu, Ask Different, Super User), the results
show that EnTagRec+ outperforms TagCombine in terms of Recall@5 and Re-
call@10 significantly. For Freecode, EnTagRec+ outperforms TagCombine in
terms of Recall@5 significantly. However, TagCombine significantly outperforms
EnTagRec+ in terms of Recall@10 but the absolute difference is small (0.016).

We also compare the effectiveness of EnTagRec+, which employs user informa-
tion, to that of EnTagRec in terms of Recall@5 and Recall@10 . Analyzing Table 4,
we observe that EnTagRec+ outperforms EnTagRec on all datasets. In terms
of Recall@5 , EnTagRec+ improves EnTagRec by 1.3% on average. In terms of
Recall@10 , EnTagRec+ achieves a 0.3% improvement over EnTagRec. We per-
form a Wilcoxon signed-rank test [50] and Benjamini Yekutieli procedure [6] on each
dataset. The results indicates the improvement achieved by EnTagRec+ is statis-
tically significant (adjusted p-value < 0.05).

To investigate if the differences in the Recall@5 and Recall@10 values are sub-
stantial, we also compute Cliff’s Delta [18] which measures effect size. The results

EnTagRec++: An Enhanced Tag Recommendation System 21

Table 5 Effect Sizes
Recall@5

Dataset EnTagRec+ vs. EnTagRec EnTagRec+ vs. TagCombine
Stack Overflow 1 1

Ask Ubuntu 1 1
Ask Different 1 1

Super User 0.99 0.99
Freecode 1 0.92

Recall@10
Dataset EnTagRec+ vs. EnTagRec EnTagRec+ vs. TagCombine

Stack Overflow 0.68 1
Ask Ubuntu 1 1

Ask Different 1 1
Super User 0.99 0.99
Freecode 1 -1

0.
6

0.
7

0.
8

0.
9

1.
0 Stack Overflow

Recall@5 Recall@10

0.
6

0.
7

0.
8

0.
9

1.
0 Ask Ubuntu

Recall@5 Recall@10

0.
6

0.
7

0.
8

0.
9

1.
0 Ask Different

Recall@5 Recall@10

0.
6

0.
7

0.
8

0.
9

1.
0 Super User

Recall@5 Recall@10

EnTagRec+ EnTagRec++

Fig. 8 Beanplots of EnTagRec+ and EnTagRec++ in terms of Recall@5 and Recall@10 .

are shown in Table 5. It interprets the effect size values as small for 0.147 < |d|
< 0.33, medium for 0.33 < |d| < 0.474, and large for |d| > 0.474 [18]. If the effect
size is close to 0, it means that the difference is not substantial. If the effect size
equals to 1, it means that all values of one group are larger than those of another
group. From the results we can conclude that EnTagRec+ substantially outper-
forms TagCombine and EnTagRec on Stack Overflow, Ask Ubuntu, Super
User, and Ask Different datasets (with large effect sizes). For the Freecode
dataset, EnTagRec+ also substantially outperforms EnTagRec (with large effect
sizes). In terms of Recall@5 , EnTagRec+ outperforms TagCombine substantially.
However, in terms of Recall@10 , TagCombine outperforms EnTagRec+ substan-
tially. which means that all values in one group are larger or smaller than those in
another group when comparing two groups.

9.2.2 RQ2: Effectiveness of Additional Tag Component

To answer the research question, we compare the effectiveness of two versions of
EnTagRec++: one with additional tag component (EnTagRec++) and another
without additional tag component (EnTagRec+). Figure 8 presents the beanplots
of EnTagRec+ and EnTagRec++ in terms of Recall@5 and Recall@10 . Table 6
summarizes the comparison between EnTagRec++ and EnTagRec+ in terms of

22 Shaowei Wang et al.

Table 6 The Comparison of EnTagRec++ and EnTagRec+ in terms of Recall@5 and Re-
call@10 .

