
1

Network-Clustered Multi-Modal Bug Localization
Thong Hoang, Richard J. Oentaryo, Tien-Duy B. Le, and David Lo
School of Information Systems, Singapore Management University
{vdthoang.2016, roentaryo, btdle.2012, davidlo}@smu.edu.sg

F

Abstract—Developers often spend much effort and resources to de-
bug a program. To help the developers debug, numerous information
retrieval (IR)-based and spectrum-based bug localization techniques
have been devised. IR-based techniques process textual information
in bug reports, while spectrum-based techniques process program
spectra (i.e., a record of which program elements are executed for
each test case). While both techniques ultimately generate a ranked
list of program elements that likely contain a bug, they only consider
one source of information—either bug reports or program spectra—
which is not optimal. In light of this deficiency, this paper presents a
new approach dubbed Network-clustered Multi-modal Bug Localization
(NetML), which utilizes multi-modal information from both bug reports
and program spectra to localize bugs. NetML facilitates an effective bug
localization by carrying out a joint optimization of bug localization error
and clustering of both bug reports and program elements (i.e., methods).
The clustering is achieved through the incorporation of network Lasso
regularization, which incentivizes the model parameters of similar bug
reports and similar program elements to be close together. To estimate
the model parameters of both bug reports and methods, NetML em-
ploys an adaptive learning procedure based on Newton method that
updates the parameters on a per-feature basis. Extensive experiments
on 355 real bugs from seven software systems have been conducted to
benchmark NetML against various state-of-the-art localization methods.
The results show that NetML surpasses the best-performing baseline by
31.82%, 22.35%, 19.72%, and 19.24%, in terms of the number of bugs
successfully localized when a developer inspects the top 1, 5, and 10
methods and Mean Average Precision (MAP), respectively.

1 INTRODUCTION

Debugging bug reports, which often come in high vol-
ume [13], has proved to be a difficult task that takes much
resources and time [65]. Various techniques have been de-
vised to help developers locate buggy program elements
from their symptoms. These symptoms could be in the form
of description of a bug experienced by a user, or a failing test
case. These techniques—often collectively referred to as bug
(or fault) localization—analyze the symptoms of a bug and
produce a list of program elements ranked based on their
likelihood to contain the bug. In general, a program element
can be defined at three levels of granularity, i.e., source file
level, method/function level, and line of code level.

1.1 The Need for Multi-modal Bug Localization
Existing bug localization techniques broadly fall into
two major categories: information retrieval (IR)-based tech-
niques [57], [62], [81], [60], and spectrum-based bug localiza-
tion techniques [29], [11], [59], [80], [79], [21], [38], [39], [40].

The IR-based bug localization techniques typically analyze
textual descriptions contained in bug reports and identifier
names and comments in source code files. They then return
a ranked list of program elements (typically program files)
that are the most similar to the bug textual description. The
spectrum-based bug localization techniques typically ana-
lyze program spectra that corresponds to program elements
that are executed by failing and successful execution traces.
Likewise, they return a ranked list of program elements
(typically program blocks or statements) that are executed
more often in the failing rather than correct traces.

The above-mentioned approaches, however, only con-
sider one kind of symptom or one source of information, i.e.,
only bug reports or only execution traces. This is a limiting
factor since hints of the location of a bug may be spread
in both bug report and execution traces; and some hints
may only appear in one but not the other. In this work, we
put forward a bug localization approach that addresses the
deficiency of existing methods by jointly utilizing both bug
reports and execution traces. We refer to this approach as
multi-modal bug localization, as we need to consider multiple
modes of inputs (i.e., bug reports and program spectra).
Such an approach fits well to developers’ debugging activi-
ties as illustrated by the following scenarios:

1) Developer D is working on a bug report that is sub-
mitted to Bugzilla. One of the first tasks that he needs
to do is to replicate the bug based on the description
in the report. If the bug can be successfully replicated,
he will proceed to the debugging step; otherwise, he
will mark the bug report as “WORKSFORME” and will
not continue further [49]. After D replicates the bug,
he has one or a few failing execution traces. He also
has a set of regression tests that he can run to get
successful execution traces. Thus, after the replication
process, D has both the textual description of the bug
and a program spectra that characterizes the bug. With
this,D can proceed to use multi-modal bug localization.

2) Developer D runs a regression test suite and some test
cases fail. Based on his experience, D has some idea
why the test cases fail. D can create a textual document
describing the bug. At the end of this step, D has both
program spectra and textual bug description, and can
proceed to use multi-modal bug localization which will
leverage not only the program spectra but also D’s
domain knowledge to locate the bug.

ar
X

iv
:1

80
2.

09
72

9v
1

 [
cs

.I
R

]
 2

7
Fe

b
20

18

2

It is worth noting that our work focuses on localizing a
bug to the method that contains it. Historically, most IR-based
bug localization techniques aim at finding buggy files [57],
[62], [81], [60], while most spectrum-based techniques find
buggy lines [29], [11], [59]. Localization at the method level
can be a good tradeoff. That is, a method is not as big as a
file, but it often contains sufficient context needed to help
developers understand a bug. On the other hand, by just
looking at a line of code, developers often cannot determine
whether it is the location of the bug or understand the bug
well enough to fix it [51]. Admittedly, if the methods are
long, a finer granularity (e.g., basic blocks) may be preferred.
Nevertheless, a recent study by Kochhar et al. [33] highlights
that out of the 386 practitioners they surveyed, the majority
indicates method-level as the preferred granularity.

1.2 Proposed Approach

In this paper, we present a new approach called the
Network-clustered Multi-modal Bug Localization (NetML),
which works based on three main intuitions:

1) Firstly, it is recognized that a large variety of bugs exist,
and different bugs need different treatments [66], [73].
A bug report written by a developer provides unique
description of a bug. Thus, different bugs require sep-
arate model parameters to capture their individual
characteristics. Similarly, different program elements
(or methods in this work) are of different nature, and
should be characterized by separate model parameters.

2) A recent study by Parnin and Orso [51] also showed
that some words are more useful in localizing bugs, and
suggested that “future research could also investigate
ways to automatically suggest or highlight terms that
might be related to a failure”. Our NetML provides
such capability by incorporating method suspiciousness
feature, which allows us to automatically highlight
suspicious terms and use them to localize bugs.

3) We also observe that bugs and program elements are
not completely independent, and some bug reports (or
methods) may be more similar to certain bug reports
(or methods) than to others. As such, similar bugs (or
methods) should have model parameters that are close
together. This enforcement of clustering of model pa-
rameters would enable similar bug reports (or methods)
to share information and reinforce one another.

The first two intuitions have been captured in our recent
work—dubbed Adaptive Multi-Modal Bug Localization
(AML) [35]—which we extend in this paper. In particular,
AML already incorporates the ideas of adaptively comput-
ing separate model parameters for each bug report, and of
computing the method suspiciousness feature1. However,
the current AML approach exhibits two main shortcomings.
Firstly, AML only has the concept of model parameters for
bug reports, but not for program elements (or methods). As
such, it is not able to capture variation in the inherent char-
acteristics of different program elements (methods), which

1. To understand the concept of feature and model parameters, we
can draw an analogy to a linear model y =

∑
i wixi. A feature refers

to the (independent) input variable xi, while a model parameter refers
to the weight coefficient wi for each feature xi. In this case, the model
parameters wi need to be learned/estimated from data.

may limit its effectiveness in localizing a bug. Secondly, the
model parameters of each bug report are learned indepen-
dently of those of other bug reports. As a result, AML is
unable to take advantage of the clustering/similarity traits
of different bug reports in the localization process.

