
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

8-2018

Fusing multi-abstraction vector space models for concern Fusing multi-abstraction vector space models for concern

localization localization

Yun ZHANG
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA
Monash University

Giuseppe SCANNIELLO
University of Basilicata

Tien-Duy B. LE
Singapore Management University, btdle.2012@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
ZHANG, Yun; LO, David; XIA, Xin; SCANNIELLO, Giuseppe; LE, Tien-Duy B.; and SUN, Jianling. Fusing multi-
abstraction vector space models for concern localization. (2018). Empirical Software Engineering. 23, (4),
2279-2322. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4126

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Author Author
Yun ZHANG, David LO, Xin XIA, Giuseppe SCANNIELLO, Tien-Duy B. LE, and Jianling SUN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4126

https://ink.library.smu.edu.sg/sis_research/4126

Fusing Multi-Abstraction Vector Space Models for Concern
Localization

Yun Zhang · David Lo · Xin Xia · Giuseppe
Scanniello · Tien-Duy B. Le · Jianling Sun

Received: date / Accepted: date

Abstract Concern localization refers to the process of locating code units that match
a particular textual description. It takes as input textual documents such as bug reports
and feature requests and outputs a list of candidate code units that are relevant to the
bug reports or feature requests. Many information retrieval (IR) based concern lo-
calization techniques have been proposed in the literature. These techniques typically
represent code units and textual descriptions as a bag of tokens at one level of abstrac-
tion, e.g., each token is a word, or each token is a topic. In this work, we propose a
multi-abstraction concern localization technique named MULAB. MULAB repre-
sents a code unit and a textual description at multiple abstraction levels. Similarity of
a textual description and a code unit is now made by considering all these abstraction
levels. We combine a vector space model (VSM) and multiple topic models to com-
pute the similarity and apply a genetic algorithm to infer semi-optimal topic model
configurations. We also propose 12 variants of MULAB by using different data fu-
sion methods. We have evaluated our solution on 175 concerns from 9 open source
Java software systems. The experimental results show that variant COMBMNZ-DEF
performs better than other variants, and also outperforms the state-of-art baseline
called PR (PageRank based algorithm), which is proposed by Scanniello et al (2015)
in terms of effectiveness and rank.

Yun Zhang, Jianling Sun
College of Computer Science and Technology, Zhejiang University, China
E-mail: yunzhang28@zju.edu.cn, sunjl@zju.edu.cn

David Lo, Tien-Duy B. Le
School of Information Systems, Singapore Management University, Singapore
E-mail: davidlo@smu.edu.sg, btdle.2012@smu.edu.sg

Xin Xia
Faculty of Information Technology, Monash University, Australia
College of Computer Science and Technology, Zhejiang University, China
E-mail: xxia@zju.edu.cn, xin.xia@monash.edu

Giuseppe Scanniello
University of Basilicata, Potenza, Italy
E-mail: giuseppe.scanniello@unibas.it

1

ppyeo
Typewritten Text
Published in Empirical Software Engineering, 2018 August, Volume 23, Issue 4, Pages 2279-2322
https://doi.org/10.1007/s10664-017-9585-2

ppyeo
Typewritten Text

1 Introduction

Developers receive bug reports and feature requests through issue management sys-
tems such as Bugzilla and JIRA daily. The amount of these reports are often too many
for developers to handle (Anvik et al, 2005). For each of these reports and requests,
developers need to locate the code units that need to be modified to fix bugs or be
extended to implement a particular feature. Considering a large code base with thou-
sands or even millions of files, this task is a daunting one. Much manual effort needs
to be spent to locate relevant code units. Thus, an automated solution is needed.

Concern localization is a software maintenance process of locating code units
that need to be changed in response to a modification request, such as bug fixing or
a new feature request. Change requests are usually formulated in natural language,
describing the problems or the solutions of the software system, while the source
code also includes large amounts of text such as comments and identifiers.

Recently, a number of approaches have been proposed to link bug reports and
feature requests to the corresponding code units, (e. g., Le et al (2015); Marcus and
Maletic (2003); Wang and Lo (2014); Wang et al (2011b, 2014); Xia et al (2014);
Zhou et al (2012)). The bug reports and feature requests could be viewed as con-
cerns,1 and the linking process of code units to concerns is referred to as concern
localization. Many past studies on bug localization, feature location, etc. could be
viewed as specific instances of concern localization.

Many existing studies characterize both concerns (e.g., feature requests or bug
reports) and code units as a bag (i.e., multi-set) of tokens at one abstraction level,
e.g., (Marcus and Maletic, 2003; Wang et al, 2011b). A textual document (i.e., feature
request, bug report, or code unit) is represented as a set of words that appear in it.
Alternatively, a natural language processing technique referred to as topic modeling
(e.g., Blei et al (2003)) can be applied to infer a set of topics that appear in the
document. A topic is a distribution of words and is a higher level abstraction of the
original words. A set of topics can be inferred from documents and these topics would
represent these documents. Similarities of documents can then be measured as the
similarities of their representations (i.e., their set of words or topics). The code units
that are most similar to the input concerns are output to the end user.

Recently, Scanniello et al. propose a static concern localization approach named
PR which combines textual and structural information together (Scanniello et al,
2015). PR extracts dependency among methods in a code base (based on direct ref-
erences between methods) and uses the PageRank algorithm (Kleinberg et al, 1999)
to rank methods based on their importance. The similarities between a concern and a
code unit (i.e., a method) is then measured by multiplying the textual similarity com-
puted by comparing the concern and the code unit using vector space modeling (VS-
M) (Salton and Harman, 2003) and the importance of the code unit estimated using
PageRank. The experiment results show that their approach leads to better retrieval
performance than several baseline approaches: one that uses textual information only
and one that combines textual and structural information on clustering (Scanniello

1 A concern is a concept, requirement, feature, or property related to a software system (Robillard and
Murphy, 2007). In this work, we focus on bug reports and feature requests which are subsets of concerns,
but the proposed approach could be used for generic concerns.

2

and Marcus, 2011). In this paper, PR is a state-of-the-art baseline approach that we
compare our proposed approach with.

While many past studies only compare two documents at one abstraction level,
in this work, we compare documents at multiple abstraction levels. A word can be
abstracted at multiple levels of abstraction. For example, “AVL tree” in a document
can be abstracted to “binary tree”, “tree”, “graph”, “data structure”, and so on. Two
documents might not share “AVL tree” but they might both related to “binary tree”,
“tree”, “graph”, or “data structure”, and so on. By viewing a document at multiple
levels of abstractions the similarity or difference of two documents can be better
assessed.

To represent documents in multiple abstraction levels, we leverage topic model-
ing. Topic modeling (Blei and Lafferty, 2007) maps words that appear in a document
to topics. Each word is assigned to one topic. The fewer the number of topics, the
higher the abstraction level. This is the case as a topic now represents more words.
On the other hand, the larger the number of topics, the lower the abstraction level.
Thus, we can iteratively apply topic modeling using different numbers of topics to
create multiple abstraction levels. We can then aggregate these abstractions to mea-
sure the similarity between a concern (e.g., a bug report or a feature request) and a
code unit. We apply an adaptive Latent Dirichlet Allocation (LDA) with Genetic Al-
gorithm (GA) (Panichella et al, 2013) to determine a near-optimal configuration for
LDA to tune the topic number of each abstraction level. Topic models have recently
been used in software textual retrieval and analysis to support software engineering
tasks. However, previous research show that applying topic models on software ar-
tifacts using the same settings as for natural language text did not always produce
the expected results, as text extracted from source code is much more repetitive and
predictable as compared to natural language text (Arcuri and Fraser, 2011; Hindle
et al, 2012; Oliveto et al, 2010; Panichella et al, 2013). So we need GA to determine
the near-optimal topic number for LDA when used in software engineering tasks. By
using multiple abstraction levels, the impact of the parameters of LDA and GA will
be reduced.

In the literature, VSM has been shown to outperform many other information
retrieval (IR)-based techniques for concern localization (Rao and Kak, 2011; Wang
et al, 2011b). In this paper, we propose a new approach which combines VSM and
multiple abstraction levels; the multiple abstraction levels are built by LDA (tuned
using genetic algorithms), which is described in detail in Section 3.5. We refer to
the resultant model as MULti-ABstraction VSM (MULAB). We evaluate MULAB
on 9 open-source software systems using information from 175 past change request-
s which map to a total of 501 changed methods. To demonstrate that the proposed
multi-abstraction concept works, we propose 12 variants of MULAB by using dif-
ferent data fusion methods (Lucia et al, 2014; Wu, 2012) and choose the best one
to compared with PR, the state-of-the-art proposed by Scanniello et al (2015). We
address the following research questions.

1. RQ 1: What is the best variant and parameter setting of MULAB?
We find that when evaluated by both effectiveness and rank, COMBMNZ-DEF
(CombMNZ fusion method with normalization) performs the best among the 12

3

variants of MULAB. Then we investigate the best parameter (the height of the
abstraction hierarchy). Height L=6 performs better for COMBMNZ-DEF than
other settings of L. i.e., L=1, L=2, L=3, L=4, and L=5. But considering both
performance and time efficiency, height L=4 is the best choice for our experiment.

2. RQ 2: How much improvement could the best performing variant achieve over
its components (i.e., VSM and topic models)?
We find that when evaluated by effectiveness and rank, COMBMNZ-DEF per-
forms better than its 5 components (VSM model and 4 abstraction levels).

3. RQ 3: How effective is COMBMNZ-DEF compared with state-of-the-art ap-
proach?
We find that COMBMNZ-DEF outperforms PR on 7 among the 9 Java systems
when evaluated in terms of effectiveness and rank. Statistical tests show that the
differences are statistically significant and substantial.

4. RQ 4: What is the effect of varying the text used to represent a concern on
COMBMNZ-DEF’s effectiveness?
We find that COMBMNZ-DEF with default configuration (which uses text from
both summary and description fields to represent a concern) performs better than
when only text from summary and text from description are used independently,
in terms of both effectiveness and rank scores.

This paper extends our preliminary study which appears as an research paper of
ICSME 2016 (Zhang et al, 2016). In particular, we extend our preliminary work in
several directions: (i) In addition to following our previous method which combines
VSM model and multi abstraction levels by putting them into one vector, we pro-
pose 11 variants that perform the combination using 6 data fusion methods; (ii) We
strengthen the experimental part by adding a data set eclipse and investigating two
additional research questions; these questions investigate: (1) the performance of the
12 methods (our original method and the 11 variants) to choose the best one, (2)
if the best variant performs better than its components; (iii) After getting the best
performing variant, we have repeated experiments to answer the three research ques-
tions appearing in our ICSME 2016 paper using the best performing variant. We have
compared the effectiveness of the best performing variant against a recently proposed
state-of-the-art approach (Scanniello et al, 2015).

Our contributions, which form a super-set of those of our preliminary study, are
as follows:

1. We propose multi-abstraction concern localization. We represent a document (i.e.,
a code unit, bug report, or feature request) at multiple abstraction levels.

2. We propose a technique MULAB that leverages multiple topic models to capture
representations of documents at different abstraction levels. MULAB employs
an adaptive LDA with genetic algorithm (LDA-GA) to tune the topic numbers of
each abstraction level. MULAB then uses these representations to compute the
similarity between a concern and a code unit.

3. We propose 12 variants of MULAB by using different data fusion methods.
4. We have evaluated the 12 variants of MULAB on 175 concerns from 9 Java soft-

ware systems, and choose a best performing variant. Results show that our best
variant of multi-abstraction approach outperforms PR, which is a state-of-the-art

4

approach proposed by Scanniello et al. (Scanniello et al, 2015), by a substantial
margin.

Paper structure. In Section 2, we briefly introduce LDA and GA. In Section 3,
we present the details of MULAB. We present our experimental results in Section 4.
We review related work in Section 6. We conclude and mention future work in Sec-
tion 7.

2 Preliminaries

2.1 Latent Dirichlet Allocation

A topic model (Blei and Lafferty, 2007) views a document to be a probability distri-
bution of topics, while a topic is a probability distribution of words. In our setting,
a document is a program method in the code base or a concern, and a topic is a
higher-level concept corresponding to a distribution of words. For example, we can
have a topic “Java Programming” which is a distribution of words such as “variable”,
“inheritance”, “class”, “method”, and so on.