Recall@5
Dataset EnTagRec++ EnTagRec+

Stack Overflow 0.905 0.819
Ask Ubuntu 0.737 0.705

Ask Different 0.852 0.685
Super User 0.908 0.901

Recall@10
Dataset EnTagRec++ EnTagRec+

Stack Overflow 0.968 0.941
Ask Ubuntu 0.87 0.866

Ask Different 0.963 0.932
Super User 0.956 0.955

Table 7 Effect Sizes
Recall@5

Dataset EnTagRec++ vs. EnTagRec+

Stack Overflow 1
Ask Ubuntu 1

Ask Different 1
Super User 0.99

Recall@10
Dataset EnTagRec++ vs. EnTagRec+

Stack Overflow 1
Ask Ubuntu 0.99

Ask Different 1
Super User 0.28

Recall@5 and Recall@10 . From the results, we notice that EnTagRec++ outper-
forms EnTagRec+ on all datasets. On average, EnTagRec++ achieves 10.0% and
4.8% improvements over EnTagRec+ in terms of Recall@5 and Recall@10 , respec-
tively. We also perform a Wilcoxon signed-rank test [50] and Benjamini Yekutieli
procedure [6] on each dataset, which indicates the improvement achieved by EnTag-
Rec++ is statistically significant (adjusted p-value < 0.05). Thus, we demonstrate
that additional tag component helps to improve EnTagRec when additional tag
provided.

We also compute Cliff’s Delta [18] which measures effect size to test if the differ-
ences in the recall values are substantial. The results are shown in Table 7.

9.3 Discussion

Illustrative Examples. Figure 9 shows a software object from Stack Overflow
with the ruby and rdoc tags. TagCombine cannot infer any of the tags. On the
other hand EnTagRec can infer all tags. This is one of the many examples where
the performance of EnTagRec is better than TagCombine.

Figure 10 presents a software object from Stack Overflow with tags python,
apache-spark, apache-spark-sql, and pyspark. The object is initially tagged with
python, apache-spark, and apache-spark-sql. Later, the tag pyspark is added.

EnTagRec++: An Enhanced Tag Recommendation System 23

Table 8 The summary of the length (in words) of objects in the five dataset.

Dataset Entire dataset Groupshort Grouplong

Stack Overflow 75.8 30.9 118.8
Ask Ubuntu 77.9 28.4 125.5
Ask Different 60.9 26.4 93.6
Super User 62.7 27.9 96.5
Freecode 19.5 11.6 27.3

EnTagRec++ can infer the tag pyspark given the initial set of tags, while EnTag-
Rec fails to do so.
The impact of different MH on EnTagRec+. To understand the impact of
parameter MH in Algorithm 1 on our approach, we test different values of MH
of EnTagRec+ on the five datasets and see how the effectiveness of EnTagRec+

varies. Figure 11 presents the results, which show that the effectiveness of EnTag-
Rec+ remains stable when we increase MH from 1 to 5. Since the difference in
effectiveness is negligible for different MH values, we choose to set MH to 1 to
reduce the computing cost.
Stack Exchange Sites vs. FreeCode. From the experimental results, we note
that EnTagRec+ performs much better than TagCombine on Stack Exchange
Sites (i.e.,Stack Overflow, Ask Ubuntu, Super User, Ask Different), while
it performs similarly to TagCombine on Freecode. To understand why the perfor-
mance of EnTagRec+ varies on different sites, we check the length (in words) of
objects in the five datasets; the summary is shown in Table 8. We see that the length
of objects in Freecode is much shorter than that of Stack Exchange sites. This
may explain why the performance of EnTagRec+ on Freecode is not as good as
on the other sites. BIC is based on L-LDA, which usually requires training documents
to be relatively long in order to achieve good results – c.f. [21]. Unfortunately, objects
in Freecode are short, which results in poor results from BIC. To further verify our
conjecture, we divide the objects into two groups. We sort the objects of each dataset
by their length (in words) in ascending order. We take the top 50% of the objects
as one group (i.e., Groupshort) and the rest as the another group (i.e., Grouplong).
We evaluate the effectiveness of EnTagRec+ on each group of the five datasets in
terms of Recall@5 and Recall@10 . The results are shown at Table 9. We could see
that EnTagRec+ consistently achieves better Recall@k scores on Grouplong, which
suggests that our approach is more effective on long objects rather than short ones.