The proposed NetML method addresses these shortcom-
ings by performing joint optimization of localization loss
function and clustering of both bug reports and methods.
Specifically, it generalizes AML in two important ways:

1) NetML provides a richer model that has two sets of
(model) parameters—one for bug reports and the other
for methods. The addition of the method parameters (in
contrast to AML that has only bug report parameters)
provides NetML with a higher degree of freedom to
characterize the different variety of bug reports and
methods more accurately.

2) NetML incorporates network Lasso regularization [27]
into its parameter learning procedure, which enforces
similar bug reports (and methods) to have similar (or
even identical) model parameters. This clustering en-
forcement would allow similar bug reports (or meth-
ods) to reach a consensus on the model parameters,
leading to a simpler “policy” for bug localization. This
enables the models of bug reports (or methods) to
complement and borrow strength from one another. In
turn, this would improve robustness and generalization
performance on new/unseen bug reports.

It is noteworthy that, deviating from the conventional
network Lasso [27] which deals with only a single network
(graph), we impose regularization over two networks, i.e.,
bug report similarity and method similarity graphs. This
allows us to achieve simultaneous clustering of both bug
reports and methods, and exploit their similarity traits so as
to achieve a more effective bug localization.

To illustrate how the network Lasso regularization in
NetML can benefit bug localization, Fig. 1 shows two bug
reports from Apache-Ant [1] project, namely Bug 30798
and Bug 43969. These two bug reports describe issues with
the “showoutput” option for Apache Ant’s JUnit task and
the corresponding bugs both reside in the run method of
the JUnitTestRunner.java file. Bug 30798 mentions the
names of a few source code files and one of them is the
name of the buggy file (i.e., JUnitTestRunner), while
no such hint is included in Bug 43969. AML manages to
successfully localize the buggy method for Bug 30798, by
ranking it high in the returned ranked list. However, due
to the limited information in Bug 43969, it is not able to
do the same for it. Upon a closer investigation, we can see
that Bug 30798 and Bug 43969 are similar, since they share
a number of common word tokens (i.e., “JUnit”, “text”,
“output”, etc.). The network Lasso regularization is able
to take advantage of this similarity by enforcing similar
bug reports to have similar model parameters. In such way,
NetML leverages the similarity of Bug 30798 and Bug 43969
to guide/reinforce the prediction for Bug 43969, which leads
to successful localization for both bugs.

1.3 Contributions
To evaluate the efficacy of the NetML approach, we con-
ducted experiments using a dataset of 355 real bugs from

3

Bug 30798
Summary: JUnit shows output implementation grabs Sys-
tem.out and System.err later than it should.

Description:
What steps will reproduce the problem? JUnitTestRunner
creates the junit.framework.Test instance before grabbing
System.out and System.err. As a result, anything printed
to System.out or System.err in the constructor . . .

Bug 43969
Summary: JUnit4 tests marked @Ignore do not appear in
XML output

Description:
What steps will reproduce the problem? Run a JUnit 4
test marked with the @Ignore annotation. The test will not
appear at all in the XML output.

Fig. 1: Example of two bug reports which have the same faulty method in project Apache-Ant [1]. The colored text indicates
some common word tokens that these two bugs share.

seven medium to large software systems: Ant, AspectJ,
Lang, Lucene, Math, Rhino, and Time. All real bug reports
and real test cases were collected from these systems. The
test cases were run to generate program spectra. We com-
pare NetML with our previous AML method. Additionally,
we evaluate our approach against a wide range of state-
of-the-art approaches, including two multi-modal feature
localization techniques (i.e., PROMESIR [54], DITA and
DITB [24]), four spectrum-based bug localization techniques
([12], [71], [76], [16]), and an IR-based bug localization
technique (i.e., LRA and LRB [77]). We use two well-known
evaluation metrics to estimate the performance of our ap-
proach: number of bugs localized by inspecting the top
N program elements (Top N) and mean average precision
(MAP). Note that Top N and MAP have been widely used
in past bug localization studies, e.g., [57], [62], [81], [60].

Our experiment results demonstrate that, among the
355 bugs, NetML can successfully localize 116, 219, and
255 bugs when developers only inspect the Top 1, Top
5, and Top 10 methods in the lists that NetML produces,
respectively. These constitute 31.82%, 22.35%, 19.72%, and
19.24% improvements over AML (which is the second best
method in our benchmark), in terms of Top 1, Top 5 , Top
10, and MAP results respectively.

We summarize the key contributions of this paper below:

1) We present a novel multi-modal bug localization
method that adaptively learns two sets of model pa-
rameters that characterize each bug report and method,
respectively. We are also the first to incorporate the
network Lasso regularization on both bug report and
method similarity networks, which facilitates an effec-
tive joint optimization of bug localization quality and
clustering of both bug reports and methods.

2) We develop an adaptive learning procedure based on
Newton update to jointly update the model parameters
of bug reports and methods on a per-feature basis. The
procedure is based on the formulation of strict convex
loss function, which provides a theoretical guarantee
that any minimum found will be globally optimal.

3) We have extensively evaluated NetML on a dataset of
355 real bugs from seven software systems using real
bug reports and test cases. Our statistical significance
tests reveal that NetML improves upon state-of-the-art
bug localization approaches by a substantial margin.

1.4 Paper Organization
The remainder of this paper is organized as follows. In Sec-
tion 2, we present background information on IR-based and
spectrum-based bug localization approaches. Section 3 elab-
orates the proposed NetML in greater details. In Section 4,
we present our dataset, evaluation metrics, and experiment
results. Section 5 then provides a qualitative study of the
NetML results, followed by discussions on potential threats
to the validity of our study in Section 6. Section 7 provides
an overview of key related works. We finally conclude this
paper and discuss future works in Section 8.

2 BACKGROUND

In this section, we present some background material on
IR-based and spectrum-based bug localization.

2.1 IR-Based Bug Localization
IR-based bug localization techniques consider an input bug
report (i.e., the text in the summary and description of the
bug report as a query, and program elements in a code base
as documents, and employ IR techniques to sort the pro-
gram elements based on their relevance with the query. The
intuition behind these techniques is that program elements
sharing many common words with the input bug report
are likely to be relevant to the bug. By using text retrieval
models, IR-based bug localization computes the similari-
ties between various program elements and the input bug
report. Then, program elements are sorted in descending
order of their textual similarities to the bug report, and sent
to developers for manual inspection.

All IR-based bug localization techniques need to extract
textual contents from source code files and preprocess tex-
tual contents (either from bug reports or source code files).
First, comments and identifier names are extracted from
source code files. These can be extracted by employing a
simple parser. In this work, we use JDT [7] to recover the
comments and identifier names from source code. Next, af-
ter the textual contents from source code and bug reports are
obtained, we need to preprocess them. The purpose of text
preprocessing is to standardize words in source code and
bug reports. There are three main steps: text normalization,
stopword removal, and stemming:

1) Text normalization breaks an identifier into its con-
stituent words (tokens), following camel casing conven-
tion. Following the work by Saha et al. [60], we also
keep the original identifier names.

4

2) Stopword removal removes punctuation marks, special
symbols, number literals, and common stopwords [9].
It also removes programming keywords such as if , for ,
while , etc., which usually appear too frequently to be
useful to differentiate between documents.