Latent Dirichlet Allocation (LDA) is a well-known topic modeling technique pro-
posed by Blei et al. (Blei et al, 2003), which has been widely used in software engi-
neering (Asuncion et al, 2010; Panichella et al, 2013; Thomas, 2011; Xia et al, 2017).
LDA takes a document-by-term matrix D as input, and outputs two matrices DT and
TT , i.e., a document-by-topic matrix and a topic-by-term matrix. The document-by-
term matrix D is a term frequency matrix, in which Dij represents the number of
times that the j-th term (i.e., word) appears in the i-th document. In the document-
by-topic matrix DT , DTij represents the probability of the i-th document to belong
to the j-th topic. Generally, a document is considered to belong to the topic with the
highest probability. In the topic-by-term matrix TT , TTij represents the probability
that the j-th term belongs to the i-th topic. Likewise, we assign a term to the top-
ic with the highest probability and then we can conclude what a topic is about by
looking up the terms it contains. After training, LDA can be used to infer the topic
distribution of a new document (in our case: a new concern). LDA takes several pa-
rameters: the number of topics (K), and two hyper-parameters α and β. While the
hyper-parameters are typically set to be 50/K and 0.01 respectively following the
suggestions by Blei et al. (Blei et al, 2003), the values of K needs to be carefully
tuned.

There are several implementations for LDA in the literature. In our work, we
use an implementation based on collapsed Gibbs sampling. This approach typically
achieves the same accuracy as the standard LDA implementation while being faster
in its execution (Griffiths and Steyvers, 2004; Wallach et al, 2009). Besides the three
parameters,K, α, and β introduced above, our Gibbs sampling implementation takes
an additional parameter m which specifies the number of Gibbs sampling iterations.
By default, we set m to be 1,000.

5

2.2 Genetic Algorithms

A genetic algorithm (GA) is a stochastic search technique that mimics the process of
natural selection. Since its first introduction by Holland (Holland, 1975) in the 1970s,
genetic algorithms have been widely used to generate solutions to optimization prob-
lems using techniques such as mutation, selection, and crossover. The advantage of
GA with respect to other search algorithms is its intrinsic parallelism, i.e., having
multiple solutions evolving in parallel to explore different parts of the search space.

The GA search starts with a population of randomly generated individuals, where
each individual (i.e., a chromosome) represents a random parameter configuration
of the optimization problem. Generally, the evolution of the whole population is an
iterative process, in which each iteration is called a generation. In particular, the pop-
ulation evolves through subsequent generations and, during each generation, the in-
dividuals are evaluated based on a fitness function that has to be optimized. The
fitness function is used to evaluate the different parameter configurations by gener-
ating different fitness values. For creating the next generation, new individuals (i.e.,
offsprings) are generated by: (1) applying a selection operator, which randomly picks
individuals based on the fitness function (individuals with higher fitness values are
more likely to be selected), (2) recombining, with a given probability, two individu-
als from the current generation using the crossover operator, and (3) modifying, with
a given probability, individuals using the mutation operator. The new generation of
candidate solutions is then used in the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum number of generations have been
produced, or a satisfactory fitness level has been reached for the population. More
details about GA can be found in a book by Goldberg (Goldberg, 1989), and we will
show how we apply it in our algorithm in Section 3.3.

2.3 Score Normalization

In this work, we apply Zero-One score normalization (Wu, 2012) before data fusion.
This method transforms scores from different abstraction levels into the same range
i.e., zero to one. The method works as follows. Let m be the total number of methods
for each project, and si denotes the score of the ith method, where 1 ≤ i ≤ m.
Furthermore, letmaxs denotes the maximum score among all the methods, andmins
denotes the minimum score among all the methods. The normalized score of the ith

method is calculated as follows:

s normi =
si −mins

maxs −mins

2.4 Data Fusion

Data fusion methods proposed in the information retrieval community are used to
integrate normalized scores from different techniques. The goal of data fusion is to
combine relevant information from two or more data sources into a single one that

6

Abstraction Hierarchy

Level 1

Level 2

Level L

….

Standard Retrieval

Technique

+

Multi-Abstraction

Retrieval

Hierarchy

Creation

Concerns

Preprocessing

6

7

8

Ranked

Methods

Per Concern

Genetic Algorithm with

LDA

T1 T2
…. TL

Topic Number Tuning

Preprocessing

Method Corpus

Maximum

Silhouette coefficient

value of each level

on method corpus

1

2

3

4

Near-Optimal
Topic Numbers

TL

T1

T2

…
.

5

Sim 2

Sim 3

Sim L+1

Sim 1

….

+

Ranked Methods

Per Concern

Basic

9

Normalize

Data Fusion

CombANZ

Max

Min

CombMNZ

CombSUM

Borda count

10
11

12

Fig. 1 Overall Framework of MULAB

provides a more accurate performance than any of the individual data sources. In this
work, we leverage six well-known unsupervised data fusion methods in the domain
of information retrieval, namely CombANZ (Fox et al, 1992; Joseph, 1997; Shaw and
Fox, 2014), Borda count (Aslam and Montague, 2001), Max, Min, CombMNZ (Fox
et al, 1992; Joseph, 1997; Shaw and Fox, 2014), and CombSUM (Fox et al, 1992;
Joseph, 1997; Shaw and Fox, 2014). We will elaborate how these fusion methods
work in Section 3.

3 MULAB

3.1 Overview

In Figure 1, we present the overall framework of MULAB. Our framework takes as
input method corpus and concerns. Method corpus is a collection of textual docu-
ments where each document corresponds to a method in the code base. Each docu-
ment contains identifiers and words that appear in the source code, documentation
(e.g., Javadoc), and implementation comments of the corresponding methods. Con-
cerns are a collection of textual documents where each document is either a bug
report or a feature request. For each bug report and feature request, we extract the
text that appears in its title and description. The output of our framework is a set of
ranked methods for each concern.

Our framework contains four processing steps: preprocessing, topic number tun-
ing, hierarchy creation, and multi-abstraction retrieval. The purpose of the prepro-

7

cessing step is to convert methods and concern documents into a standard represen-
tation, i.e., a bag of words. The preprocessed documents (i.e., methods and concerns)
are then input to the topic number tuning step. The topic number tuning step uses a
genetic algorithm to determine a near-optimal topic number of LDA for each abstrac-
tion level and these are input to the hierarchy creation step. The hierarchy creation
step applies a topic modeling technique a number of times to construct an abstraction
hierarchy. The abstraction hierarchy is a collection of topic models with various set-
tings, where each topic model is a level in the hierarchy. This abstraction hierarchy is
used by the multi-abstraction retrieval step. In this step, we enhance a standard text
retrieval technique based on VSM by leveraging the abstraction hierarchy, then we
can choose to use data fusion methods or not. The goal of the final processing step is
to compare a concern (a query) and a method (a document in the method corpus) by
considering multiple abstraction levels. We elaborate the four processing steps in the
following subsections.

3.2 Preprocessing Step

We first perform text normalization by removing common Java keywords (e.g., pub-
lic, private, class, extends, etc.), and English stopwords. These words are deemed
useless for retrieving relevant code units (i.e., methods) for concerns as either they
appear in most documents or they carry little meaning. We also normalize the text by
excluding punctuation marks and special symbols. Thus, we only retain some word
tokens and number literals. Furthermore, we break identifiers into smaller tokens fol-
lowing Camel casing convention that is the naming convention adopted by most Java
programs. By performing text normalization, we standardize word tokens in Method
Corpus with those that are used in Concerns.

Next, we apply the Porter Stemming Algorithm2 to reduce English words into
their root forms. For example, “models”, “modeled”, “modeling” are all reduced to
the same root word “model”. We perform this step to standardize words of the same
meaning but are in different forms. At the end of this step, we forward preprocessed
method and concern documents to the topic number tuning step to determine best
settings to infer topic models.

3.3 Topic Number Tuning Step

The parameter K of LDA, which is the number of topics, is an important parameter
that significantly determines LDA output. An improper value of K for each abstrac-
tion level may affect the performance of our approach. Therefore, we use an adaptive
LDA technique, leveraging genetic algorithm (GA), to optimize the value of K in
each abstraction level. This approach proposed by Panichella et al. is referred to as
LDA-GA (Panichella et al, 2013).

2 http://tartarus.org/martin/PorterStemmer/

8

At the beginning, a population of p randomly-generated chromosomes is initial-
ized by LDA-GA, where each of chromosome contains a random integer value corre-
sponding to the number of topics. Then, the population will evolve in n generations
to search for an optimal value of the number of topics. The population is evolved
relying on a fitness function which corresponds to the Silhouette coefficient. The Sil-
houette coefficient is a common evaluation metric for measuring the goodness of a
clustering result (Hotho et al, 2002; Panichella et al, 2013; Rousseeuw and Kaufman,
1990; Sander et al, 1998). In LDA-GA, documents are clustered according to the top-
ics inferred by LDA, where documents assigned to the same topic are grouped in the
same cluster. From these clusters of documents, three steps are performed to compute
the Silhouette coefficient:

1. Step 1: For a document di, we calculate the maximum distance from di to the
other documents in the same cluster, which is denoted as a(di). And we calculate
the minimum distance from di to the centroids of the other clusters not containing
di, which is denoted as b(di).

2. Step 2: Given a(di) and b(di), we can calculate the Silhouette coefficient s(di)
for the document di according to the following formula:

s(di) =
b(di)− a(di)

max{a(di), b(di)}

3. Step 3: We compute the mean value of all s(di) as the overall Silhouette coeffi-
cient.

The range of the Silhouette coefficient is [−1, 1]. A larger value of the Silhouette
coefficient indicates a better clustering. When a high Silhouette coefficient is achieved
for a particular value of the number-of-topic parameter of LDA, it means that the
particular parameter value leads to a good result. The higher Silhouette coefficient is
achieved using a particular parameter value, the more likely the parameter value is
kept in the genetic algorithm (GA)’s evolution process. For each abstraction level, we
perform LDA-GA once to find a suitable number of topics.

The original implementation of LDA-GA is written in R and it runs rather slowly.
Thus, we reimplement LDA-GA approach on the top of Pyevolve,3 an evolutionary
computation framework. By default, we set p as 100 and n as 50 and Pyevolve’s
crossover and mutation rate to be 0.09 and 0.02, respectively, as we empirically find
that the values of these parameters do not make a big difference to the performance
of our approach. For the mutation operator, we use random mutation. For each gene,
with a certain probability, it randomly swaps the gene with another double value in
the range of zero to one. For the crossover operator, we use the single point crossover
operator. This operator processes pairs of chromosomes, for each pair, with a certain
probability, it randomly picks a gene from a parent chromosome and swaps that gene
and the subsequent ones with corresponding genes from the other parent chromo-
some. For each abstraction level, we execute LDA-GA to generate an optimal value
of number of topics. We set different search ranges for each abstraction level. For

3 http://pyevolve.sourceforge.net/

9

example, let us assume that there are L levels in an abstraction hierarchy. For the first
level, we set the search range to be integers in the interval [2, DL] whereD refers to the
total number of documents in the data set. We set the search range as such since we
assume there should be at least 2 and at most D topics (i.e., each document belongs
to its own topic). Let us assume that we get an optimal result t1 for this range. For the
second level, we set the range to be integers in [t1,

2D
L] and get the optimal number

of topics t2. The process repeats for the subsequent levels. Finally, for the Lth level,
we set the search range in [tL−1, D], and get the best number of topics tL for this last
level. This set of L topic numbers is then output to the hierarchy creation step.

3.4 Hierarchy Creation Step

In the hierarchy creation step, we apply LDA a number of times to create the abstrac-
tion hierarchies with the number of topics inferred by the topic number tuning step.
These L abstraction levels form an abstraction hierarchyH . Topic models with fewer
topics are higher in the hierarchy while those with more topics are lower in the hier-
archy. We refer to the number of topic models contained in a hierarchy as the height
of the hierarchy. At the end of this step, we create an abstraction hierarchy which is
used in the next step: multi-abstraction retrieval.

3.5 Multi-Abstraction Retrieval

In this subsection, we discuss how to combine an abstraction hierarchy with a text
retrieval model (i.e., VSM). A retrieval method takes a query (i.e., a bug report) and
returns a sorted list of most similar documents in a corpus (i.e., methods).

In standard VSM, a document is represented as a vector of weights. Each el-
ement in a vector corresponds to a word, and its value is the weight of the word.
Term frequency-inverse document frequency (tf−idf) is often used to assign weights
to words (Manning et al, 2008). The following is the tf−idf weight of word w in
document d given a corpus (i.e., a set of documents) D, denoted as tf−idf(w, d,D):

tf−idf (w, d,D) = log(f(w, d) + 1)× log
|D|

|{di ∈ D|w ∈ di}|

where f(w, d) is the number of times word w appears in document d, and w ∈ di de-
notes that word w appears in document di. Given a query document q, standard VSM
retrieval model would return the most similar documents in the corpus D. Similarity
between two documents is measured by computing the cosine similarity between the
two documents’ vector representations (Manning et al, 2008).