Taryn East
9,133 3 29 61

CodingWithoutComments
9,106 12 52 73

2 Answers

James A. Rosen
25k 32 125 206

I've got all these comments that I want to make into 'RDoc comments', so they can be formatted
appropriately and viewed using ri . Can anyone get me started on understanding how to use RDoc?

ruby rdoc

edited May 5 '13 at 0:24 asked Aug 1 '08 at 13:38

add comment

start a bounty

A few things that have bitten me:

:main: -- RDoc uses only the last one evaluated; best to make sure there's only one in your project
and you don't also use the ''main command-line argument.
same as previous, but for :title:
:section: doesn't work very well

answered Aug 23 '08 at 4:48

add comment

RDoc uses SimpleMarkup so it's fairly simple to create lists, etc. using *, - or a number. It also treats lines

How do I add existing comments to RDoc in Ruby?

267 1 15

help

Fig. 9 EnTagRec correctly suggests tags ruby and rdoc for this Stack Overflow question,
while TagCombine does not.

24 Shaowei Wang et al.

Fig. 10 EnTagRec++ correctly suggests tags pyspark for this Stack Overflow question
given the initial tags python, apache-spark, and apache-spark-sql, while EnTagRec does
not.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5
MH

AD_Recall@5 AD_Recall@10 AU_Recall@5 AU_Recall@10 SO_Recall@5

SO_Recall@10 SU_Recall@5 SU_Recall@10 FC_Recall@5 FC_Recall@10

Fig. 11 The results of different values of MH on Stack Overflow (SO), Ask Ubuntu (AU),
Ask Different (AD), Super User (SU), and Freecode (FC). Y axis is truncated (i.e., 0.6
- 1.0) and differences are smaller than they appear.

Precision@k Results. Aside from Recall@k, Precision@k (definition 2) has also
been used to evaluate information retrieval techniques. In this paper, we focus on
Recall@k as the evaluation metric. A similar decision was made by past tag recom-
mendation studies [51, 52]. This is the case as the number of tags that are attached
to an object is often small (much less than K). Thus, the value of Precision@k is
often very low and is not meaningful.

EnTagRec++: An Enhanced Tag Recommendation System 25

Table 9 The comparison between Grouplong and Groupshort.

Recall@5
Dataset Grouplong Groupshort

Stack Overflow 0.912 0.680
Ask Ubuntu 0.882 0.703

Ask Different 0.954 0.807
Super User 0.908 0.689
Freecode 0.635 0.629

Recall@10
Dataset Grouplong Groupshort

Stack Overflow 0.956 0.751
Ask Ubuntu 0.940 0.866

Ask Different 0.986 0.781
Super User 0.965 0.778
Freecode 0.680 0.674

Definition 2 Consider a set of n software objects. For each object oi, let the set
of its correct (i.e., ground truth) tags be Tagscorrecti . Also, let TagstopKi be the top-
k ranked tags that are recommended by a tag recommendation approach for oi.
Average Precision@k for n is given by:

Precision@k = 1
n

n∑
i=1

|TagstopKi

⋂
Tagscorrecti |

|TagstopKi |
(10)

Still, for the sake of completeness, we show the Precision@k results in Table 10.
The results show that EnTagRec+ outperforms EnTagRec and TagCombine on
all datasets in terms of Precision@5 . EnTagRec+ outperforms EnTagRec on Ask
Ubuntu, Ask Different, Super User, and Freecode in terms of Precision@10 .
In terms of Precision@10 , EnTagRec+ also outperforms TagCombine on four out
of the five datasets. The difference between Precision@10 of EnTagRec+ and Tag-
Combine is small (i.e., 0.008). We also performed the Wilcoxon signed-rank test [50]
and Benjamini Yekutieli procedure [6]. We found that in terms of Precision@5 , En-
TagRec+ significantly outperforms TagCombine. Also, in terms of Precision@10 ,
EnTagRec+ significantly outperforms EnTagRec on all datasets and TagCom-
bine on Stack Overflow, Ask Ubuntu, Super User, and Ask Different.
For Freecode, TagCombine significantly outperforms EnTagRec+ terms of Pre-
cision@10 .