3) Stemming simplifies English words into their root
forms. For example, ”processed“, ”processing“, and
”processes“ are all simplified to ”process“. This in-
creases the chance of a query and a document to share
some common words. We use the popular Porter Stem-
ming algorithm [64].

Numerous IR techniques have been employed for bug
localization. We highlight a popular IR technique namely
Vector Space Model (VSM). In VSM, queries and documents
are represented as vectors of weights, where each weight
corresponds to a term. The value of each weight is usually
the term frequency—inverse document frequency (TF-IDF) [56]
of the corresponding word. Term frequency refers to the
number of times a word appears in a document. Inverse
document frequency refers to the number of documents in
a corpus (i.e., a collection of documents) that contain the
word. The higher the term frequency and inverse document
frequency of a word, the more important the word would
be. In this work, given a document d and a corpus C , we
compute the TF-IDF weight of a word w as follows:

weight(w, d) = TF-IDF(w, d,C)

= log(f(w, d) + 1)× log
|C|

|di ∈ C : w ∈ di|
where f(w, d) is the number of times w appears in d.

After computing a vector of weights for the query
and each document in the corpus, we calculate the cosine
similarity of the query and document vectors. The cosine
similarity between query q and document d is given by:

sim(q, d) =

∑
w∈(q

⋂
d)

weight(w, q)× weight(w, d)√∑
w∈q

weight(w, q)2 ×
√∑
w∈d

weight(w, d)2

(1)

where w ∈ (q
⋂
d) means word w appears both in the query

q and document d. Also, weight(w, q) refers to the weight of
word w in the query q’s vector. Similarly, weight(w, d) refers
to the weight of word w in the document d’s vector.

2.2 Spectrum-Based Bug Localization
Spectrum-based bug localization (SBBL)—also known as
spectrum-based fault localization (SBFL)—takes as input a
faulty program and two sets of test cases. One is a set
of failed test cases, and the other one is a set of passed
test cases. SBBL then instruments the target program, and
records program spectra that are collected when the set of
failed and passed test cases are run on the instrumented
program. Each of the collected program spectrum contains
information of program elements that are executed by a test
case. Various tools can be used to collect program spectra as
a set of test cases are run. In this work, we use Cobertura [6].

Based on this spectra, SBBL typically computes some
raw statistics for every program element. Tables 1 and 2
summarize some raw statistics that can be computed for

TABLE 1: Raw Statistics for Program Element e.

e is executed e is not executed
unsuccessful test nf (e) nf (ē)

successful test ns(e) ns(ē)

TABLE 2: Raw Statistic Description.

Notation Description

nf (e, p)
Number of unsuccessful test cases executing
program element e in program spectra p

nf (ē, p)
Number of unsuccessful test cases that do
not execute program element e in program
spectra p

ns(e, p)
Number of successful test cases that execute
program element e in program spectra p

ns(ē, p)
Number of successful test cases that do not
execute program element e in program spec-
tra p

nf (p) Total number of unsuccessful test cases
ns(p) Total number of successful test cases

a program element e, given a program spectra p. These
statistics are the counts of unsuccessful (i.e., failed), and
successful (i.e., passed) test cases that execute or do not
execute e. If a successful test case executes program element
e, then we increase ns(e, p) by one unit. Similarly, if an
unsuccessful test case executes program element e, then
we increase nf (e, p) by one unit. SBBL uses these statistics
to calculate the suspiciousness scores of each program ele-
ment. The higher the suspiciousness score, the more likely
the corresponding program element is the faulty element.
After the suspiciousness scores of all program elements are
computed, program elements are then sorted in descending
order of their suspiciousness scores, and sent to developers
for manual inspection.

Different SBBL techniques have used different formulas
to calculate the suspiciousness scores. Among these tech-
niques, Tarantula is a popular one [29]. Using the notation
in Table 2, the following is the formula that Tarantula uses
to compute the suspiciousness score of program element e,
given program spectra p:

Tarantula(e, p) =

nf (e,p)
nf (p)

nf (e,p)
nf (p)

+ ns(e,p)
ns(p)

(2)

The main idea of Tarantula is that program elements that
are executed by failed test cases are more likely to be faulty
than those that are not executed. Thus, Tarantula assigns a
non-zero score to program element e that has nf (e, p) > 0.

3 PROPOSED FRAMEWORK

An overview of our NetML framework is given in Fig. 2
(enclosed in the dashed box). NetML takes as input a
new bug report, the program spectra corresponding to it,
and a method corpus. It also takes as input historical bug
reports that have been localized before. For each historical
bug report, we have its corresponding program spectra and
ground truth labels. If a method contains a root cause of
the bug, it is labeled as faulty, otherwise it is labeled as non-
faulty. Given these inputs, NetML eventually produces a list
of methods, ranked based on their likelihood to contain the
root cause of the new bug report.

5

Historical
bug

reports
Fe

at
u

re
 e

xt
ra

ct
io

n NetMLText

NetMLSpectra

NetMLSuspWord

G
ra

p
h

 c
o

n
st

ru
ct

io
n

Bug report
graph 𝑮𝑩

NetML
Integrator Ranked list

of methods

Method
corpus

Method
graph 𝑮𝑴

Input bug
report

Historical
program
spectra

Input program
spectra

Fig. 2: The proposed NetML framework.

NetML has three main components, namely: feature ex-
traction, graph construction, and integrator. The feature extrac-
tion component serves to extract multi-modal input features
that quantify different perspectives on the degree of rele-
vancy between a bug report and a method. Note that this is
in a similar spirit to [35]. Meanwhile, the graph construction
component computes the similarity graphs among the bug
reports (GB) and methods (GM).

Finally, the integrator component is the heart of NetML
and constitutes the primary contribution of this work. It
integrates both input features and similarity graph informa-
tion in order to produce a ranked list of methods based on
their relevancy score. In particular, the integrator performs
adaptive learning that aims at jointly minimizing the bug
localization errors and fostering clustering of the model
parameters of similar bug reports and/or methods.

In Sections 3.1 and 3.2, we first elaborate the feature
extraction and graph construction components respectively.
We then describe the NetML integrator component in
greater details in Sections 3.3–3.5, including the formulation
of our new integrator model as well as the corresponding
objective function and adaptive learning procedure.

3.1 Feature Extraction

The first component of the NetML framework is the feature
extraction module, which generates features X = {xb,m.j}
to be fed as inputs to the NetML integrator (see Fig. 2). In
line with our earlier AML work [35], for each bug report–
method pair (b,m), we compute a feature vector ~xb,m that
consists of three elements:

~xb,m =
[
NetMLText

b,m,NetMLSpectra
b,m ,NetMLSuspWord

b,m

]
(3)

The three features are elaborated in turn below.
NetMLText

b,m makes use of the TF-IDF method [56] to
estimate the similarity between methods and bug reports. In
particular, given a method m and a bug report b, NetMLText

b,m

computes the cosine similarity between the TF-IDF repre-
sentation of the bug report text and that of the method

codes, which is akin to the IR-based bug localization method
(cf. Section 2.1). That is, NetMLText

b,m is given by:

NetMLText
b,m = sim(b,m) (4)

where sim(b,m) is the cosine similarity as defined in (1).
NetMLSpectra

b,m processes only the program spectra infor-
mation using a spectrum-based bug localization technique
described in Section 2.2. Given a program spectra p cor-
responding to bug report b and a method m, NetMLSpectra

b,m
gives a score that quantifies how suspicious m is given
p. By default, NetMLSpectra

b,m uses the Tarantula method as
described in Section 2.2 (cf. equation (2)):