To combine the abstraction levels and VSM, the basic method we used is combine
the topic distributions of the abstraction levels and standard VSM model into one
vector (MULABbasic). We also investigate several data fusion methods to identify a
better performing strategy. We introduce MULABbasic and data fusion methods in
the following paragraphs.

10

3.5.1 MULABbasic

In MULABbasic, we integrate abstraction hierarchy into standard VSM by extending
the vector that represents a document. We added more elements to the vector. Each
added element corresponds to a topic of a topic model in the abstraction hierarchy,
and its value is the probability of the topic to appear in the document. The size of

an extended document vector is V +
L∑

i=1

K(Hi), where V is the size of the original

document vector, L is the number of abstraction levels in the hierarchy, and K(Hi)
is the number of topics of the ith topic model in the abstraction hierarchy H . Based
on this representation, the similarity between a query q and document d, considering
a corpus D, calculated using cosine similarity, is as follows:

sim(q, d,D) =

V∑
i=1

tf−idf (wi, q,D)× tf−idf (wi, d,D) +
L∑

k=1

K(Hk)∑
i=1

θHk
q,ti × θ

Hk

d,ti

‖q‖ × ‖d‖

where

‖q‖ =

√√√√ V∑
i=1

tf−idf (wi, q,D)2 +

L∑
k=1

K(Hk)∑
i=1

(θHk
q,ti)

2

and

‖d‖ =

√√√√ V∑
i=1

tf−idf (wi, d,D)2 +

L∑
k=1

K(Hk)∑
i=1

(θHk

d,ti
)2

In the above equations, θHk

d,ti
is the probability of topic ti to appear in the docu-

ment d as assigned by the kth topic model in the abstraction hierarchy H .
For example, assuming that a bug report br after text preprocessing has the fol-

lowing 7 words: “source”(3), “control”(2), “activity”(2), “reduce”(2), “tool”(1),
“root”(1), “list”(1). We also have two methods m1 and m2. Each of them contains
5 words: m1 ={“source”(7), “control”(4), “activity”(3), “root”(7), “list”(1)} and
m2 ={“source”(10), “control”(10), “reduce”(5), “tool”(4), “root”(6)}. The num-
ber in parentheses is the number of times a word appears in a document. Let us
assume that an abstraction hierarchy of height 1 is used, and the topic model has 3
topics. Let us also assume that there are 1000 methods, and terms in m1 and m2 do
not appear in other methods. Considering only the 7 words, the representative vectors
of br, m1, and m2 are:

Vbr = [1.62, 1.29, 1.43, 1.43, 0.90, 0.81, 0.90, 0.26, 0.72, 0.02]

Vm1
= [2.44, 1.89, 1.81, 0.00, 0.00, 2.44, 0.90, 0.00, 0.99, 0.00]

Vm2
= [2.81, 2.81, 0.00, 2.33, 2.10, 2.28, 0.00, 0.57, 0.43, 0.00]

The first 7 entries in each vector are the weights of the 7 words computed using the
tf−idf formula, and the last 3 entries are the rounded probabilities θH1

d,ti
of topics

11

Table 1 An Example of Using Data Fusion Methods.

Method ID Sim1(VSM) Sim2 (Level1) Sim3 (Level2)

1 0.4 0.8 0
2 0.6 0.1 0.7
3 0 0.5 0.3

1, 2 and 3 respectively in the documents. Finally, we calculate cosine similarities
between bug report br and methods m1 and m2. The results are sim(br,m1) = 0.82
and sim(br,m2) = 0.84. Thus, m2 is more relevant to bug report br than m1.

3.5.2 Data Fusion Methods

MULABbasic described in the last subsection integrates abstraction levels and s-
tandard VSM into one vector to compute the similarity; in this subsection, we try
to combine several abstraction levels and standard VSM by using a number of da-
ta fusion methods. We investigate six well-known unsupervised data fusion meth-
ods: CombANZ (Fox et al, 1992; Joseph, 1997; Shaw and Fox, 2014), Max, Min,
CombMNZ (Fox et al, 1992; Joseph, 1997; Shaw and Fox, 2014), CombSUM (Fox
et al, 1992; Joseph, 1997; Shaw and Fox, 2014), and Borda count (Aslam and Mon-
tague, 2001). These six are classical data fusion methods mentioned in the book Data
Fusion in Information Retrieval (Wu, 2012), which is an authoritative reference ma-
terial on the topic. Among the six, Borda count is a ranking-based method, and while
the others are score-based methods.

We use the example shown in Table 1 to illustrate how each method works. Let
us assume that there are 3 methods and an abstraction hierarchy of height 2 is used.
We calculate the cosine similarity scores between concerns and methods by VSM
model vector, level1 topic distribution vector, and level2 topic distribution vector
respectively. For each pair of concern and method, we can calculate three scores
using VSM and the topic models: Sim1 (similarity calculated using VSM), Sim2
(similarity calculated using level 1 topic model), Sim3 (similarity calculated using
level 2 topic model). Next, the following data fusion methods are used to combine
the similarity scores. As the ranking lists produced by each of the components are
typically different, data fusion methods are used to integrate the scores from different
components. Data fusion methods can reduce the weakness of each single component
by leveraging the strengths of other components (Binkley and Lawrie, 2014; Xia and
Lo, 2017; Xia et al, 2015; Xuan and Monperrus, 2014; Ye et al, 2014). By combining
the scores or ranks assigned to methods by different components, the most relevant
ones are likely to be ranked higher in the final ranking list.

1. CombANZ: This method combines the similarity scores by computing the aver-
age of the non-zero scores. Let mj denotes the jth method and Si denotes the ith

similarity score. The ith similarity score assigned to methods mj is denoted as
Si(mj). Suppose there are n set of similarity scores and nej denotes the number

12

Table 2 Example of Ranks and Ranking Points Given by Sim1 (VSM), Sim2 (Level1), and Sim3 (Level2).

Method ID Ranks Ranking Points

1 2, 1, 3 1, 2, 0
2 1, 3, 1 2, 0, 2
3 3, 2, 2 0, 1, 1

of non-zero scores assigned tomj , CombANZ calculates the new score formj as
follows:

Score(mj) = 1/nej ×
n∑

i=1

Si(mj)

Example. Based on Table 1, the set of new similarity scores of Method 1 to 3
would be { 1.22 ,

1.4
3 ,

0.8
2 } = {0.6, 0.47, 0.4}.

Before using CombANZ, we can choose to do Zero-One score normalization or
not, then we have two variants based on CombANZ: COMBANZ-DEF (normal-
ization), COMBANZ-NO (nonnormalized).

2. Max: This method combines the similarity score sets by selecting the maximum
one as the final score of each method in project.
Example. Based on Table 1, the set of new similarity scores of Method 1 to 3
would be {0.8, 0.7, 0.5}.
Before using Max, we can choose to do Zero-One score normalization or not,
then we have two variants based on Max: MAX-DEF (normalization), MAX-NO
(nonnormalized).

3. Min: Min combines the similarity score sets by selecting the minimum one as the
final score of each method in project.
Example. Based on Table 1, the set of new similarity scores of Method 1 to 3
would be {0, 0.1, 0}.
Before using Min, we can choose to do Zero-One score normalization or not,
then we have two variants based on Min: MIN-DEF (normalization), MIN-NO
(nonnormalized).

4. CombMNZ: CombMNZ combines the similarity scores by multiplying the sum-
mation of all scores for a given method with the number of non-zero scores as-
signed to the method. Let mj denotes the jth method and Si denotes the ith

similarity score. The ith similarity score assigned to methods mj is denoted as
Si(mj). Suppose there are n set of similarity scores and nej denotes the number
of non-zero scores assigned to mj , CombMNZ calculates the new score for mj

as follows:

Score(mj) = nej ×
n∑

i=1

Si(mj)

Example. Based on Table 1, the set of new similarity scores of Method 1 to 3
would be {1.2× 2, 1.4× 3, 0.8× 2} = {2.4, 4.2, 1.6}.

13

Before using CombMNZ, we can choose to do Zero-One score normalization or
not, then we have two variants based on CombMNZ: COMBMNZ-DEF (normal-
ization), COMBMNZ-NO (nonnormalized).

5. CombSUM: This method combines different similarity score sets by simply sum-
ming up their scores. This method assumes that the similarity scores produced by
VSM and abstraction hierarchy are equally important.
Example. Based on Table 1, the set of new similarity scores of Method 1 to 3
would be {1.2, 1.4, 0.8}.
Before using CombSUM, we can choose to do Zero-One score normalization or
not, then we have two variants based on CombSUM: COMBSUM-DEF (normal-
ization), COMBSUM-NO (nonnormalized).

6. Borda count: Borda count converts the similarity scores that are assigned to each
method by VSM and abstraction hierarchy into ranks – methods with higher s-
cores would obtain smaller ranks. For each method, Borda count sums up the
ranking points of a method computed using VSM and topic models. The ranking
point of a method is defined as the substraction of the method’s rank in the list
from the total number of methods in the project.
Let mj denotes the jth method and ri(mj) denotes the rank of method mj pro-
duced by ith similarity score set. Also, let M denotes the number of methods and
n denotes the number similarity score sets. Borda count calculates the new score
for program element mj as follows:

Score(mj) =

n∑
i=1

(M − ri(mj))

Example. Table 2 shows the ranking points for each method in Table 1 given by
VSM and abstraction hierarchy. Based on the summation of their ranking points,
the set of new scores for Method 1 to 3 would be {3, 4, 2}.
When using Borda count, whether we do Zero-One score normalization or not,
the calculated ranking points are the same, so we only have one variant: BORDA.

4 Experiment and Analyses

In this section, we evaluate the effectiveness of the 12 variants of MULAB and com-
pare it with other approaches.

4.1 Dataset

We use datasets from 9 open source Java software systems (including two versions of
one of these systems, namely jEdit) for our experimentation. In the datasets, there are
totally 175 concerns which map to 501 methods. The Java systems are the same as

14

Table 3 Dataset

System Version Classes Methods Concerns Changed
Methods

Description

Art of Illusion
(www.artofillusion.org) 2.4.1 453 6,229 8 12 A free, open source 3D modeling and ren-

dering studio
aTunes

(www.atunes.org) 1.10 419 3,712 16 30 A full featured audio player and manager.

jEdit
(www.jedit.org) 4.2 411 5,384 16 33 A text editor for programming with an ex-

tensible plug-in architecture.
jEdit

(www.jedit.org) 4.3 492 7,095 4 9 A text editor for programming with an ex-
tensible plug-in architecture.

Cocoon
(cocoon.apache.org) 2.2 833 5,612 14 38 A spring-based framework built on sepa-

ration of concerns and component-based
development.

Derby
(db.apache.org/) 10.7.1.1 3,418 40,278 29 80 A pure Java relational database engine of

using standard SQL and JDBC as its APIs.
Lucene

(lucene.apache.org) 4.0 5,199 24,682 24 112 A full-featured text search engine library.

OpenJPA
(openjpa.apache.org) 2.0.1 4,765 41,474 25 74 An open source implementation of the Ja-

va Persistence API specification.
Eclipse

(www.eclipse.org) 3.5 18,956 218,295 39 113 A development platform for building, de-
ploying, and managing software.

those used by Scanniello et al. (Scanniello et al, 2015). In our experiment, the content
of a concern is the textual description retrieved from the title and description of a bug
report or a change request.

Each Java method is treated as a document, and all of the Java methods form a
corpus. Table 3 shows the statistics of the data sets used in the experiment after pre-
processing. The first column shows the names of the software systems and the URLs
of their official web pages. The analyzed version of each system and the number of
classes are reported in the second and third columns, respectively. The total number
of methods in each system is shown in the fourth column, while the fifth column
presents the number of concerns used in the study. The number of relevant methods
is shown in the sixth column. A short description of each system is presented in the
last column.

4.2 Evaluation Metrics

Concern localization takes a bug report and a collection of methods as input, and
returns a ranked list of these methods. We use two performance metrics to evaluate a
concern localization solution: effectiveness and rank, which are commonly used for
concern localization studies (Gay et al, 2009; Poshyvanyk et al, 2007; Scanniello and
Marcus, 2011; Scanniello et al, 2015) and used to evaluate our baseline approach PR.