When the additional tags are given, the precision of EnTagRec+ and EnTag-
Rec++ are presented at Table 11. EnTagRec++ outperforms EnTagRec on all
datasets in terms of Precision@5 and Precision@10 . We also performed the Wilcoxon
signed-rank test [50] and Benjamini Yekutieli procedure [6]. We found that in terms
of Precision@5 , EnTagRec++ significantly outperforms EnTagRec on all dataset.

To investigate if the differences in the precision values are substantial, we also
compute Cliff’s Delta which measures effect size. The results are shown in Table 12.
From the results we can conclude that EnTagRec+ substantially outperforms Tag-
Combine and EnTagRec on the Stack Overflow, Ask Ubuntu, Super User,
and Ask Different datasets (with at least medium effect sizes). For the Freecode
dataset,EnTagRec+ still substantially outperforms TagCombine in terms of Pre-
cision@5 . However, TagCombine substantially outperforms EnTagRec in terms
of Precision@10 . EnTagRec++ substantially outperforms EnTagRec+ on Stack

26 Shaowei Wang et al.

Table 10 Precision@5 and Precision@10 for three approaches EnTagRec+, EnTagRec, and
TagCombine. The highest value is typeset in boldface.

Precision@5
Dataset EnTagRec EnTagRec+ TagCombine

Stack Overflow 0.346 0.353 0.221
Ask Ubuntu 0.358 0.361 0.251

Ask Different 0.364 0.373 0.278
Super User 0.376 0.380 0.285
Freecode 0.382 0.396 0.381

Precision@10
Dataset EnTagRec EnTagRec+ TagCombine

Stack Overflow 0.187 0.187 0.151
Ask Ubuntu 0.196 0.197 0.158

Ask Different 0.205 0.202 0.173
Super User 0.201 0.207 0.177
Freecode 0.240 0.241 0.249

Table 11 Precision@5 and Precision@10 for two approaches EnTagRec+ and EnTag-
Rec++. The highest value is typeset in boldface.

Precision@5
Dataset EnTagRec++ EnTagRec+

Stack Overflow 0.225 0.202
Ask Ubuntu 0.202 0.191

Ask Different 0.225 0.181
Super User 0.249 0.247

Precision@10
Dataset EnTagRec++ EnTagRec+

Stack Overflow 0.122 0.118
Ask Ubuntu 0.122 0.121

Ask Different 0.130 0.125
Super User 0.133 0.132

Overflow, Ask Ubuntu, Super User, and Ask Different datasets (with large
and medium effect sizes). EnTagRec+ substantially outperforms EnTagRec in
terms of Precision@5 . In terms of Precision@10 , EnTagRec+ outperforms En-
TagRec on the Ask Ubuntu, Super User, and Ask Different datasets with
large size and on the Freecode with medium size.
Efficiency. We find that EnTagRec++ runtimes for the training and deployment
phases are reasonable. EnTagRec++’s training time can mostly be attributed to
training an L-LDA model in the Bayesian inference component of EnTagRec++,
which never exceeds 18 minutes (it is the maximum time across the ten iterations
measured on the Stack Overflow dataset, the largest of the four). The Frequentist
inference component is much faster; its runtime never exceeds 40 seconds (measured
on the Stack Overflow dataset). The training time of user information component
and additional tag component never exceeds 1 minute. In the deployment phase, the
average time EnTagRec++ takes to recommend a tag never exceeds 0.14 seconds.
Retraining frequency. Since EnTagRec++ is efficient (i.e., model training can
be completed in minutes), we can afford to retrain it daily. For example, a batch
script can be run at a scheduled hour every day. Within a day, software objects and
tagging behaviors are very likely to remain unchanged, and thus there is no need to
retrain EnTagRec++ more frequently.

EnTagRec++: An Enhanced Tag Recommendation System 27

Table 12 Effect Sizes (Precision)

Precision@5
Dataset EnTagRec+ vs.

EnTagRec
EnTagRec++ vs.
EnTagRec+

EnTagRec+ vs.
TagCombine

Stack Overflow 0.939 1 1
Ask Ubuntu 1 1 1

Ask Different 1 1 1
Super User 0.461 0.92 1
Freecode 1 NA 1

Precision@10
Dataset EnTagRec+ vs.