NetMLSpectra
b,m = Tarantula(m, p) (5)

Finally, NetMLSuspWord
b,m processes both bug reports and

program spectra, and computes the suspiciousness scores
of words to rank different methods. It breaks a method into
its constituent words, computes the suspiciousness scores of
these words, and then aggregates these scores back in order
to arrive at the suspiciousness score of the method. Given
a bug report b, a program spectra p, and a method m in
a corpus C , NetMLSuspWord

b,m measures how suspicious m is
considering b and p, as follows:

NetMLSuspWord
b,m = NetMLSpectra

b,m × (6)∑
w∈b∩m

SSTFIDF(w, p, b, C)× SSTFIDF(w, p,m,C)√∑
w∈b

SSTFIDF(w, p, b, C)2 ×
√ ∑
w∈m

SSTFIDF(w, p,m,C)2

(7)

where SSTFIDF(w, p, b, C) is the weight of a word w in
document (i.e., bug report or method) dwith corpusC given
program spectra p:

SSTFIDF(w, p, d, C) =SSword(w, p)× ln(f(w, d) + 1)

× ln
|C|

|di ∈ C : w ∈ di|
(8)

where SSword(w, p) is the suspiciousness score of a word w:

SSword(w, p) =

|EF (w,p)|
|p.FAIL|

|EF (w,p)|
|p.FAIL| + |ES(w,p)|

|p.SUCCESS|

(9)

In the above equation,EF (w, p) is the set of execution traces
in p.FAIL that contain a method in which the word w
appears, while ES(w, p) is the set of execution traces in
p.SUCCESS that contain a method in which the word
w appears. Further details of all these components can be
found in [35].

3.2 Graph Construction

The second component of the NetML framework is the
graph construction module, which serves to compute the
similarity graphs among bug reports and methods, to be
used in the K-nearest neighbor retrieval as well as the
network Lasso regularization. In this work, we define the
bug report similarity graph GB as comprising edge weights
that reflect the textual similarity between two bug reports.

6

For a pair of bug reports b and b′, we define the edge weight
eb.b′ as follows:

eb,b′ = sim(b, b′) (10)

where sim(b, b′) is the cosine similarity between the TF-IDF
weights of the textual descriptions of b and b′, as per (1).

Similarly, the method similarity graph GM comprises a
set of edge weights em,m′ that reflect the textual similarity
between two methods m and m′. This is given by:

em,m′ = sim(m,m′) (11)

where sim(b, b′) is the cosine similarity between the TF-IDF
representations of the source codes of m and m′.

3.3 Integrator Model

The new integrator model proposed in this work character-
izes the relevancy of a method m to a given bug report b
as an interaction between two types of model parameters,
namely: bug report parameters ~ub = [ub,1, . . . , ub,j , . . . , ub,J]
and method parameters ~vm = [vm,1, . . . , vm,j , . . . , vm,J],
where J is the total number of features. Note that J = 3 in
this case, i.e., NetMLText

b,m,NetMLSpectra
b,m ,NetMLSuspWord

b,m . More
specifically, the integrator model computes the relevancy
score f̂b,m as follows:

f̂b,m = f̂(~xb,m, ~ub, ~vm) =
J∑
j=1

(ub,j + vm,j)xb,m,j (12)

where ~xb,m = [xb,m,1, . . . , xb,m,j , . . . , xb,m,J] is the feature
vector corresponding to a bug report–method pair (b,m).

It is worth mentioning that the above model constitutes
a generalization of the AML integrator model that we pre-
viously developed [35]. In AML, the final relevancy score
is computed based solely on the bug report parameters,
and this set of parameters is shared by all methods for a
given bug report. On the other hand, the NetML integrator
model accounts for not only the bug report parameters
but also the method parameters. The addition of the latter
parameters provides a greater degree of freedom/flexibility
in quantifying the contribution of different methods to the
localization of a given bug report.

3.4 Objective Function

Based on the above model formulation, we devise an objec-
tive function that guides the learning process of our integra-
tor model. Specifically, we consider a joint optimization of
bug localization quality and clustering of similar bug reports
and methods, expressed by the loss function L:

L = LEntropy + LRidge + LNetLasso (13)

This consists of three components:

LEntropy =−
∑
b∈B

∑
m∈M

wb,m
[
yb,m ln(σ(f̂b,m))

+ (1− yb,m) ln(1− σ(f̂b,m))
]

(14)

LRidge =
α

2

J∑
j=1

[∑
b∈B

u2b,j +
∑
m∈M

v2m,j

]
(15)

LNetLasso =
β

2

J∑
j=1

 ∑
(b,b′)∈GB

eb,b′(ub,j − ub′,j)2

+
∑

(m,m′)∈GM

em,m′(um,j − um′,j)2
 (16)

where B and M are the sets of bug reports and methods
respectively, yb,m is a binary label that indicates whether
method m is relevant to bug report b (yb,m = 1) or not
(yb,m = 0), and σ(f̂b,m) = 1

1+exp(−f̂b,m)
is the logistic

function [22]. Also, wb,m denotes the instance weight of a
bug report–method pair (b,m), while eb,b′ and em,m′ are
the edge weights reflecting the degree of similarity between
two bug reports b and b′, and two methods m and m′,
respectively. Finally, α > 0 and β > 0 are the user-
defined parameters that control the strength of the ridge
and network Lasso regularization, respectively.

Note that LEntropy refers to the so-called cross-entropy
loss [50], which provides an error measure of the bug
localization process. Here LEntropy can be interpreted as
the discrepancy between the probability distribution of the
predictive model f̂b,m and that of the true label yb,m [50].
We also introduce the instance weight2 wb,m in (14) to
cater for the extremely skewed distribution of the relevant
vs. irrelevant methods for a given bug report, which is a
major challenge in bug localization process. That is, the
number of relevant (faulty) methods is much smaller than
that of irrelevant (non-faulty) ones. To address this, we
configure wb,m in such a way that imposes a greater penalty
for relevant instances being incorrectly predicted/classified
than that for irrelevant ones. Specifically, we set wb,m as:

wb,m =

{
1

Nfaulty
, if yb,m = 1
1

N−Nnon-faulty
, if yb,m = 0

(17)

where N is the total number of instances observed in the
historical data, and Nfaulty is the number of faulty instances.

Meanwhile, the ridge regularization LRidge serves to
penalize large values of the model parameters [50], which
in turn helps mitigate the risk of data overfitting. From a
probabilistic perspective, this corresponds to the Gaussian
prior distribution for the model parameters ub,j and vm,j ,
with zero mean and inverse variance of α [35]. Finally,
LNetLasso refers to the network Lasso regularization [27],
which enforces clustering of the model parameters of bug
reports and methods. The intuition is straightforward—the
more similar two bug reports or two methods are (as quanti-
fied by eb,b′ and em,m′), the closer their model parameters ~ub
and ~vm should be. This combination of LEntropy, LRidge and
LNetLasso facilitates a robust model that can simultaneously

2. An instance refers to a specific bug report–method pair (b,m)

7

optimize the bug localization quality and cluster the model
parameters of similar bug reports and methods.