Effectiveness refers to the position of the first relevant method in the returned
ranked list. Once such a method is reached, developers can determine what other

15

methods need to be changed by analyzing the relationships between the methods.
Rank refers to the positions of all the relevant methods in the returned ranked list. For
each data set, we report the positions of all the relevant methods of all the concern-
s when rank is used as a yardstick. Effectiveness and rank nicely complement each
other; in fact, effectiveness gives us a best case scenario when an ideal user is per-
forming a concern localization task. Conversely, rank indicates the total effort needed
to identify all relevant methods for a given concern by following the ranked list (i.e., a
worst case scenario). The lower the effectiveness and rank values, the better a concern
localization technique is.

4.3 Research Questions

Research Question 1: What is the best variant and parameter setting of MULA-
B?
Motivation. In this research question, we want to investigate the effectiveness of the
12 variants of MULAB: MULABbasic, COMBANZ-NO, COMBANZ-DEF, BOR-
DA, MAX-NO, MAX-DEF, MIN-NO, MIN-DEF, COMBMNZ-NO, COMBMNZ-DEF,
COMBSUM-NO, COMBSUM-DEF, and choose the best performing variant. Then
we also investigate the best parameter considering a range of model height for the
best performing variant.
Approach. To answer this research question, we report the results obtained by ap-
plying the 12 variants of MULAB to our dataset mentioned in Section 4.1. The 12
variants of MULAB takes in one parameter L which is the height of the abstraction
hierarchy. First, we set L to be 4, and compute the effectiveness and rank scores of
the 12 variants for each concern and calculate the number of concerns for which each
of the approach outperforms (or achieves the same scores as) the others. Second, we
conduct an experiment with six different hierarchy heights (i.e., L = 1, 2, 3, 4, 5 and
6). We then compare the results achieved by the best performing variant using these
different hierarchy heights in terms of effectiveness and rank scores.

To check if the differences in the performance of two approach are statistically
significant, we apply the Wilcoxon signed-rank test (Wilcoxon, 1945) at 95% sig-
nificance level on two paired data of all the 175 concerns. We also use Cliffs delta
(δ) (Cliff, 2014), which is a non-parametric effect size measure that quantifies the
amount of difference between two approaches. The delta values range from -1 to 1,
where δ = −1 or 1 indicates the absence of overlap between two approaches (i.e.,
all values of one group are higher than the values of the other group, and vice ver-
sa), while δ = 0 indicates the two approaches are completely overlapping. Table 4
describes the meaning of different Cliffs delta values and their corresponding inter-
pretation (Cliff, 2014).

Results. Tables 5 presents the effectiveness and rank results of the 12 variants of
MULAB, we report the overall results of the 9 datasets here, and the detailed results
will show in the Appendix A. For each variant, we report the number of wins, loses,
and draws for all the 9 Java systems. Wins, loses, and draws represent the number

16

Table 4 Cliffs Delta and the Effectiveness Level (Cliff, 2014)

Cliffs Delta(|δ|) Effectiveness Level

|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium
|δ| ≥ 0.474 Large

of concerns4 or methods5 for which a variant performs the best, performs worse than
another, and performs as well as the others, respectively. “Draws” means the 12 vari-
ants achieve the same effectiveness/rank score for the concern/method, and there is
no best variant on this concern/method.

From the 12 tables, we can see that among the 175 concerns, MULABbasic per-
forms the best on 37 concerns, and 4 variants perform better than MULABbasic in
terms of effectiveness: MAX-DEF, MIN-NO, COMBMNZ-NO, and COMBMNZ-
DEF, 1 variant performs as well as MULABbasic: COMBSUM-DEF. MIN-NO per-
forms the best among the 12 variants, which wins on 45 concerns. Among the 501
methods, when evaluated by rank, MULABbasic wins on 104 methods, and 2 variants
perform better than MULABbasic: MAX-DEF and COMBMNZ-DEF. COMBMNZ-
DEF performs the best among the 12 variants, which wins on 118 methods. When
considering both effectiveness and rank, MAX-DEF and COMBMNZ-DEF perfor-
m better than MULABbasic, and COMBMNZ-DEF performs better than MAX-DEF.
Wilcoxon sign-rank test shows that the difference in the effectiveness scores of COMBMNZ-
DEF compared with other variants are statistically significant at p-value of < 0.05,
and the difference in the rank scores of COMBMNZ-DEF compared with other vari-
ants are statistically significant at p-value of < 0.05 except MULABbasic and MAX-
DEF.

Then, we conduct an experiment on COMBMNZ-DEF with six different hier-
archy heights (i.e., L = 1, 2, 3, 4, 5 and 6). The experiment results are shown in
Table 6(a), 6(b) and Table 7(a), 7(b). For each hierarchy height, we report the num-
ber of wins, loses, and draws for each Java system. Wins, loses, and draws represent
the number of concerns6 or methods7 for which a variant of COMBMNZ-DEF (with
a given hierarchy height) outperforms the other variants, loses to another variant, and
perform equally well as the other variants, respectively. We also report the overall
results in the last row.

Table 6(a) and 6(b) shows the data analysis results on effectiveness scores of
COMBMNZ-DEF with different hierarchy heights (L=1,2,3,4,5,6). From the table,
we can see that the variant of COMBMNZ-DEF with L set to 6 outperforms the other-
s. Among the 175 concerns, COMBMNZ-DEF with L=6 performs the best on 53 con-
cerns, COMBMNZ-DEF with L=5 performs the best on 45 concerns, COMBMNZ-
DEF with L=4 performs the best on 48 concerns, COMBMNZ-DEF with L=3 per-

4 When effectiveness is used as a yardstick
5 When rank is used as a yardstick
6 When effectiveness is used as a yardstick
7 When rank is used as a yardstick

17

Table 5 Overall data analysis results of 9 datasets on effectiveness and rank scores of 12 variants of
MULAB. #Wins = Number of concerns and methods for which a variant outperforms the others, #Los-
es = Number of concerns and methods for which a variant loses from another variant, #Draws = Num-
ber of concerns and methods for which all variants perform equally well. We also report the p-value of
COMBMNZ-DEF compared with other variants, thus there’s no values for COMBMNZ-DEF when com-
pared with itself.

Effectiveness Rank P-value

System #Wins #Loses #Draws #Wins #Loses #Draws Effectiveness Rank
MULABbasic 37 137 1 104 393 4 0.020 0.319
COMBANZ-NO 27 147 1 68 429 4 6.814e-07 2.351e-07
COMBANZ-DEF 29 145 1 89 408 4 4.773e-05 8.997e-05
BORDA 34 140 1 78 419 4 0.001 1.4e-10
MAX-NO 25 149 1 61 436 4 6.276e-09 4.891e-07
MAX-DEF 41 133 1 110 387 4 0.008 0.642
MIN-NO 45 129 1 100 397 4 0.0004 9.099e-12
MIN-DEF 35 139 1 70 427 4 0.0002 3.508e-13
COMBMNZ-NO 41 133 1 94 403 4 1.488e-05 1.104e-07
COMBMNZ-DEF 44 130 1 118 379 4 NA NA
COMBSUM-NO 33 141 1 76 421 4 7.281e-06 2.861e-07
COMBSUM-DEF 37 137 1 84 413 4 0.0005 0.004

forms the best on 28 concerns, COMBMNZ-DEF with L=2 performs the best on 22
concerns, and COMBMNZ-DEF with L=1 performs the best on 20 concerns. The
effectiveness scores are the same for 13 concerns.

Table 7(a) and 7(b) shows the data analysis results on rank scores of COMBMNZ-
DEF with different hierarchy heights (L=1,2,3,4,5,6). From the table, we can see
that the variant of COMBMNZ-DEF with L set to 6 outperforms the others. Among
the 501 methods, COMBMNZ-DEF with L=6 performs the best on 117 methods,
COMBMNZ-DEF with L=5 performs the best on 107 methods, COMBMNZ-DEF
with L=4 performs the best on 109 methods, COMBMNZ-DEF with L=3 performs
the best on 84 methods, COMBMNZ-DEF with L=2 performs the best on 84 meth-
ods, and COMBMNZ-DEF with L=1 performs the best on 73 methods. The ranks
scores are the same for 41 methods.

Though COMBMNZ-DEF with L=6 outperforms the other five in terms of effec-
tiveness and rank, it needs longer time to train the model. Across the 9 data sets, we
need about 254 minutes to train the model COMBMNZ-DEF with L=4, and 402 min-
utes to train the model COMBMNZ-DEF with L=6. We have performed a Wilcoxon
signed-rank test at 95% significance level and found that the difference in the train-
ing time is significant with a p-value of < 0.001, which means the time efficiency of
COMBMNZ-DEF with L=4 is significantly better than COMBMNZ-DEF with L=6.
Then we compare the effectiveness and rank scores of COMBMNZ-DEF with L=4
and COMBMNZ-DEF with L=6. Wilcoxon sign-rank test shows that the difference in
the effectiveness scores is not statistically significant at p-value of 0.076, the Cliff’s
delta is 0.025, which corresponds to a negligible effect size. And Wilcoxon sign-rank
test also shows that the difference in the rank scores is significant at p-value of 0.001,

18

but the Cliff’s delta is 0.018, which corresponds to a negligible effect size. So we
can draw the conclusion that the height L=4 is the best choice when considering both
performance and time efficiency.

When evaluated by both effectiveness and rank, COMBMNZ-DEF performs the
best among the 12 variants of MULAB. Height L=6 performs better than
COMBMNZ-DEF with L=1, L=2, L=3, L=4, and L=5. But considering both per-
formance and time efficiency, height L=4 is the best choice for our experiment.

Table 6 Data analysis results on effectiveness scores of COMBMNZ-DEF with different hierarchy heights
(L=1,2,3,4,5,6). #Wins = Number of concerns for which a variant of COMBMNZ-DEF outperforms the
others, #Loses = Number of concerns for which a variant COMBMNZ-DEF loses from another variant,
#Draws = Number of concerns for which all variants perform equally well.

(a) L=1,2,3

L=1 L=2 L=3

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 1 7 0 2 6 0
aTunes 2 12 2 1 13 2 2 12 2
jEdit4.2 2 13 1 3 12 1 3 12 1
jEdit4.3 0 2 2 1 1 2 0 2 2
Cocoon 2 8 4 2 8 4 2 8 4
Derby 4 25 0 4 25 0 6 23 0
Lucene 2 19 3 2 19 3 3 18 3
OpenJPA 2 23 0 4 21 0 4 21 0
Eclipse 5 33 1 4 34 1 6 32 1
Overall 20 142 13 22 140 13 28 134 13

(b) L=4,5,6

L=4 L=5 L=6

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 1 7 0 2 6 0
aTunes 4 10 2 4 10 2 5 9 2
jEdit4.2 5 10 1 6 9 1 4 11 1
jEdit4.3 2 0 2 1 1 2 2 0 2
Cocoon 3 7 4 3 7 4 4 6 4
Derby 9 20 0 7 22 0 10 19 0
Lucene 7 14 3 8 13 2 6 15 3
OpenJPA 8 17 0 7 18 0 10 15 0
Eclipse 8 30 1 8 30 1 10 28 1
Overall 48 114 13 45 117 13 53 109 13

Research Question 2: How much improvement could the best performing vari-
ant achieve over its components (i.e., VSM and topic models)?

19

Table 7 Data analysis results on rank scores of COMBMNZ-DEF with different hierarchy heights
(L=1,2,3,4,5,6). #Wins = Number of methods for which a variant of COMBMNZ-DEF outperforms the
others, #Loses = Number of methods for which a variant COMBMNZ-DEF loses from another variant,
#Draws = Number of methods for which all variants perform equally well.

(a) L=1,2,3

L=1 L=2 L=3

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 11 0 2 10 0 2 10 0
aTunes 3 22 5 4 21 5 5 20 5
jEdit4.2 3 28 2 3 28 2 6 25 2
jEdit4.3 0 7 2 2 5 2 1 6 2
Cocoon 4 22 12 8 18 12 5 21 12
Derby 14 64 2 13 65 2 17 61 2
Lucene 20 79 13 19 80 13 15 84 13
OpenJPA 11 61 2 13 59 2 10 62 2
Eclipse 17 93 3 20 90 3 23 87 3
Overall 73 387 41 84 376 41 84 376 41

(b) L=4,5,6

L=4 L=5 L=6

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 9 0 2 10 0 3 9 0
aTunes 7 18 5 8 17 5 9 16 5
jEdit4.2 9 22 2 8 23 2 10 21 2
jEdit4.3 4 3 2 3 4 2 3 4 2
Cocoon 7 19 12 7 19 12 8 18 12
Derby 19 59 2 19 59 2 20 58 2
Lucene 22 77 13 24 75 13 25 74 13
OpenJPA 16 56 2 15 57 2 16 56 2
Eclipse 22 88 3 21 89 3 23 87 3
Overall 109 351 41 107 353 41 117 343 41

Motivation. We need to compare the best performing variant COMBMNZ-DEF with
its components (i.e., VSM and topic models) to show whether MULAB with a data
fusion method performs better than its constituent components. Answer to this re-
search question shows the benefit of COMBMNZ-DEF over its components.