EnTagRec
EnTagRec++ vs.
EnTagRec+

EnTagRec+ vs.
TagCombine

Stack Overflow -0.024 1 1
Ask Ubuntu 1 0.568 1

Ask Different 1 1 1
Super User 0.99 0.47 0.99
Freecode 0.341 NA -0.457

ATC usage. Since more complete tags may shorten the time it takes for a question
to be discovered and receive answer, we suggest to apply ATC just after a question
is created with initial tags. Moreover, ATC can even be applied in real time, i.e.,
when users are entering tags.
Threats to Validity. Threats to external validity relate to the generalizability
of our results. We have analyzed five popular software information sites (i.e., four
Stack Exchange sites and Freecode) and more than 160,000 software objects.
In the future, we plan to reduce this threat further by analyzing even more software
objects from more software information sites. As a threat to internal validity, we
assume that the data in the software information sites are correct. To reduce the
threat we only used older data—assuming people correct wrongly/poorly assigned
tags. Also, two of our datasets (i.e., Stack Overflow and Freecode) were used
in a past study [51]. We use a lot of data and only consider tags that are used to
label at least 50 objects to further reduce the impact of noise. Furthermore, manual
inspection of a random sample of 100 Stack Overflow objects (questions) revealed
that only 1 had a clearly irrelevant tag (out of a total of 3 tags for that object).

Threats to construct validity relate to the suitability of our evaluation metrics.
We have used Recall@k and Precision@k to evaluate our proposed approaches En-
TagRec and EnTagRec++ in comparison with other approaches. These measures
are standard information retrieval measures used by prior tag recommendation stud-
ies, e.g., [1,51,52]. We have also performed statistical test and effect size test to check
if the differences in Recall@k and Precision@k are significant and substantial. Thus,
we believe there is little threat to construct validity.

10 Related Work

Tag Recommendation: Al-Kofahi et al. proposed TagRec which recommends
tags in work item systems (e.g., IBM Jazz) [1]. There are a number of studies from
the data mining research community, that recommend tags for social media sites like
Twitter, Delicious, and Flickr [22,35,52]. Among these studies, the work by Zangerle
et al. is the latest approach to recommend hashtags for short messages in Twitter [52].

28 Shaowei Wang et al.

Xia et al. proposed TagCombine, which combines three components: a multi-label
ranking component, a similarity-based ranking component, and a tag-term based
ranking component [51]. Xia et al. have shown that TagCombine outperforms Tag-
Rec and Zangerle et al.’s approach in recommending tags in software information
sites.

The closest work to ours is TagCombine proposed by Xia et al. which is also the
prior state-of-the-art work [51]. There are a number of technical differences between
EnTagRec, proposed in our preliminary work [46], and TagCombine. EnTagRec
combines two components: a Bayesian inference component that employs Labeled
LDA (BIC), and an enhanced frequentist inference component that removes unre-
lated words with the help of a parts-of-speech (POS) tagger, and finds associated tags
with a spreading activation algorithm (FIC). Our BIC is related to the multi-label
ranking component of TagCombine since both of them employ Bayesian inference.
The multi-label ranking component of TagCombine constructs many one-versus-
rest Naive Bayes classifiers, one for each tag. Each Naive Bayes classifier simply
predicts the likelihood of a software object to be assigned a particular tag. In En-
TagRec, we construct only one classifier which is a mixture model that considers
all tags together. Mixture models have been shown to outperform one-versus-rest
traditional multi-label classification approaches [16, 30, 31]. Also, our FIC removes
unrelated words (using POS tagger) and finds associated tags (using spreading acti-
vation) while none of the three components of TagCombine perform these. We have
compared our approach with TagCombine, on four datasets: Stack Overflow,
Ask Ubuntu, Ask Different, and Freecode. We show that our approach out-
performs TagCombine on three datasets (i.e., Stack Overflow, Ask Ubuntu,
Ask Different), and performs as well as TagCombine on one dataset (i.e., Free-
code). EnTagRec++ extends EnTagRec by including two additional components,
User Information Component (UIC) and Additional Tag Component (ATC), which
boosts performance further.