Next, in order to minimize the joint loss L, we employ
a Newton method [31] that is derived from a second-order
Taylor series expansion of the loss function L:

L(θ) = L(θ0) + OL(θ0)(θ − θ0) +
O2L(θ0)

2
(θ − θ0)2 (18)

The minima of L can be obtained by taking the partial
derivative of L(θ) and equating it to zero:

0 = OL(θ0) + O2L(θ0)(θ − θ0)

θ = θ0 −
OL(θ0)

O2L(θ0)
(19)

If we take θ0 as the old estimate of ub,j or vm,j , this leads to
the following update formulae:

ub,j ← ub,j −
OL(ub,j)

O2L(ub,j)
(20)

vm,j ← vm,j −
OL(vm,j)

O2L(vm,j)
(21)

In turn, we need to compute the first and second deriva-
tives of each model parameter ub,j and vm,j . For the bug
report parameter ub,j , the first and second derivatives are
respectively given by:

OL(ub,j) =
∑
m∈M

[
wb,m(σ(f̂b,m)− yb,m)xb,m,j

]
+ αub,j + β

∑
b′

[eb,b′ (ub,j − ub′,j)] (22)

O2L(ub,j) =
∑
m∈M

[
wb,mσ(f̂b,m)(1− σ(f̂b,m))x2b,m,j

]
+ α+ β

∑
b′

eb,b′ (23)

Similarly, we can compute the first and second derivatives
w.r.t each method parameter vm,j as:

OL(vm,j) =
∑
b∈B

[
wb,m(σ(f̂b,m)− yb,m)xb,m,j

]
+ αvm,j + β

∑
m′

[em,m′ (vm,j − vm′,j)] (24)

O2L(vm,j) =
∑
b∈B

[
wb,mσ(f̂b,m)(1− σ(f̂b,m))x2b,m,j

]
+ α+ β

∑
m′

em,m′ (25)

Finally, the update formula for ub,j can be obtained
by substituting equation (22) and (23) into equation (20).
Likewise, we can substitute (24) and (25) into (21) to arrive at
the update formula for vm,j . To learn the model parameters,
we use a Newton method that updates the parameters on a
per-feature j basis. This will be elaborated in Section 3.5.

3.5 Adaptive Learning
Algorithm 1 summarizes the adaptive learning procedure of
the NetML integrator for computing the relevancy scores of
a new bug report (i.e., a new query) to different methods
(i.e., documents). Given a new bug report b∗, the set of K
relevant bug reports BK in the historical data, the set of

all methods M, and the similarity graphs GB and GM , the
learning procedure appends b∗ into BK and then updates
the model parameters on a per-feature basis. That is, for each
feature j, it performs Newton updates on the bug report
parameters ub,j (steps 14–16) and method parameters vm,j
(steps 23–25), in accordance with equations (20) and (21)
respectively. The key idea here is to alternatingly update
the parameter for one feature while keeping the parameters
of the remaining features fixed. The procedure is repeated
until a maximum iteration Tmax is reached. Afterwards, the
final prediction score f̂b∗,m of the new bug report b∗ for each
method m is computed via equation (12).

Note that the selection of relevant bug report set BK
is based on the K-nearest neighbor retrieval from the bug
report similarity graph GB , as follows:

BK = TopK({eb∗,b | ∀b 6= b∗}) (26)

where TopK is a function that returns bug reports with
the highest similarity eb∗,b to the query bug report b∗. The
calculation of the similarity graphs is based on the VSM
model and will be further described in Section 3.2.

It is also worth mentioning that the magnitude of the
Newton update is downscaled by an adaptive learning rate
η (where 0 < η ≤ 1). We introduce this scaling factor as
a way to address the problem of overshooting in Newton
method [17], whereby the update OL(ub,j)

O2L(ub,j)
or OL(vm,j)

O2L(vm,j)

is overestimated—possibly by many orders of magnitude.
This may lead to oscillations and sometimes divergence in
the loss function. To alleviate this issue, we compare the loss
function L before and after a Newton iteration (step 30), and
then adjust η accordingly depending on whether L increases
or not. If it increases, then we reduce η by half in order to
dampen the update magnitude; otherwise, the value of η
gets doubled, up to a maximum limit of 1.

For computational efficiency, we precompute the con-
stant terms qb =

∑
b′ eb,b′ and qm =

∑
m′ em,m′ before the

Newton iterations begins. Additionally, during each New-
ton iteration, we have separate loops to compute the terms∑
b′ eb,b′ub′,j (step 11) and

∑
m′ em,m′vm′,j (step 20) for each

feature j, prior to updating ub,j and vm,j . The purpose
is to make sure that, during the parameter updates (steps
14 and 23), the computation of

∑
b′ eb,b′ub′,j in equation

(20) and
∑
m′ em,m′vm′,j in equation (21) is based on the

old parameter values from the previous iteration, and not
affected by the ordering of b or m in the update loops.

We additionally highlight that the loss function L is
strictly convex. This provides a nice theoretical guarantee
that there is only one unique minimum in the loss function
surface, and this minimum is globally optimal [58]. The
convexity trait can be proven by looking at the curvatures
(i.e., second derivatives) with respect to the bug report
and method parameters, as per equations (23) and (25)
respectively. Clearly, since 0 ≤ σ(f̂b,m) ≤ 1, wb,m, x2b,m,j ,
eb,b′ and em,m′ are non-negative, while α and β are positive,
the curvatures will be positive. The positive curvatures
correspond to the so-called positive definite Hessian matrix—
a well-known property of a strictly convex function [58].

8

Algorithm 1 Adaptive learning of the NetML integrator
Inputs:

Set of K relevant historical bug reports BK (i.e., |BK | = K)
Set of all methodsM, where |M| = M
New bug report query b∗ along with its features Xb∗ = {xb∗,m,j} ∈ R1×M×J

Historical features X = {xb,m,j} ∈ RK×M×J
Historical labels Y = {yb,m} ∈ RK×M
Bug report similarity graph GB , represented by the adjacency matrix EB = {eb,b′}
Method similarity graph GM , represented by the adjacency matrix EM = {em,m′}

Outputs:
Relevancy scores f̂b∗,m ∈ R1×M of the new bug report b∗ to all methods m
Bug report parameters U = {ub,j} ∈ R(K+1)×J

Method parameters V = {vm,j} ∈ RM×J

1: Compute the union set of bug reports B ← BK ∪ {b∗}
2: Initialize all model parameters ub,j ← 0 and vm,j ← 0, ∀b ∈ B,m ∈M, j ∈ {1, . . . , J}
3: Precompute all constant terms qb ←

∑
b′ eb,b′ and qm ←

∑
m′ em,m′ , ∀b ∈ B,m ∈M

4: Compute the bug probabilities σ(f̂b,m) for all (b,m) pairs via equation (12)
5: Lcurr ← −

∑
b

∑
m wb,m

[
yb,m ln

(
σ(f̂b,m)

)
+
(
1− yb,m

)
ln
(
1− σ(f̂b,m)

)]
6: repeat
7: Lprev ← Lcurr
8: for each j ∈ {1, . . . , J} do
9: /* Update all bug report parameters ub,j */

10: for each b ∈ B do
11: pb ←

∑
b′ eb,b′ub′,j

12: end for
13: for each b ∈ B do
14: unumer ←

∑
m

[
wb,m(σ(f̂b,m)− yb,m)xb,m,j

]
+ β

[
ub,jqb − pb

]
+ αub,j

15: udenom ←
∑
m

[
wb,mσ(f̂b,m)(1− σ(f̂b,m))x2b,m,j

]
+ βqb + α

16: ub,j ← ub,j − η
(
unumer
udenom

)
17: end for
18: /* Update all method parameters vm,j */
19: for each m ∈M do
20: pm ←