Approach. To answer this research question, we report the results obtained by ap-
plying COMBMNZ-DEF to our dataset mentioned in Section 4.1, and we also re-
port the results of VSM model and each abstraction levels before using data fusion
method CombMNZ, to investigate the performance of each component. The method
COMBMNZ-DEF takes in one parameter L which is the height of the abstraction hi-
erarchy. For this RQ, we set L to be 4. We compute the effectiveness and rank scores
of COMBMNZ-DEF, VSM model and 4 abstraction levels (i.e., topic models) for

20

each concern and calculate the number of concerns for which each of the approach
outperforms (or achieves the same scores as) the others.
Results. Tables 8 presents the effectiveness and rank results of COMBMNZ-DEF,
VSM model, and 4 abstraction levels, we report the overall results of the 9 datasets
here, and the detailed results will show in the Appendix B. For each method,we report
the number of wins, loses, and draws for all the 9 Java systems. Wins, loses, and draws
represent the number of concerns8 or methods9 for which a method performs the best,
performs worse than another, and performs as well as the others, respectively. One
approach wins on a concern when it performs better than all other 5 approaches, and
it loses on a concern as long as one or more approaches perform better than it. So it
normal that the number of #loses>#wins.

From the 6 tables, we can see that among the 175 concerns, COMBMNZ-DEF
performs the best on 66 concerns, which is better than its five components. Among
the 501 methods, when evaluated by rank, COMBMNZ-DEF wins on 138 method-
s, which is also better than its 5 components. So we can draw the conclusion that
COMBMNZ-DEF outperforms its 5 components (VSM model and 4 abstraction lev-
els) in terms of effectiveness and rank. Wilcoxon sign-rank test shows that the dif-
ference in the effectiveness scores of COMBMNZ-DEF compared with other compo-
nents are statistically significant at p-value of< 0.05 except VSM, and the difference
in the rank scores of COMBMNZ-DEF compared with other components are statisti-
cally significant at p-value of < 0.05.

Table 8 Overall data analysis results of 9 datasets on effectiveness and rank scores of COMBMNZ-DEF
and its components. #Wins = Number of concerns and mothods for which COMBMNZ-DEF or a compo-
nent outperforms the others, #Loses = Number of concerns and methods for which COMBMNZ-DEF or a
component loses from another component, #Draws = Number of concerns for which all methods perform
equally well. We also report the p-value of COMBMNZ-DEF compared with its components.

Effectiveness Rank P-value

System #Wins #Loses #Draws #Wins #Loses #Draws Effectiveness Rank
COMBMNZ-DEF 66 100 9 138 336 27 NA NA
VSM (Sim1) 23 143 9 52 422 27 0.075 0.022
level 1 (Sim2) 32 134 9 79 395 27 6.299e-06 0.0006
level 2 (Sim3) 23 143 9 61 413 27 0.0003 0.014
level 3 (Sim4) 37 129 9 101 373 27 0.002 0.001
level 4 (Sim5) 38 128 9 101 373 27 2.753e-05 7.092e-07

When evaluated by effectiveness and rank, COMBMNZ-DEF performs better than
its 5 components (VSM model and 4 abstraction levels).

Research Question 3: How effective is COMBMNZ-DEF compared with state-of-
the-art approach?

8 When effectiveness is used as a yardstick
9 When rank is used as a yardstick

21

Table 9 Data analysis results on effectiveness scores of COMBMNZ-DEF and PR. #Wins = Number
of concerns for which COMBMNZ-DEF outperforms PR, #Loses = Number of concerns for which
COMBMNZ-DEF loses from PR, #Draws = Number of concerns for which both approaches achieve the
same effectiveness scores.

Systems #Wins #Loses #Draws

Art of Illusion 4 4 0
aTunes 9 6 1
jEdit4.2 8 8 0
jEdit4.3 3 1 0
Cocoon 8 2 4
Derby 24 5 0
Lucene 20 4 0

OpenJPA 17 8 0
Eclipse 21 18 0
Overall 114 56 5

Motivation. We investigate the effectiveness of COMBMNZ-DEF and compare its
results with those by Scanniello et al. (Scanniello et al, 2015) (PR, from here on).
Answer to this research question would shed light to whether and to what extent
COMBMNZ-DEF improves over the state-of-the-art approach.
Approach. To answer this research question, we report the results obtained by apply-
ing COMBMNZ-DEF and PR to our dataset mentioned in Section 4.1. COMBMNZ-
DEF takes in one parameterLwhich is the height of the abstraction hierarchy. For this
RQ, we set L to be 4. We compute the effectiveness and rank scores of COMBMNZ-
DEF and PR for each concern and calculate the number of concerns for which each
of the approach outperforms (or achieves the same scores as) the other.

To check if the differences in the performance of COMBMNZ-DEF and PR are
statistically significant, we apply the Wilcoxon signed-rank test (Wilcoxon, 1945) at
95% significance level on two paired data of all the 175 concerns which corresponds
to the effectiveness and rank scores of two competing approaches respectively. We
do not apply the test to each system as the numbers of concerns in some systems are
small (e.g., 4 for jEdit4.3, 8 for Art of Illusion), it makes no sense to do the statistical
test. We also use Cliffs delta (δ) (Cliff, 2014) to compare COMBMNZ-DEF with
PR. The delta values range from -1 to 1, where δ = −1 or 1 indicates the absence
of overlap between two approaches (i.e., all values of one group are higher than the
values of the other group, and vice versa), while δ = 0 indicates the two approaches
are completely overlapping.
Results. Table 9 presents the analysis results of effectiveness scores of COMBMNZ-
DEF and PR. The second column represents the number of concerns on which COMBMNZ-
DEF achieves better effectiveness scores than PR, the third column indicates the num-
ber of concerns on which PR performs better than COMBMNZ-DEF, and the last
column shows the number of concerns on which COMBMNZ-DEF and PR achieve
the same scores. We also report the overall results of the 9 systems in the last row. The
results demonstrate that COMBMNZ-DEF is more effective than PR on all but two
of the Java systems. For two of the Java systems (i.e., Art of Illusion, jEdit4.2), the

22

Table 10 Data analysis results on Rank scores of COMBMNZ-DEF and PR. #Wins = Number of methods
for which COMBMNZ-DEF outperforms PR, #Loses = Number of methods for which COMBMNZ-DEF
loses from PR, #Draws = Number of methods for which both approaches achieve the same rank scores.

Systems #Wins #Loses #Draws

Art of Illusion 6 6 0
aTunes 18 11 1
jEdit4.2 19 14 0
jEdit4.3 8 1 0
Cocoon 27 6 5
Derby 60 20 0
Lucene 82 30 0

OpenJPA 45 29 0
Eclipse 65 48 0
Overall 330 165 6

results in Table 9 show that COMBMNZ-DEF and PR perform equally well as they
win on the same number of concerns. For Art of Illusion, COMBMNZ-DEF perform-
s better on 4 concerns and PR performs better on another 4 concerns. For jEdit4.2,
COMBMNZ-DEF performs better on 8 concerns and PR performs better on another 8
concerns. We look into the concerns in these two Java systems, find that PR performs
better than COMBMNZ-DEF on the concerns which are short, and contain a mix of
code, URL, etc. COMBMNZ-DEF achieves a better performance when the concerns
are relatively long and there is no large semantic gap between concerns and source
code. Among the 175 concerns, COMBMNZ-DEF performs better on 114 concerns,
PR performs better on 56 concerns, and the two approaches achieve the same effec-
tiveness scores on 5 concerns. We have also performed a Wilcoxon signed-rank test
and found that the difference in the effectiveness scores is significant with a p-value
of < 0.001. The Cliff’s delta is 0.377, which corresponds to a medium effect size.

Table 10 presents the analysis results of rank scores of COMBMNZ-DEF as com-
pared with those of PR. The second column represents the number of methods on
which COMBMNZ-DEF achieves better rank scores than PR, the third column indi-
cates the number of methods on which PR performs better than COMBMNZ-DEF,
and the last column shows the number of methods on which COMBMNZ-DEF and
PR achieve the same scores. We also report the overall results of the 9 systems in
the last row. From the table, we can see that for the 9 systems, COMBMNZ-DEF
performs better than that of the PR. The results demonstrate that COMBMNZ-DEF
outperforms PR on all but one of the Java systems. For one of the Java systems (i.e.,
Art of Illusion), the results in Table 10 show that COMBMNZ-DEF and PR perform
equally well as they win on the same number of methods, COMBMNZ-DEF perform-
s better on 6 methods and PR performs better on another 6 methods. We look into
the methods in Art of Illusion, find that COMBMNZ-DEF performs better when the
methods are long, complicated, and contain more different words. But some meth-
ods in Art of Illusion are very short and contain many repeated words, on which PR
achieves a better performance. Among the overall 501 methods, COMBMNZ-DEF
performs better on 330 methods, PR performs better on 165 methods, and the two

23

approaches achieve the same rank scores on 6 methods. A Wilcoxon signed-rank test
shows that the difference in the rank scores is significant with a p-value of < 0.001.
The Cliff’s delta is 0.399, which corresponds to a medium effect size.

COMBMNZ-DEF outperforms PR on 7 among the 9 Java systems when evaluated
in terms of effectiveness and rank. Statistical tests show that the differences are
statistically significant and substantial.

Research Question 4: What is the effect of varying the text used to represent a
concern on COMBMNZ-DEF’s effectiveness?
Motivation. By default, we use the text in the summary and description fields of
bug reports and change requests to represent a concern – which is the setting used
for RQ1-3 and RQ5. In this research question, we investigate the performance of
COMBMNZ-DEF when we only use text in the summary field and text in the de-
scription field independently. We want to investigate if our default setting is a better
option.
Approach. To answer this research question, we conduct an experiment with three
kinds of text to represent a concern: default (summary and description), summary on-
ly, description only. COMBMNZ-DEF takes in one parameter L which is the height
of the abstraction hierarchy. For this RQ, we set L to be 4. We compare the effective-
ness and rank scores achieved by COMBMNZ-DEF using each of the three kinds of
text.

Table 11 Data analysis results on effectiveness scores of COMBMNZ-DEF with different kinds of text to
represent a concern. #Wins = Number of concerns for which a kind of text performs the best, #Loses =
Number of concerns for which a kind of text performs worse than another, #Draws = Number of concerns
for which all kinds of text lead to the same score.

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 5 0 4 4 0 3 5 0
aTunes 7 8 1 4 11 1 6 9 1
jEdit4.2 8 6 2 4 10 2 5 9 2
jEdit4.3 2 2 0 2 2 0 2 2 0
Cocoon 10 2 2 4 8 2 6 6 2
Derby 10 19 0 15 14 0 9 20 0
Lucene 12 9 3 9 12 3 9 12 3
OpenJPA 10 15 0 10 15 0 9 16 0
Eclipse 16 22 1 14 24 1 11 27 1
Overall 78 88 9 66 100 9 60 106 9

Results. The experiment results are shown in Tables 11 and 12. For each kind of text
(default, summary, or description), we report the number of wins, loses, and draws
for each Java system. Wins, loses, and draws represent the number of concerns10 or

10 When effectiveness is used as a yardstick

24

Table 12 Data analysis results on rank scores of COMBMNZ-DEF with different kinds of text to represent
a concern. #Wins = Number of concerns for which a kind of text performs the best, #Loses = Number of
concerns for which a kind of text performs worse than another, #Draws = Number of concerns for which
all kinds of text lead to the same score.

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 4 8 0 6 6 0 3 9 0
aTunes 13 15 2 9 19 2 11 17 2
jEdit4.2 16 15 2 8 23 2 10 21 2
jEdit4.3 4 5 0 3 6 0 4 5 0
Cocoon 20 13 5 9 24 5 15 18 5
Derby 29 51 0 36 44 0 22 58 0
Lucene 46 57 9 36 67 9 34 69 9
OpenJPA 30 44 0 25 49 0 25 49 0
Eclipse 38 72 3 40 70 3 34 76 3
Overall 200 280 21 172 308 21 158 322 21

methods11 for which a particular kind of text performs the best, performs worse than
another, and performs as well as the others, respectively. We also report the overall
results in the last row.

Table 11 shows the data analysis results on effectiveness scores of COMBMNZ-
DEF using the three kinds of text to represent a concern. From the table, we can
see that the default setting outperforms the others. Among the 175 concerns, default
performs the best on 78 concerns, summary performs the best on 66 concerns, and
description performs the best on 60 concerns. The effectiveness scores are the same
for 9 concerns. So we can draw the conclusion that our default configuration (i.e., use
both summary and description) outperforms the other two in terms of effectiveness.