Tagging in Software Engineering: The need for automatic tag recommendation
has been recognized both by practitioners [23,25,49] and by researchers. Aside from
tag recommendation studies mentioned above, there are several software engineering
studies that also analyze tagging and leverage tags for various purposes. Treude et
al. performed an empirical study on the impact of tagging on a large project with
175 developers over a two years period [40]. Wang et al. analyzed tags of projects in
Freecode, inferred the semantic relationships among the tags, and expressed the
relationships as a taxonomy [45]. Thung et al. detected similar software applications
using software tags [38]. Storey et al. proposed an approach called TagSEA that
allows one to create, edit, navigate, and manage annotations in source code [36].
Treude et al. performed an empirical study on several professional projects that in-
volved more than 1,000 developers, and found that tagging can play an important
role in the development process [41]. They found that tags are helpful in articulation
work, finding of tasks, and exchange of information. Cabot et al. conducted an em-
pirical study on the labels that are used to classify issues on issue tracking system
and they found that the use of such labels improves issue resolution process [11].
Wang et al. have demonstrated that the practice of tagging helps in assisted tracing
(a process where analysts inspect results produce by automated traceability tech-
niques) [47]. Through a user study, they find that tagging is readily adopted by

EnTagRec++: An Enhanced Tag Recommendation System 29

analysts and improve the quality of the trace matrices produced at the end of the
study.

Furthermore, several studies of Stack Overflow have used tags to focus on
questions or answers pertaining to a certain technology [5,43] or to enhance studies
of related websites such as GitHub [28] or Wikipedia [24].

11 Conclusion and Future Work

In this work, we propose a novel approach to recommend tags to software information
sites. Our approach, named EnTagRec++, an enhanced version of EnTagRec,
learns from tags of historical software objects to infer tags of new software objects. To
recommend tags, EnTagRec++ enhances EnTagRec by adding two more inference
components. One, named user information component (UIC), makes use of historical
tagging information peculiar to a user to infer tags for a current software object the
user creates. Another one, named additional tag component (ATC), makes use of
an initial set of tags given by a user to recommend additional tags better. EnTag-
Rec++ composes the four components by finding the best weights that optimize the
performance of EnTagRec++ on a training dataset. We evaluate the performance
of EnTagRec++ on four datasets, Stack Overflow, Ask Ubuntu, Ask Dif-
ferent, Super User, and Freecode, which contain 47,688, 39,231, 37,354, and
13,351 software objects, respectively. We find that that without leveraging ATC,
our approach (named EnTagRec+) achieves Recall@5 scores of 0.821, 0.822, 0.891
and 0.651, and Recall@10 scores of 0.873, 0.886, 0.956 and 0.761, on Stack Over-
flow, Ask Ubuntu, Ask Different, Super User, and Freecode, respectively.
In terms of Recall@5 and Recall@10 , averaging across the 4 datasets, EnTagRec+

improves TagCombine [51], which is the prior state-of-the-art approach, by 29.1%
and 14.2% respectively. In addition, with ATC, EnTagRec++ achieves a 13.1%
improvement over EnTagRec+ in terms of Recall@5 . We have published the code
and datasets that we used online 16. Admittedly, we have only tested our approach
on Stack Exchange sites and FreeCode.

As future work, we plan to reduce the threats to validity by experimenting with
more software objects from more software information sites. In this paper, we only
consider the major tag re-editing scenario – tag addition (see Table 1). In the future,
we also plan to support tag deletion and tag correction. Furthermore, we plan to
improve the Recall@5 and Recall@10 of EnTagRec further by investigating cases
where EnTagRec++ is inaccurate, and by building a more sophisticated machine
learning solution.

References

1. J. M. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Fuzzy set
approach for automatic tagging in evolving software. In ICSM, pages 1–10, 2010.

2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering traceability
links between code and documentation. IEEE Trans. Softw. Eng., 28(10):970–983, Oct.
2002.

3. H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability with topic
modeling. In ICSE, pages 95–104, 2010.

16 https://sites.google.com/site/wswshaoweiwang/projects/entagrec

30 Shaowei Wang et al.

4. P. Baldi, C. V. Lopes, E. Linstead, and S. K. Bajracharya. A theory of aspects as latent
topics. In OOPSLA, pages 543–562, 2008.