∑
m′ em,m′vm′,j

21: end for
22: for each m ∈M do
23: vnumer ←

∑
b

[
wb,m(σ(f̂b,m)− yb,m)xb,m,j

]
+ β

[
vm,jqm − pm

]
+ αvm,j

24: vdenom ←
∑
b

[
wb,mσ(f̂b,m)(1− σ(f̂b,m))x2b,m,j

]
+ βqm + α

25: vm,j ← vm,j − η
(
vnumer
vdenom

)
26: end for
27: end for
28: Compute the updated bug probabilities σ(f̂b,m) via equation (12)
29: Lcurr ← −

∑
b

∑
m wb,m

[
yb,m ln

(
σ(f̂b,m)

)
+
(
1− yb,m

)
ln
(
1− σ(f̂b,m)

)]
30: η ←

{
η
2 , if Lcurr > Lprev

min(1, 2η), otherwise
31: until Tmax iterations
32: Compute the relevancy scores f̂b∗,m using equation (12)

4 EXPERIMENTS

In this section, we first describe the datasets and evaluation
settings used in our experiments. We then present a list
of research questions we want to address, and accordingly
elaborate our experiment results.

4.1 Dataset

To evaluate our approach, we use a dataset of 355 bugs
from seven popular software projects. The seven projects

are Ant [1], AspectJ [5], Lang [2], Lucene [4], Math [3],
Rhino [10], and Time [8]. All seven projects are medium-
large scale and implemented in Java. Ant, AspectJ, and
Lucene contain more than 300 KLOC. Math, Rhino, and
Time contains almost 100 KLOC, while Lang only contains
more than 50 KLOC. Ant, Lang, Lucene, and Math projects
use Jira as the issue tracking system, from which we retrieve
their bug reports. Bissyande et al. found that in Jira bugs are
generally well linked to commits that fix them [19]. AspectJ
and Rhino uses Bugzilla whereas Time uses Github as the

9

TABLE 3: Summary of the datasets used in this work. We
use the short names of projects for brevity; “Ant” stands
for “Apache-Ant”, “Lang” stands for “Apache-Commons-
Lang”, “Math” stands for “Apache-Commons-Math”, and
“Time” stands for “Joda-Time”.

Project #Bugs Time Period Average
Methods

Ant 53 12/2001 – 09/2013 9,624.66
AspectJ 41 03/2005 – 02/2007 14,218.39
Lang 65 10/2002 – 04/2016 2,151.1
Lucene 37 06/2006 – 01/2011 10,220.14
Math 106 12/2004 – 03/2016 4,792.3
Rhino 26 12/2007 – 12/2011 4,839.58
Time 27 05/2004 – 03/2017 4,083.5

issues tracking system, from which we collect their bug
reports. Table 3 presents an overview of the seven projects
considered in our study.

The 116 bugs from Ant, Lucene, and Rhino were col-
lected by ourselves, following the procedure used in [23].
For each bug, we collected the pre-fix version, post-fix
version, a set of successful test cases, and at least one
failing test case. A failing test case is often included as an
attachment to a bug report or committed along with the fix
in the post-fix version. When a developer receives a bug
report, he/she first needs to replicate the error described in
the report [49]. In this process, he is creating a failing test
case. Unfortunately, not all test cases are documented and
saved in the version control systems. The 41 AspectJ bugs
are from the iBugs dataset which was collected by Dallmeier
and Zimmermann [23]. Each bug in the iBugs dataset comes
with the code before the fix (pre-fix version), the code after
the fix (post-fix version), and a set of test cases. The iBugs
dataset contains more than 41 AspectJ bugs, but not all of
them come with failing test cases. Test cases provided in
the iBugs dataset are obtained from the various versions
of the regression test suite that comes with AspectJ. We
collected the remaining 198 bugs from Lang, Math, and Time
from Defects4J benchmark [30], a database of real, isolated,
reproducible software faults from real-world open-source
Java projects. The three projects include a large number
of test cases, and there exists at least one failing test case
per bug. Defects4J also contains two other projects, namely
JFreechart and Closure-Compiler. We omit these projects
since we are unable to fully collect all their bug reports.

4.2 Evaluation Metrics and Settings

To assess the effectiveness of a bug localization method, we
employ two key metrics, namely: Top N and mean average
precision (MAP). They are respectively described below:

• Top N: Given a bug report, if one of its corresponding
faulty methods is in the top-N results, we consider
that the bug is successfully localized. The Top N
score of a bug localization method is the number of
bugs it can successfully localize [81], [60].

• Mean Average Precision (MAP): MAP is an IR
metric to evaluate ranking approaches [46], and is
computed by taking the mean of the average precision

scores across all bug reports. The average precision
of a single bug report is computed as:

AP =

∑M
k=1 P (k)× pos(k)∑M

k=1 pos(k)

where k is a rank in the returned ranked methods,
M is the number of ranked methods, and pos(k)
indicates whether the kth method is faulty or not.
Here P (k) is the precision at a given top k methods,
which is computed as follows:

P (k) =
#faulty methods in the top k

k
.

Note that the MAP scores of existing bug localization
methods are typically low [57], [62], [81], [60].

Our evaluation procedure is based on 10-fold cross val-
idation (CV). That is, for each project, we divide the bug
reports into ten (mutually exclusive) sets. Then, for each
fold, we take 1 set as new bug report queries (i.e., testing
set) and treat the remaining 9 sets as historical bug reports
(i.e., training set). We repeat this 10 times, and then collate
the results to get the aggregated Top N and MAP scores.

In all our experiments, the hyper-parameters of the
NetML method were configured as follows. Firstly, the regu-
larization parameters α and β were chosen by performing 10
fold cross validation on the training set. Next, the maximum
number of iterations Tmax was fixed to 30. We use K = 10
as default value for the number of nearest neighbors. Note
that the NetML parameters K and Tmax follow the settings
used in AML [35], so as to ensure fair comparisons. All
experiments were conducted on an Intel(R) Xeon 2.9GHz
server running a Linux operating system.

In order to assess whether NetML substantially outper-
forms other bug localization methods, we apply Wilcoxon
signed-rank test [70]; it is a non-parametric statistical signif-
icance test for comparing two related or matched samples,
whereby the population cannot be assumed to be normally
distributed. The Wilcoxon test was applied to two types
of metric (i.e., Top N and MAP). For every evaluation
metric, we collated the 10-fold results of a bug localization
technique across the four software projects (i.e., AspectJ,
Ant, Lucene, and Rhino) and then performed the Wilcoxon
test to compare the collated results of different techniques.
For this test, our null hypothesis is that NetML performs
worse than or equal to the other method, and so we used one-
sided/tail p-value to validate this hypothesis. Moreover, we
also apply the Benjamini-Hochberg (BH) [18] procedure to
control the effect of multiple comparisons. If the p-value is
sufficiently small (say, below a significance level of 0.05), we
can confidently reject the null hypothesis and conclude that
NetML is significantly better than the other method.

4.3 Research Questions
Our empirical study seeks to answer several research ques-
tions (RQ), as described in the following subsections.