Table 12 shows the data analysis results on rank scores of COMBMNZ-DEF using
the three kinds of text to represent a concern. From the table, we can see that the
default setting outperforms the others. Among the 501 methods, default performs the
best on 200 methods, summary performs the best on 172 methods, and description
performs the best on 158 methods. The rank scores are the same for 21 methods. So
we can draw the conclusion that our default configuration (i.e., use both summary
and description) outperforms the other two in terms of rank.

COMBMNZ-DEF with default configuration (which uses text from both summary
and description fields to represent a concern) performs better than when only text
from summary and text from description are used independently, in terms of both
effectiveness and rank scores.

11 When rank is used as a yardstick

25

4.4 Threats to Validity

Threats to internal validity relate to errors in our experiments. We have double checked
our implementations and all the experiment results. Hence, we believe there are min-
imal threats to internal validity. Still, there could be errors that we did not notice.

Threats to external validity relate to the generalizability of our results. We have
tried to mitigate this threat by evaluating our approach on concerns from 9 open
source software systems, but there may still exist some other data sets on which our
algorithm performs not so well. The software systems we used in our empirical study
were chosen primarily because of the availability of data and previous studies. Data
of these systems were manually vetted and a part of these systems were also used
in previous work (Haiduc et al, 2013; Moreno et al, 2013; Scanniello and Marcus,
2011; Scanniello et al, 2015). Admittedly, the concerns that we investigate may not
sufficiently represent all concerns from all systems. Finally, our choice of baseline
clearly impacts the results. As future work, we plan to study more baselines.

Threats to construct validity refer to the suitability of our evaluation metrics. We
use effectiveness and rank which are also used by past software engineering stud-
ies to evaluate the effectiveness of concern localization techniques (Gay et al, 2009;
Poshyvanyk et al, 2007; Scanniello and Marcus, 2011; Scanniello et al, 2015). Thus,
we believe there is little threat to construct validity.

5 Discussion

5.1 Qualitative Analysis

In the last section, the experiment results show that COMBMNZ-DEF performs better
than other variants in terms of effectiveness and rank. In this subsection, we discuss
the results further by answering the following questions. We randomly selected three
issue reports as illustrative examples to answer some of the questions. Among the
three issue reports, two are selected from jEdit4.2 (issue 993789 and 1275607) to
show different results within a project and another one is selected from OpenJPA
(issue 2010) to represent a different project. Table 13 shows for each issue report the
positions of relevant files in the ranked list and the similarity scores computed by the
5 components and the 12 variants of MULAB.

Why COMBMNZ-DEF outperforms the other variants?
COMBMNZ-DEF applies score normalization to the 5 components and uses COMBMNZ

as data fusion method. The following paragraphs provide reasons why each of these
two are good choices.

Benefit of score normalization: Some components may produce too big or too
small scores, which may impact the performance of data fusion. After normalization,
the scores of the components are all in range 0-1 which improves the effectiveness
of variants that use this step. From Table 13, we can see that the score normalization
method can improve the data fusion performance in most cases.

Benefit of COMBMNZ: COMBMNZ first sums up all scores for a given method
to balance the difference of the scores, second it multiplies the summation with the

26

number of non-zero scores. There are two fusion methods that have similar computa-
tional process with COMBMNZ: COMBSUM and COMBANZ. COMBMNZ can en-
hance the impact of zero scores when compared with COMBSUM and COMBANZ.
For COMBSUM, it just sums up all the scores and ignore the existence of zero s-
cores; but zero score may indicate that this method is not similar with the concern in
some aspects. For COMBANZ, it sums up all scores for a given method and divide
the summation with the number of non-zero scores. The division process will weaken
the impact of zero scores.

To compare COMBMNZ and COMBANZ, we show an example in Table 14. We
list the similarity scores of two methods compared with issue report 1275607 when
using the 5 components, COMBANZ, and COMBMNZ. We can see that method 1658
contains 4 non-zero scores, and method 2573 contains 5 non-zero scores, but the aver-
age of non-zero scores of method 1658 is a little bit bigger than method 2573. When
using COMBANZ, method 1658 gets a higher position in the ranked list even though
it contains a zero score. However, when we use COMBMNZ, the multiplication step
strengthens the effect of the zero score for method 1658, and this causes method 2573
to get a higher position than method 1658 in the ranked list.

Aside from COMBMNZ, COMBSUM, and COMBANZ, we also have BORDA,
MIN and MAX. BORDA, MIN, and MAX are easily impacted by a bad performing
component. For example, MIN chooses the smallest score and ignores others. Thus,
if two methods receive the same minimum score (outputted by a component), MIN
cannot differentiate which method is more similar to the concern. Consider issue re-
port 2010, MIN chooses the smallest scores 0.008 from the worst component (i.e.,
level 1) resulting in bad performance. A similar argument explains the bad perfor-
mance of MAX. For BORDA, a bad performing component may return a very large
rank C consider issue report 1275607 and 2010 in the table.

Are MULAB performing better for certain subject systems more than others?
For each of the 9 datasets, the performance of MULAB is similar. MULAB just

performs a little better for dataset Cocoon.

Are MULAB components complementary in their results?
MULAB has several components: VSM and topic models learned using LDA.

VSM only consider the word frequency in the documents and ignore the semantic
of words. On the other hand, LDA can analyze the semantic of words, and abstract
documents to different sets of topics. After combining VSM and LDA, the model
is optimized by considering both word frequency and semantic. Consider the issue
report 2010 shown in Table 13, if we only use VSM, we can get the relevant method
at the 54th position in the ranked list, and if we only use a LDA(level 2), the rele-
vant method is returned at the 224th position in the ranked list. However, if we fuse
the 5 components (VSM and 4 LDA models), MULABbasic can return the relevan-
t method at the 8th position in the ranked list, while COMBANZ, COMBMNZ, and
COMBSUM can return the relevant method at the 2nd position in the ranked list. This
demonstrates that MULAB components are complementary in their results.

What kinds of concerns are hard to localize by MULAB?
There exist some concerns for which MULAB cannot produce good results. Con-

sider issue report 2289 from OpenJPA. Figure 2 shows the title and description of

27

Table 13 The positions(similarity scores) in the ranked lists of the relevant methods of 3 issue reports
when using the 5 components and the 12 variants of MULAB.

Algorithms issue report 993789 issue report 1275607 issue report 2010

VSM (Sim1) 1(0.358) 144(0.077) 54(0.240)
level 1 (Sim2) 1(0.734) 286(0.073) 32606(0.008)
level 2 (Sim3) 157(0.033) 3992(0.007) 224(0.192)
level 3 (Sim4) 2(0.456) 203(0.027) 28(0.636)
level 4 (Sim5) 1775(0.003) 3547(0.003) 10(0.412)
MULABbasic 1(0.247) 266(0.029) 8(0.269)

COMBANZ-NO 1(0.317) 254(0.037) 2(0.298)
COMBANZ-DEF 1(0.618) 201(0.107) 2(0.534)

BORDA 39(24984) 1180(18748) 1186(174448)
MAX-NO 1(0.734) 540(0.077) 33(0.636)
MAX-DEF 1(1.000) 286(0.305) 59(0.882)
MIN-NO 1054(0.003) 2089(0.003) 2402(0.008)
MIN-DEF 1001(0.006) 2069(0.003) 4068(0.010)

COMBMNZ-NO 1(7.917) 237(0.933) 2(7.452)
COMBMNZ-DEF 1(15.456) 194(2.677) 2(13.340)
COMBSUM-NO 1(1.583) 242(0.187) 2(1.490)
COMBSUM-DEF 1(3.091) 197(0.535) 2(2.668)

Table 14 The similarity scores of two methods compared with issue report 1275607 when using the 5
components, COMBANZ, and COMBMNZ.

Method ID VSM level 1 level 2 level 3 level 4 COMBANZ COMBMNZ

1658 0 0.488 0.294 0.072 0.096 0.237(57th position) 3.797(106th position)
2573 0.363 0.290 0.105 0.009 0.413 0.236(58th position) 5.896(57th position)

Table 15 The positions in the ranked list of the relevant method of issue report 2289 of 12 variants of
MULAB.

MULABbasic COMBANZ-NO COMBANZ-DEF BORDA MAX-NO MAX-DEF

Positions 3926 13948 6683 23683 7241 3418

MIN-NO MIN-DEF COMBMNZ-NO COMBMNZ-DEF COMBSUM-NO COMBSUM-DEF

Positions 9058 14777 12197 5800 13058 6157

issue report 2289. Figure 3 shows the relevant method that need to be modified to
resolve the bug described in issue report 2289. Table 15 shows the positions of this
method in the ranked list produced by the 12 variants of MULAB. From the Figure 2
and 3, we can see that the text in the description of issue report 2289 are mostly SQL
statements, but the corresponding method that needs to be modified is written in Java
with some English comments. MULAB cannot perform well for this (as shown in
Table 15) and several other concerns for which semantic gap between text in issue
reports and their corresponding methods is large

28

Fig. 2 Issue report 2289 from OpenJPA.

Fig. 3 Relevant method of issue report 2289.

5.2 Time Efficiency

The efficiency of the algorithm will affect its practical usage. Thus, in this subsection,
we investigate the time efficiency of MULAB with height 4. We use an Intel(R)
Core(TM) i7-6850K 3.60 GHz CPU, 64GB RAM server to run the experiments. We
run MULAB and report the average model training and test time. Model training

29

Table 16 Model testing time of 12 variants of MULAB.

MULABbasic COMBANZ-NO COMBANZ-DEF BORDA MAX-NO MAX-DEF

Testing time(s) 2.52 2.34 2.40 2.61 2.30 2.35

MIN-NO MIN-DEF COMBMNZ-NO COMBMNZ-DEF COMBSUM-NO COMBSUM-DEF

Testing time(s) 2.29 2.34 2.34 2.40 2.33 2.39

time refers to the time taken to tune the topic numbers and create hierarchy. Test time
refers to the time taken for MULAB to retrieve similar documents for each concern.
The training time of the 12 variants are the same, as we only need to train the model
once. We notice that the training time of MULAB are reasonable, e.g., on average,
we need about 198 minutes to tune the topic numbers, 56 minutes to create hierarchy.
The testing time of the 12 variants are shown in Table 16, for each variant, we report
the average testing time of a concern in the second row, and for all the variants, the
average time to retrieve similar documents for a concern is 2.38 seconds. Notice that
the training phase can be done offline (e.g., overnight) and the model does not need
to be updated all the time. The model only needs to be retrained when large numbers
of code changes are made which leads to the original model being no longer accurate.
A trained model can be used to retrieve many concerns.

6 Related Work

6.1 Concern Localization

Concern localization is an important and recurring step in maintenance of a software
system. We describe some past studies in the following paragraphs. Due to space
limitations, our survey is by no means complete.

Text analysis. Wang et al. (Wang et al, 2011b) evaluate 10 information retrieval tech-
niques and discover that VSM has the best performance. Rao and Kak also investigate
the use of LDA with VSM (Rao and Kak, 2011). However, in their approach, VSM is
considered separately from LDA. The results of the two are combined together using
a weighted sum. The performance of the resulting composite model is worse than that
of VSM. In this work, we integrate LDA and VSM by constructing a single unified
vector and we use a hierarchy of topic models; the resulting approach performs better
than Scanniello et al.’s approach, which has been shown to be better than VSM on
the same dataset (Scanniello et al, 2015).

Text and static analysis. To improve the accuracy of concern localization, a few hy-
brid approaches have been proposed, which combine IR techniques with static pro-
gram analysis. Zhao et al. (Zhao et al, 2006) present a two-phase approach to concern
localization, which first applies an IR technique to identify an initial set of feature-
code-unit links based on the textual description of the concerns and code units, and
then enrich the initial links by exploring program call graph. Similarly, Eaddy et

30

al. (Eaddy et al, 2008) employ pruned dependency analysis to boost the recall of IR
or dynamic-analysis-based approaches. Most recently, Scanniello et al. (Scanniello
et al, 2015) propose a text retrieval-based concern localization technique which con-
siders the structural relationships between source code documents. They use a link
analysis algorithm PageRank to rank the document space and to improve concern
localization. The algorithm uses links (i.e., dependencies) among documents to orga-
nize them into a hierarchical structure. With their technique, source code documents
are automatically ranked with respect to a textual query written by the developer,
based on the dependencies and the lexical similarities between the documents. We
have shown that our approach which relies only on textual contents of concerns and
methods are able to outperform the latest approach by Scanniello et al. on a bench-
mark dataset used by many prior studies.