5. B. Bazelli, A. Hindle, and E. Stroulia. On the personality traits of stackoverflow users.
In 2013 IEEE International Conference on Software Maintenance, pages 460–463, Sept
2013.

6. Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics, 29:1165–1188, 2001.

7. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR,
13:281–305, 2012.

8. S. Bindelli, C. Criscione, C. Curino, M. L. Drago, D. Eynard, and G. Orsi. Improving search
and navigation by combining ontologies and social tags. In On the Move to Meaningful
Internet Systems: OTM 2008 Workshops, OTM Confederated International Workshops
and Posters, ADI, AWeSoMe, COMBEK, EI2N, IWSSA, MONET, OnToContent + QSI,
ORM, PerSys, RDDS, SEMELS, and SWWS 2008, Monterrey, Mexico, November 9-14,
2008. Proceedings, pages 76–85, 2008.

9. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, pages 993–1022,
2003.

10. J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer. Two studies
of opportunistic programming: interleaving web foraging, learning, and writing code. In
CHI, pages 1589–1598. ACM, 2009.

11. J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B. Rolandi. Exploring the use of labels to
categorize issues in open-source software projects. In 22nd IEEE International Confer-
ence on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015, pages 550–554, 2015.

12. G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella. Improving
IR-based traceability recovery via noun-based indexing of software artifacts. Journal of
Software: Evolution and Process, 25(7):743–762, 2013.

13. U. Cress, C. Held, and J. Kimmerle. The collective knowledge of social tags: Direct and
indirect influences on navigation, learning, and information processing. Computers &
Education, 60(1):59–73, 2013.

14. F. Crestani. Application of spreading activation techniques in information retrieval. Artif.
Intell. Rev., 11(6):453–482, 1997.

15. A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. CRC Press, 2003.
16. N. Ghamrawi and A. McCallum. Collective multi-label classification. In CIKM, pages

195–200, 2005.
17. S. A. Golder and B. A. Huberman. Usage patterns of collaborative tagging systems.

Journal of Information Science, 32(2):198–206, Apr. 2006.
18. R. J. Grissom and J. J. Kim. Effect sizes for research: A broad practical approach, 2005.
19. J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kauf-

mann Publishers Inc., 2011.
20. C. Held, J. Kimmerle, and U. Cress. Learning by foraging: The impact of individual

knowledge and social tags on web navigation processes. Computers in Human Behavior,
28(1):34–40, 2012.

21. L. Hong and B. D. Davison. Empirical study of topic modeling in twitter. In Proceedings
of the First Workshop on Social Media Analytics, SOMA ’10, pages 80–88, 2010.

22. R. Jäschke, L. B. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recom-
mendations in folksonomies. In PKDD, 2007.

23. jmac. Select and display ’suggested tags’ for all posts based on related questions (or other
logic), Sept. 2013. http://meta.stackexchange.com/q/196702/182512.

24. A. Joorabchi, M. English, and A. E. Mahdi. Automatic mapping of user tags to wikipedia
concepts: The case of a q&a website âĂŞ stackoverflow. Journal of Information Science,
41(5):570–583, 2015.

25. Jud.Her. Tag recommendations for Stack Overflow, Apr. 2011. http://meta.
stackexchange.com/q/88611/182512.

26. S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using latent dirichlet
allocation. Information & Software Technology, 52(9):972–990, 2010.

27. A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. D. Lucia. How to
effectively use topic models for software engineering tasks? an approach based on genetic
algorithms. In ICSE, pages 522–531, 2013.

28. D. Pletea, B. Vasilescu, and A. Serebrenik. Security and emotion: Sentiment analysis of
security discussions on github. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 348–351, New York, NY, USA, 2014. ACM.

http://meta.stackexchange.com/q/196702/182512
http://meta.stackexchange.com/q/88611/182512
http://meta.stackexchange.com/q/88611/182512

EnTagRec++: An Enhanced Tag Recommendation System 31

29. M. F. Porter. An algorithm for suffix stripping. In Readings in information retrieval,
pages 313–316. Morgan Kaufmann, 1997.