4.3.1 RQ1: How Effective is NetML Compared to Other
State-of-the-Art Techniques?
We compare out NetML approach with its predecessor,
i.e., AML [35], and several other state-of-the-art techniques.

10

Previously, Le et al. proposed Savant [16], a state-of-the-
art bug localization approach that employs a learning-to-
rank [28] strategy, using likely invariant diffs and suspicious-
ness scores as features. Ochiai [12] and Dstar [71] are well-
known statistical formulas to detect suspicious locations for
bug localization without requiring any prior information on
program structure or semantics. PROMESIR [54], SITIR [41],
and several variants developed by Dit et al. [24] were state-
of-the-art multi-modal feature location techniques. Among
the variants proposed by Dit et al. [24], the best perform-
ing ones were IRLSIDynbinWMHITS(h, bin)bottom and
IRLSIDynbinWMHITS(h, freq)bottom. In this paper, we
refer to these variants as DITA and DITB respectively. Dit
et al. had shown that these two variants outperform SITIR,
and so we exclude SITIR from our study. We also compare
NetML with a state-of-the-art IR-based bug localization
method named LR [77], and a state-of-the-art spectrum-
based bug localization method named MULTRIC [76]. Note
that, unlike PROMESIR, DITA, DITB, and MULTRIC which
locate buggy methods, LR locates buggy files. Thus, we
convert the list of files that LR produces into a list of
methods by using two heuristics: (1) to return methods in
a file in the same order that they appear in the file; and (2)
to return methods based on their similarity to the input bug
report as computed using a VSM model. We refer to the two
variants of LR as LRA and LRB respectively.

For all the above-mentioned techniques, we used the
same parameters and settings as described in the respective
papers, with the following exceptions that we justify. For
DITA and DITB, the threshold used to filter methods using
HITS was decided “such that at least one gold set method
remained in the results for 66% of the [bugs]” [24]. In this
paper, since we used 10-fold CV, rather than using 66% of
all bugs, we used all bugs in the training data (i.e., 90%
of all bugs) to tune the threshold. For PROMESIR, we also
used 10-fold CV and applied a brute force approach to tune
PROMESIR’s component weights using a step of 0.05.

4.3.2 RQ2: Do Feature Components of NetML Contribute
toward Its Overall Performance?
To answer this question, we conducted an ablation test
by dropping one feature component (i.e., NetMLText,
NetMLSuspWord, or NetMLSpectra) one-at-a-time and evalu-
ating the performance. In the process, we created three
variants of NetML: All−Text, All−SuspWord , and All−Spectra.
That is, we excluded Text, SuspWord, and Spectra from all
feature components, respectively (see also Fig. 2). We used
the default value of K = 10, and applied the NetML adap-
tive learning procedure (i.e., Algorithm 1) to tune the model
parameters of these variants. As our baseline, we performed
the same ablation test to the feature components of the AML
method (i.e., AMLText, AMLSuspWord, or AMLSpectra).

4.3.3 RQ3: How Effective is the NetML Integrator?
Instead of using the NetML integrator component (see
Section 3.3), one may consider using a standard machine
learning algorithm, such as the learning-to-rank method, to
combine the scores produced by the three feature compo-
nents. Indeed, state-of-the-art IR-based and spectrum-based
bug localization techniques such as LR and MULTRIC are
based on the learning-to-rank method. As such, we conduct

an experiment to compare our NetML integrator model with
an off-the-shelf learning-to-rank model called SVMrank [28],
which was also used by LR [77]. To do so, we simply replace
the NetML integrator model in Fig. 2 with SVMrank, and
then compare the resulting performances. For completeness,
we also compare our NetML integrator with the integrator
model used by the AML algorithm.

4.3.4 RQ4: What is the Effect of Varying the Number of
Neighbors K on the Performance of NetML?
The most important parameter in our NetML approach is
the number of nearest neighborsK (while the regularization
parameters α and β were chosen via cross-validation—see
Section 4.2). By default, we set the number of neighbors
to K = 10, but the effect of varying this value is unclear.
To answer this research question, we vary the value of K
and investigate its effects on the performance of NetML. In
particular, we wish to investigate if the performance remains
relatively stable with varying values ofK . For eachK value,
we also compare the performance of NetML against its
predecessor (i.e., AML) using the same value.

4.3.5 RQ5: How Effective is NetML in Cross-Project Bug
Localization?
To evaluate the robustness of our approach, we also con-
ducted an empirical study on cross-project bug localization.
That is, we first use a source project as training data to build
a bug localization model, and then employ the model to
predict a method that likely contains a bug in a (different)
target project [69]. In this study, we compare NetML with
its predecessor (i.e., AML) [35], Savant [16], Ochiai [12] and
Dstar [71]. We use the same evaluation metrics as per Sec-
tion 4.2 to assess the effectiveness of the different techniques.
To configure the hyper-parameters of NetML, we adopt
the same parameter tuning procedure as described in Sec-
tion 4.2. Meanwhile, the hyper-parameters of the remaining
localization techniques follow the parameter settings stated
in their respective papers. We also apply Wilcoxon signed-
rank test with the BH procedure to verify if NetML performs
substantially better than the other techniques.

4.4 Results

This section presents our experiment results and discussion
in relation to the research questions raised in Section 4.3.

4.4.1 RQ1: Comparisons of NetML with Other Techniques
Tables 4 and 5 show the Top N results of NetML as well as
the other baseline methods including AML. Out of the 355
bugs, NetML is able to successfully localize 116, 219, and
255 bugs when the developers inspect the Top 1, Top 5, and
Top 10 methods respectively. This implies that NetML can
successfully localize 31.82%, 22.35%, and 19.72% more bugs
than the best baseline (i.e., AML) by examining the Top 1,
Top 5, and Top 10 methods respectively. For more details
on the Top N results for each software project, please see
Tables 15 and 16 in the Appendix. Note that we encountered
java.lang.UnsupportedClassVersionError when running Sa-
vant for AspectJ bugs. These AspectJ bugs are from iBugs
dataset [23]. We have investigated and found that according

11

TABLE 4: Top N (N ∈ {1, 5, 10}) results of NetML vs. AML, Savant, Ochiai, Dstar, and PROMESIR. The percentage in
parentheses indicates the proportion of bug reports whose faulty methods are correctly localized.

Top N NetML AML SAVANT OCHIAI DSTAR PROMESIR
1 116 (32.68%) 88 (24.79%) 67 (21.34%) 48 (13.52%) 43 (12.11%) 61 (17.18%)
5 219 (61.69%) 179 (50.42%) 122 (38.85%) 94 (26.48%) 88 (24.79%) 139 (39.15%)
10 255 (71.83%) 213 (60.00%) 152 (48.41%) 124 (34.93%) 106 (29.86%) 174 (49.01%)

TABLE 5: Top N (N ∈ {1, 5, 10}) results of NetML vs. DITA, DITB, LRA, LRB , and MULTRIC. The percentage in parentheses
indicates the proportion of bug reports whose faulty methods are correctly localized.

Top N NetML DITA DITB LRA LRB MULTRIC
1 116 (32.68%) 41 (11.55%) 37 (10.42%) 12 (3.38%) 66 (18.59%) 68 (19.15%)
5 219 (61.69%) 88 (24.79%) 78 (21.97%) 67 (18.87%) 137 (38.59%) 133 (37.46%)
10 255 (71.83%) 117 (32.96%) 109 (30.7%) 116 (32.68%) 181 (50.99%) 162 (45.63%)

TABLE 6: Mean Average Precision (MAP) results of different bug localization methods.