Text, static and/or dynamic analysis. Aside from text and information gleaned us-
ing static analysis, execution traces have been used to aid concern localization. Liu et
al. (Liu and Xu, 2007) apply IR-based filtering to rank the methods being executed
in a single test scenario. Dit et al. (Dit et al, 2013) define a data fusion model for fea-
ture location that integrates different types of information to locate features using IR,
dynamic analysis, and web mining algorithms. Our technique does not consider exe-
cution traces since most bug reports and change requests do not come with execution
traces (Sun et al, 2011).

6.2 Search-Based Algorithms in Software Engineering

Search-based algorithms have been used to improve various software engineering
activities. Harman and Jones propose the concept of search-based software engi-
neering and they demonstrate how to reformulate a SE problem as a search-based
problem (Harman and Jones, 2001). Later, Harman et al. provide a review and classi-
fication of search-based software engineering techniques (Harman et al, 2012). Many
search-based algorithms have been proposed in the literature; we highlight a number
of them in the following paragraphs.

Li et al. use various search algorithms including greedy search, hill climbing, and
genetic algorithms for test case prioritization (Li et al, 2007). Canfora et al. construc-
t a classification model by using multi-objective genetic algorithm for cross-project
defect prediction (Canfora et al, 2013). Wang et al. propose a search-based approach
for clone detection (Wang et al, 2013). A number of search-based algorithms have
been proposed to generate test cases that satisfy various criteria for various program-
s (Tonella, 2004). Antoniol et al. apply a genetic algorithm to allocate staff to project
teams and to allocate teams to work package (Antoniol et al, 2004). Gold et al. re-
formulate concept binding problem (i.e., assigning the most plausible concept for a
source code segment) as a search problem to allow overlapping concept boundaries,
and genetic and hill climbing algorithms are used to search for solutions to this prob-
lem (Gold et al, 2006).

Mancoridis et al. use a search-based algorithm to group software modules into
clusters by minimizing cohesion and maximizing coupling (Mancoridis et al, 1999).

31

Wang et al. use a genetic algorithm to improve fault localization; their approach ana-
lyzes a set of failing and correct execution traces to locate faulty basic blocks that are
root causes of bugs (Wang et al, 2011a). Goues et al. propose GenProg, which uses
genetic algorithm to automatically repair defects in software projects (Le Goues et al,
2012). Le et al. propose HDRepair that mines bug fix patterns from version history
and subsequently uses genetic programming to evolve patches for new bugs based on
mined fix patterns (Le et al, 2016b). Le et al. propose to use program logic specifi-
cations to evolve a buggy implementation until a correct patch is found via genetic
programming and deductive verification (Le et al, 2016a). More recently, Panichella
et al. use genetic algorithm to identify near optimal solutions to customize various
stages of an IR process (Panichella et al, 2016). The proposed approach explores
what kinds of character pruning, identifier splitting, stop word removal, stemming,
term weighting, and IR techniques are best to be used. Lohar et al. present a novel
approach to trace retrieval, which utilizes a machine-learning engine to search for the
best configuration given an initial training set of validated trace links (Lohar et al,
2013). Wang et al. introduce desktop and parallelised cloud-deployed versions of a
search-based solution that finds suitable configurations for empirical studies (Wang
et al, 2013). Xia et al. propose an accurate change classification technique named col-
lective personalized change classification (CPCC), which leverages a multi-objective
genetic algorithm (Xia et al, 2016b). They also utilize genetic algorithm to do cross-
project defect prediction; in particular, they propose a hybrid model reconstruction
approach, named HYDRA, which contains two phases: genetic algorithm (GA) phase
and ensemble learning (EL) phase (Xia et al, 2016a).

In this work, similar to the above approaches, we also utilize a search-based al-
gorithm. However, we address a new problem, namely multi-abstraction concern lo-
calization. The approach by Panichella et al. (Panichella et al, 2016) only considers
one level of abstraction.

7 Conclusion and Future Work

Existing concern localization studies characterize both concerns and code units as a
bag of tokens at one abstraction level. In this study, we propose a multi-abstraction
concern localization technique named MULAB which combines a hierarchy of topic
models with VSM. We use genetic algorithm to estimate a near-optimal configuration
of the topic models. Our experiments on 175 concerns from 9 open-source software
systems show that our approach performs better than PR, the state-of-art approach
recently proposed by Scanniello et al. (Scanniello et al, 2015), when evaluated in
terms of effectiveness and rank. In the future, we plan to perform a deeper analysis
on cases where our multi-abstraction approach does not work well, and improve the
effectiveness of our proposed approach further. We also plan to merge our approach
with other advanced text mining solutions, e.g., paraphrase detection, deep learning,
etc., for more optimal performance. What’s more, we plan to investigate some inter-
mediate data sources like API documents and knowledge from online forums to help
to bridge the semantic gap between issue reports and their corresponding source code
methods.

32

Acknowledgment. This work was supported by NSFC Program (No. 61602403 and
61572426).

A Appendix A

Following tables show the detailed experiment results of Research Question 1, each
table presents the effectiveness and rank scores of 1 among the 12 variants of MU-
LAB. For each variant, we report the number of wins, loses, and draws for each Java
system. Wins, loses, and draws represent the number of concerns12 or methods13 for
which a variant outperforms the other variants, loses from another variant, and per-
forms as well as all the other variants, respectively. We also report the overall results
in the last row.

Table 17 Data analysis results on effectiveness and rank scores of MULABbasic.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 1 11 0

aTunes 5 11 0 11 19 0
jEdit4.2 5 11 0 6 27 0
jEdit4.3 2 2 0 4 5 0
Cocoon 8 6 0 20 18 0

Derby 1 28 0 9 71 0
Lucene 5 18 1 24 84 4

OpenJPA 1 24 0 11 63 0
Eclipse 9 30 0 18 95 0

Overall 37 137 1 104 393 4

B Appendix B

Following tables show the detailed experiment results of Research Question 2, each
table presents the effectiveness and rank scores of COMBMNZ-DEF, VSM model,
and 4 abstraction levels. For each method, we report the number of wins, loses, and
draws for each Java system. Wins, loses, and draws represent the number of concern-
s14 or methods15 for which a method performs the best, loses from another method,
and performs as well as all the other methods, respectively. We also report the overall
results in the last row.

12 When effectiveness is used as a yardstick
13 When rank is used as a yardstick
14 When effectiveness is used as a yardstick
15 When rank is used as a yardstick

33

ppyeo
Typewritten Text

Table 18 Data analysis results on effectiveness and rank scores of COMBANZ-NO.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 5 0 3 9 0

aTunes 3 13 0 4 26 0
jEdit4.2 2 14 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 15 23 0

Derby 1 28 0 4 76 0
Lucene 5 18 1 15 93 4

OpenJPA 4 21 0 9 65 0
Eclipse 1 38 0 12 101 0

Overall 27 147 1 68 429 4

Table 19 Data analysis results on effectiveness and rank scores of COMBANZ-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 2 10 0

aTunes 1 15 0 3 27 0
jEdit4.2 3 13 0 6 27 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 16 22 0

Derby 4 25 0 10 70 0
Lucene 7 16 1 24 84 4

OpenJPA 1 24 0 4 70 0
Eclipse 4 35 0 23 90 0

Overall 29 145 1 89 408 4

Table 20 Data analysis results on effectiveness and rank scores of MULABBorda.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 1 11 0

aTunes 3 13 0 4 26 0
jEdit4.2 1 15 0 2 31 0
jEdit4.3 3 1 0 5 4 0
Cocoon 3 11 0 10 28 0

Derby 7 22 0 15 65 0
Lucene 8 15 1 16 92 4

OpenJPA 2 23 0 6 68 0
Eclipse 6 33 0 19 94 0

Overall 34 140 1 78 419 4

34

Table 21 Data analysis results on effectiveness and rank scores of MAX-NO.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 1 11 0

aTunes 4 12 0 8 22 0
jEdit4.2 3 13 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 4 10 0 13 25 0

Derby 5 24 0 11 69 0
Lucene 1 22 1 8 100 4

OpenJPA 1 24 0 3 71 0
Eclipse 5 34 0 11 102 0

Overall 25 149 1 61 436 4

Table 22 Data analysis results on effectiveness and rank scores of MAX-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 2 10 0

aTunes 1 15 0 2 28 0
jEdit4.2 5 11 0 10 23 0
jEdit4.3 1 3 0 2 7 0
Cocoon 6 8 0 14 24 0

Derby 5 24 0 17 63 0
Lucene 8 15 1 22 86 4

OpenJPA 6 19 0 18 56 0
Eclipse 7 32 0 23 90 0

Overall 41 133 1 110 387 4

Table 23 Data analysis results on effectiveness and rank scores of MIN-NO.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 0 8 0 2 10 0

aTunes 2 14 0 3 27 0
jEdit4.2 3 13 0 4 29 0
jEdit4.3 2 2 0 3 6 0
Cocoon 4 10 0 15 23 0

Derby 8 21 0 13 67 0
Lucene 7 16 1 18 90 4

OpenJPA 11 14 0 15 59 0
Eclipse 8 31 0 27 86 0

Overall 45 129 1 100 397 4

35

Table 24 Data analysis results on effectiveness and rank scores of MIN-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 0 8 0 0 12 0

aTunes 3 13 0 6 24 0
jEdit4.2 1 15 0 2 31 0
jEdit4.3 1 3 0 1 8 0
Cocoon 5 9 0 13 25 0

Derby 4 25 0 7 73 0
Lucene 9 14 1 17 91 4

OpenJPA 4 21 0 9 65 0
Eclipse 8 31 0 15 98 0

Overall 35 139 1 70 427 4

Table 25 Data analysis results on effectiveness and rank scores of COMBMNZ-NO.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 5 0 3 9 0

aTunes 5 11 0 6 24 0
jEdit4.2 2 14 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 8 6 0 16 22 0

Derby 2 27 0 10 70 0
Lucene 5 18 1 21 87 4

OpenJPA 6 19 0 10 64 0
Eclipse 9 30 0 22 91 0

Overall 41 133 1 94 403 4

Table 26 Data analysis results on effectiveness and rank scores of COMBMNZ-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 3 9 0

aTunes 2 14 0 4 26 0
jEdit4.2 4 12 0 8 25 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 16 22 0

Derby 10 19 0 19 61 0
Lucene 7 16 1 23 85 4

OpenJPA 3 22 0 19 55 0
Eclipse 9 30 0 25 88 0

Overall 44 130 1 118 379 4

36

Table 27 Data analysis results on effectiveness and rank scores of COMBSUM-NO.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 2 10 0

aTunes 4 12 0 5 25 0
jEdit4.2 1 15 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 16 22 0

Derby 2 27 0 5 75 0
Lucene 5 18 1 18 90 4

OpenJPA 5 20 0 9 65 0
Eclipse 6 33 0 15 98 0

Overall 33 141 1 76 421 4

Table 28 Data analysis results on effectiveness and rank scores of COMBSUM-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 2 10 0

aTunes 2 14 0 4 26 0
jEdit4.2 3 13 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 16 22 0

Derby 6 23 0 11 69 0
Lucene 7 16 1 24 84 4

OpenJPA 2 23 0 8 66 0
Eclipse 8 31 0 13 100 0

Overall 37 137 1 84 413 4

Table 29 Data analysis results on effectiveness and rank scores of COMBMNZ-DEF.

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 5 0 5 7 0

aTunes 5 10 1 13 15 2
jEdit4.2 6 10 0 11 20 2
jEdit4.3 1 3 0 2 7 0
Cocoon 3 8 3 6 21 11

Derby 15 14 0 29 50 1
Lucene 10 10 4 28 76 8

OpenJPA 9 16 0 22 51 1
Eclipse 14 24 1 22 89 2

Overall 66 100 9 138 336 27

37

Table 30 Data analysis results on effectiveness and rank scores of VSM model(Sim1).

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 2 10 0

aTunes 3 12 1 3 25 2
jEdit4.2 1 15 0 2 29 2
jEdit4.3 0 4 0 0 9 0
Cocoon 0 11 3 2 25 11

Derby 5 24 0 8 71 1
Lucene 3 17 4 10 94 8

OpenJPA 4 21 0 10 63 1
Eclipse 6 32 1 15 96 2

Overall 23 143 9 52 422 27

Table 31 Data analysis results on effectiveness and rank scores of abstraction level 1 (Sim2).