30. A. Puurula. Mixture models for multi-label text classification. In 10th New Zealand
Computer Science Research Student Conference, 2011.

31. D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: a supervised topic
model for credit attribution in multi-labeled corpora. In EMNLP ’09, pages 248–256,
2009.

32. M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor. An empirical
study on the usage of the swift programming language. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages 634–
638, March 2016.

33. F. I. Samaniego. A Comparison of the Bayesian and Frequentist Approaches to Estima-
tion. Series in Statistics. Springer, 2010.

34. R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so complicated? simple
term filtering and weighting for location-based bug report assignment recommendation.
In MSR, 2013.

35. B. Sigurbjörnsson and R. van Zwol. Flickr tag recommendation based on collective knowl-
edge. In WWW ’08, pages 327–336, 2008.

36. M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and M. Muller. How software de-
velopers use tagging to support reminding and refinding. IEEE Transactions on Software
Engineering, 35(undefined):470–483, 2009.

37. M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The impact of social media
on software engineering practices and tools. In FoSER ’10, pages 359–364, 2010.

38. F. Thung, D. Lo, and L. Jiang. Detecting similar applications with collaborative tagging.
In ICSM, pages 600–603, 2012.

39. K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging
with a cyclic dependency network. In HLT-NAACL, 2003.

40. C. Treude and M.-A. Storey. How tagging helps bridge the gap between social and technical
aspects in software development. In ICSE ’09, pages 12–22, 2009.

41. C. Treude and M.-A. Storey. Work item tagging: Communicating concerns in collaborative
software development. IEEE Trans. Softw. Eng., 38(1):19–34, Jan. 2012.

42. B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov. How social Q&A sites are
changing knowledge sharing in open source software communities. In CSCW, pages 342–
354, 2014.

43. B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. The babel of software devel-
opment: Linguistic diversity in open source. In A. Jatowt, E.-P. Lim, Y. Ding, A. Miura,
T. Tezuka, G. Dias, K. Tanaka, A. Flanagin, and B. T. Dai, editors, Social Informat-
ics: 5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013,
Proceedings, pages 391–404. Springer International Publishing, 2013.

44. C. C. Vogt and G. W. Cottrell. Fusion via a linear combination of scores. Inf. Retr.,
1(3):151–173, Oct. 1999.

45. S. Wang, D. Lo, and L. Jiang. Inferring semantically related software terms and their
taxonomy by leveraging collaborative tagging. In ICSM, pages 604–607, 2012.

46. S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik. EnTagRec: An enhanced tag recommen-
dation system for software information sites. In 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3,
2014, pages 291–300. IEEE Computer Society, 2014.

47. W. Wang, N. Niu, H. Liu, and Y. Wu. Tagging in assisted tracing. In 2015 IEEE/ACM 8th
International Symposium on Software and Systems Traceability, pages 8–14, May 2015.

48. X.-Y. Wang, X. Xia, and D. Lo. Tagcombine: Recommending tags to contents in software
information sites. Journal of Computer Science and Technology, 30(5):1017–1035, 2015.

49. D. Warbox. Auto-tagging, July 2009. http://meta.stackoverflow.com/questions/1377/
auto-tagging.

50. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(4):80–
83, 1945.

51. X. Xia, D. Lo, X. Wang, and B. Zhou. Tag recommendation in software information sites.
In MSR ’13, pages 287–296, 2013.

52. E. Zangerle, W. Gassler, and G. Specht. Using tag recommendations to homogenize folk-
sonomies in microblogging environments. In SocInfo’11, pages 113–126, 2011.

53. A. Zubiaga. Enhancing navigation on wikipedia with social tags. CoRR, abs/1202.5469,
2012.

http://meta.stackoverflow.com/questions/1377/auto-tagging
http://meta.stackoverflow.com/questions/1377/auto-tagging

	Introduction
	Preliminaries and Examples
	General Architecture
	Bayesian Inference
	Frequentist Inference
	User Information Component
	Additional Tag Component
	Composer Component
	Experiments and Results
	Related Work
	Conclusion and Future Work