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 3 9 0

aTunes 2 13 1 4 24 2
jEdit4.2 1 15 0 4 27 2
jEdit4.3 2 2 0 3 6 0
Cocoon 4 7 3 8 19 11

Derby 6 23 0 15 64 1
Lucene 5 15 4 18 86 8

OpenJPA 5 20 0 13 60 1
Eclipse 5 33 1 11 100 2

Overall 32 134 9 79 395 27

Table 32 Data analysis results on effectiveness and rank scores of abstraction level 2 (Sim3).

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 0 8 0 1 11 0

aTunes 1 14 1 2 26 2
jEdit4.2 1 15 0 2 29 2
jEdit4.3 2 2 0 4 5 0
Cocoon 1 10 3 2 25 11

Derby 5 24 0 10 69 1
Lucene 5 15 4 12 92 8

OpenJPA 3 22 0 9 64 1
Eclipse 5 33 1 19 92 2

Overall 23 143 9 61 413 27

38

Table 33 Data analysis results on effectiveness and rank scores of abstraction level 3 (Sim4).

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 1 7 0 3 9 0

aTunes 3 12 1 5 23 2
jEdit4.2 4 12 0 7 24 2
jEdit4.3 1 3 0 2 7 0
Cocoon 3 8 3 6 21 11

Derby 6 23 0 18 61 1
Lucene 7 13 4 24 80 8

OpenJPA 5 20 0 13 60 1
Eclipse 7 31 1 23 88 2

Overall 37 129 9 101 373 27

Table 34 Data analysis results on effectiveness and rank scores of abstraction level 4 (Sim5).

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 2 10 0

aTunes 2 13 1 4 24 2
jEdit4.2 4 12 0 6 25 2
jEdit4.3 0 4 0 1 8 0
Cocoon 2 9 3 4 23 11

Derby 7 22 0 20 59 1
Lucene 6 14 4 20 84 8

OpenJPA 7 18 0 18 55 1
Eclipse 8 30 1 26 85 2

Overall 38 128 9 101 373 27

References

Antoniol G, Penta MD, Harman M (2004) A robust search-based approach to project
management in the presence of abandonment, rework, error and uncertainty. In:
Proceedings of the Software Metrics, 10th International Symposium, IEEE Com-
puter Society, Washington, DC, USA, METRICS ’04, pp 172–183, DOI 10.
1109/METRICS.2004.4, URL http://dx.doi.org/10.1109/METRICS.
2004.4

Anvik J, Hiew L, Murphy GC (2005) Coping with an open bug repository. In: ETX,
pp 35–39

Arcuri A, Fraser G (2011) On parameter tuning in search based software engineering.
Search based software engineering pp 33–47

Aslam JA, Montague M (2001) Models for metasearch. In: SIGIR 2001: Proceedings
of the International ACM SIGIR Conference on Research and Development in
Information Retrieval, September 9-13, 2001, New Orleans, Louisiana, Usa, pp

39

275–284
Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic mod-

eling. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 1, ACM, pp 95–104

Binkley D, Lawrie D (2014) Learning to rank improves ir in se. In: IEEE International
Conference on Software Maintenance and Evolution, pp 441–445

Blei DM, Lafferty JD (2007) Correction: A correlated topic model of science. Statis-
tics 1(1):17–35

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of machine
Learning research 3(Jan):993–1022

Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2013)
Multi-objective cross-project defect prediction. In: Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on, IEEE, pp
252–261

Cliff N (2014) Ordinal methods for behavioral data analysis. Psychology Press
Dit B, Revelle M, Poshyvanyk D (2013) Integrating information retrieval, execution

and link analysis algorithms to improve feature location in software. Empirical
Software Engineering 18(2):277–309

Eaddy M, Aho AV, Antoniol G, Guéhéneuc YG (2008) Cerberus: Tracing require-
ments to source code using information retrieval, dynamic analysis, and program
analysis. In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on, IEEE, pp 53–62

Fox EA, Koushik MP, Shaw JA, Modlin R, Rao D (1992) Combining evidence from
multiple searches. In: Text Retrieval Conference, pp 319–328

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback
in ir-based concept location. In: Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, IEEE, pp 351–360

Gold N, Harman M, Li Z, Mahdavi K (2006) Allowing overlapping boundaries in
source code using a search based approach to concept binding. In: Software Main-
tenance, 2006. ICSM’06. 22nd IEEE International Conference on, IEEE, pp 310–
319

Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learn-
ing, 1989. Reading: Addison-Wesley

Griffiths TL, Steyvers M (2004) Finding scientific topics. Proceedings of the National
Academy of Sciences 101(suppl 1):5228–5235

Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies T (2013) Automatic
query reformulations for text retrieval in software engineering. In: Proceedings of
the International Conference on Software Engineering, IEEE Press, ICSE, pp 842–
851

Harman M, Jones BF (2001) Search-based software engineering. Information and
Software Technology 43(14):833–839

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys (CSUR) 45(1):11

Hindle A, Barr ET, Su Z, Gabel M, Devanbu P (2012) On the naturalness of software.
In: Software Engineering (ICSE), 2012 34th International Conference on, IEEE, pp
837–847

40

Holland JH (1975) Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. U Michigan
Press

Hotho A, Maedche A, Staab S (2002) Ontology-based text document clustering. KI
16(4):48–54

Joseph EA (1997) Combination of multiple searches. Int J Uncertain Fuzziness
Knowl- Based Syst

Kleinberg, Jon, Tomkins, Andrew (1999) Applications of linear algebra in informa-
tion retrieval and hypertext analysis

Le TDB, Oentaryo RJ, Lo D (2015) Information retrieval and spectrum based bug
localization: Better together. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ACM, pp 579–590

Le XBD, Le QL, Lo D, Goues CL (2016a) Enhancing automated program repair with
deductive verification. In: ICSME

Le XD, Lo D, Le Goues C (2016b) History driven program repair. In: IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengineering, SAN-
ER 2016, Suita, Osaka, Japan, March 14-18, 2016, pp 213–224

Le Goues C, Nguyen T, Forrest S, Weimer W (2012) Genprog: A generic method for
automatic software repair. Software Engineering, IEEE Transactions on 38(1):54–
72

Li Z, Harman M, Hierons RM (2007) Search algorithms for regression test case prior-
itization. IEEE Trans Softw Eng 33(4):225–237, DOI 10.1109/TSE.2007.38, URL
http://dx.doi.org/10.1109/TSE.2007.38

Liu D, Xu S (2007) A combined concept location method for java programs. In:
Computer Software and Applications Conference, 2007. COMPSAC 2007. 31st
Annual International, IEEE, vol 2, pp 29–42

Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J (2013) Improving trace
accuracy through data-driven configuration and composition of tracing features.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering, ACM, pp 378–388

Lucia L, Lo D, Xia X (2014) Fusion fault localizers. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, ACM,
pp 127–138

Mancoridis S, Mitchell BS, Chen Y, Gansner ER (1999) Bunch: A clustering tool
for the recovery and maintenance of software system structures. In: Proceedings
of the IEEE International Conference on Software Maintenance, IEEE Computer
Society, Washington, DC, USA, ICSM ’99, pp 50–, URL http://dl.acm.
org/citation.cfm?id=519621.853406

Manning C, Raghavan P, Schutze H (2008) Introduction to Information Retrieval.
Cambridge

Marcus A, Maletic JI (2003) Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: ICSE 2003

Moreno L, Bandara W, Haiduc S, Marcus A (2013) On the relationship between
the vocabulary of bug reports and source code. In: Proceedings of International
Conference on Software Maintenance, pp 452–455

41

Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2010) On the equivalence of
information retrieval methods for automated traceability link recovery. In: Program
Comprehension (ICPC), 2010 IEEE 18th International Conference on, IEEE, pp
68–71

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How
to effectively use topic models for software engineering tasks? an approach based
on genetic algorithms. In: Proceedings of the 2013 International Conference on
Software Engineering, IEEE Press, pp 522–531

Panichella A, Dit B, Oliveto R, Penta MD, Poshyvanyk D, Lucia AD (2016) Param-
eterizing and assembling ir-based solutions for software engineering tasks using
genetic algorithms. In: SANER

Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich VC (2007) Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. Software Engineering, IEEE Transactions on 33(6):420–432

Rao S, Kak AC (2011) Retrieval from software libraries for bug localization: a com-
parative study of generic and composite text models. In: MSR

Robillard MP, Murphy GC (2007) Representing concerns in source code. ACM Trans
Softw Eng Methodol 16(1)

Rousseeuw PJ, Kaufman L (1990) Finding Groups in Data. Wiley Online Library
Salton G, Harman D (2003) Information retrieval p 777
Sander J, Ester M, Kriegel HP, Xu X (1998) Density-based clustering in spatial

databases: The algorithm gdbscan and its applications. Data mining and knowl-
edge discovery 2(2):169–194

Scanniello G, Marcus A (2011) Clustering support for static concept location in
source code. In: Program Comprehension (ICPC), 2011 IEEE 19th International
Conference on, IEEE, pp 1–10

Scanniello G, Marcus A, Pascale D (2015) Link analysis algorithms for static concept
location: an empirical assessment. Empirical Software Engineering 20(6):1666–
1720

Shaw JA, Fox EA (2014) Combination of multiple searches. IEEE Transactions on
Multimedia 16(1):277–282

Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate retrieval of duplicate
bug reports. In: ASE, pp 253–262

Thomas SW (2011) Mining software repositories using topic models. In: Proceedings
of the 33rd International Conference on Software Engineering, ACM, pp 1138–
1139

Tonella P (2004) Evolutionary testing of classes. In: Proceedings of the 2004 ACM
SIGSOFT international symposium on Software testing and analysis, ACM, New
York, NY, USA, ISSTA ’04, pp 119–128, DOI 10.1145/1007512.1007528, URL
http://doi.acm.org/10.1145/1007512.1007528

Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: Why priors matter.
In: Advances in neural information processing systems, pp 1973–1981

Wang S, Lo D (2014) Version history, similar report, and structure: Putting them
together for improved bug localization. In: Proceedings of the 22nd International
Conference on Program Comprehension, ACM, pp 53–63

42

REFERENCES 43

Wang S, Lo D, Jiang L, Lucia, Lau HC (2011a) Search-based fault localization. In:
Alexander P, Pasareanu CS, Hosking JG (eds) ASE, IEEE, pp 556–559

Wang S, Lo D, Xing Z, Jiang L (2011b) Concern localization using information re-
trieval: An empirical study on linux kernel. In: WCRE 2011

Wang S, Lo D, Lawall J (2014) Compositional vector space models for improved bug
localization

Wang T, Harman M, Jia Y, Krinke J (2013) Searching for better configurations: a rig-
orous approach to clone evaluation. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ACM, pp 455–465

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics bulletin
1(6):80–83

Wu S (2012) Data fusion in information retrieval. Adaptation Learning & Optimiza-
tion 36(2):2997C3006

Xia X, Lo D (2017) An effective change recommendation approach for supplemen-
tary bug fixes. Automated Software Engineering 24(2):455–498

Xia X, Lo D, Wang X, Zhang C, Wang X (2014) Cross-language bug localization.
In: Proceedings of the 22nd International Conference on Program Comprehension,
ACM, pp 275–278

Xia X, Lo D, Wang X, Zhou B (2015) Dual analysis for recommending developers
to resolve bugs. Journal of Software Evolution & Process 27(3):195–220

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016a) Hydra: Massively composi-
tional model for cross-project defect prediction. IEEE Transactions on software
Engineering

Xia X, Lo D, Wang X, Yang X (2016b) Collective personalized change classification
with multiobjective search. IEEE Transactions on Reliability

Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN, Wang X (2017) Improving auto-
mated bug triaging with specialized topic model. IEEE Transactions on Software
Engineering 43(3):272–297

Xuan J, Monperrus M (2014) Learning to combine multiple ranking metrics for fault
localization. In: IEEE International Conference on Software Maintenance and Evo-
lution, pp 191–200

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using
domain knowledge. In: ACM Sigsoft International Symposium on Foundations of
Software Engineering, pp 689–699

Zhang Y, Lo D, Xia X, Duy TDB, Scanniello G, Sun J (2016) Inferring links between
concerns and methods with multi-abstraction vector space model. In: IEEE Inter-
national Conference on Software Maintenance and Evolution ICSME, pp 110–121

Zhao W, Zhang L, Liu Y, Sun J, Yang F (2006) Sniafl: Towards a static noninterac-
tive approach to feature location. ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(2):195–226

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate infor-
mation retrieval-based bug localization based on bug reports. In: 2012 34th Inter-
national Conference on Software Engineering (ICSE), IEEE, pp 14–24

	Fusing multi-abstraction vector space models for concern localization
	Citation
	Author

	tmp.1560310215.pdf.YvSDd