Project NetML AML Savant Ochiai Dstar PROMESIR DITA DITB LRA LRB MULTRIC
Ant 0.270 0.234 0.188 0.179 0.127 0.206 0.12 0.120 0.070 0.218 0.077
Aspectj 0.219 0.187 – 0.117 0.007 0.121 0.092 0.071 0.006 0.004 0.016
Lang 0.638 0.542 0.535 0.147 0.146 0.394 0.198 0.184 0.167 0.424 0.564
Lucene 0.290 0.284 0.178 0.133 0.136 0.204 0.169 0.166 0.063 0.184 0.188
Math 0.358 0.255 0.261 0.14 0.139 0.271 0.179 0.176 0.165 0.303 0.391
Rhino 0.302 0.243 0.243 0.137 0.127 0.203 0.092 0.09 0.034 0.103 0.172
Time 0.354 0.294 0.166 0.115 0.115 0.148 0.062 0.062 0.051 0.142 0.282
Overall 0.347 0.291 0.262 0.138 0.114 0.221 0.130 0.124 0.079 0.197 0.241

TABLE 7: The p-values of the Wilcoxon test applying the BH procedure on various pairs of bug localization methods.

Method Comparision Top 1 Top 5 Top 10 MAP
NetML vs. AML 3× 10−7 (**) 4× 10−5 (**) 0.008 (**) 5× 10−8 (**)
NetML vs. Savant 6× 10−8 (**) 1× 10−5 (**) 9× 10−4 (**) 1× 10−8 (**)
NetML vs. Ochiai 2× 10−7 (**) 4× 10−10 (**) 6× 10−10 (**) 6× 10−12 (**)
NetML vs. Dstar 1× 10−7 (**) 8× 10−8 (**) 1× 10−15 (**) 1× 10−11 (**)
NetML vs. PROMESIR 8× 10−9 (**) 1× 10−8 (**) 5× 10−6 (**) 4× 10−10 (**)
NetML vs. DITA 4× 10−14 (**) 2× 10−16 (**) 3× 10−16 (**) 8× 10−21 (**)
NetML vs. DITB 4× 10−15 (**) 8× 10−17 (**) 1× 10−20 (**) 3× 10−27 (**)
NetML vs. LRA 1× 10−18 (**) 5× 10−22 (**) 4× 10−20 (**)0 8× 10−22 (**)
NetML vs. LRB 4× 10−16 (**) 2× 10−21 (**) 2× 10−20 (**) 1× 10−24 (**)
NetML vs. MULTRIC 3× 10−16 (**) 1× 10−21 (**) 1× 10−20 (**) 1× 10−28 (**)
(**): smaller than 0.01

to iBugs’s documentation3, the AspectJ’s faulty versions
work with Java Virtual Machine (JVM) version 1.4. How-
ever, Savant employs Daikon [25] which requires Java 7
or later4. Therefore, we exclude AspectJ’s bugs from the
experiments for Savant.

Table 6 shows the MAP score of NetML along with those
of the state-of-the-art multi-modal localization methods. Av-
eraging across the seven projects, NetML achieves an overall
MAP score of 0.347, which outperforms all the other base-
lines. In particular, NetML improves the average MAP of
AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA,
LRB , and MULTRIC by 19.24%, 32.44%, 151.45%, 204.39%,
57.01%, 166.92%, 62.15%, 339.24%, 76.14% and 43.98% re-
spectively. Considering the individual projects, NetML re-
mains the best performing approach in terms of MAP. That
is, NetML achieves MAP scores of 0.270, 0.219, 0.638, 0.290,
0.358, 0.302, and 0.354 for the Ant, AspectJ, Lang, Lucene,
Math, Rhino, and Time projects respectively. With respect to
the best performing baseline (i.e., AML), these respectively
constitute of 15.38%, 17.11%, 17.71%, 2.11%, 40.39%, 24.28%,
and 20.41% improvements.

3. https://www.st.cs.uni-saarland.de/ibugs/
4. http://plse.cs.washington.edu/daikon/download/doc/daikon.html

We finally performed the Wilcoxon test to compare the
Top N and MAP results of different techniques. As we are
unable run Savant on AspectJ, we omit this project and run
the Wilcoxon test on the results collated over the remaining
six software projects for each metric (i.e., Top 1, Top 5, Top
10, and MAP). Table 7 presents the p-values for the four met-
rics, evaluated at the significance levels of 0.05 and 0.01. The
results show that NetML significantly outperforms AML on
all the four metrics. Compared to the remaining techniques,
NetML also performs significantly better in terms of Top 1,
Top 5, Top 10 methods and MAP. Altogether, these results
demonstrate the efficacy of the proposed NetML approach.

4.4.2 RQ2: Contribution of Feature Components

Table 8 summarizes the results of our ablation test on both
NetML and AML, each comparing the full model and three
reduced variants (i.e., All−Text, All−Spectra and All−SuspWord).
It is evident that, for both NetML and AML, the full model
always performs better than the reduced variants. This sug-
gests that each feature component plays an important role,
and omitting one of them may greatly affect the modelling
performance. Among the three variants, it can be seen that
All−SuspWord yields the smallest Top 1, Top 5, Top 10, and

12

TABLE 8: Contributions of feature components in NetML and AML. The percentage in parentheses indicates the propotion
of bug reports whose faulty methods are correctly localized.

Approach Top 1 Top 5 Top 10 MAP
NetML AML NetML AML NetML AML NetML AML

All−Text 68 (19.15%) 61 (17.18%) 144 (40.56%) 130 (36.62%) 179 (50.42%) 165 (46.48%) 0.228 0.212
All−Spectra 56 (15.77%) 49 (13.80%) 128 (36.06%) 112 (31.65%) 172 (48.45%) 157 (44.23%) 0.215 0.210
All−SuspWord 74 (20.85%) 65 (18.31%) 156 (43.94%) 136 (38.31%) 196 (55.21%) 182 (51.27%) 0.211 0.229
All 116 (36.62%) 88 (24.79%) 219 (61.69%) 179 (50.42%) 255 (71.83%) 213 (60.00%) 0.347 0.291

MAP scores for both NetML and AML. This suggests that
the SuspWord feature component is more important than
the other two (i.e., Text and Spectra).

Furthermore, comparing the results of NetML and AML,
we can also observe that the former always gives a better,
or at least equal, result than the latter. This suggests that the
model parameterization using two sets of model parameters
(instead of one in AML), along with the objective function
formulation that jointly optimizes bug localization error
and fosters clustering of similar bug reports and methods,
contribute to a better overall performance of NetML.

4.4.3 RQ3: Comparisons among Integrator Models
Table 9 compares the performance of the NetML integrator
model with that of the AML integrator and SVMrank. We
can observe that for all projects (i.e., AspectJ, Ant, Lucene,
and Rhino) and metrics, the NetML integrator outperforms
both the AML integrator and SVMrank. With respect to
SVMrank, NetML achieves 39.76%, 25.15%, 20.28%, and
24.37% improvements, in terms of Top 1, Top 5, Top 10 and
MAP scores across the four software projects, respectively.
This can again be attributed to our NetML approach taking
advantage of two sets of model parameters and performing
a joint optimization of bug localization error and clustering
of similar bug reports and methods.

We also conducted the Wilcoxon test to examine whether
the improvements over the AML integrator and SVMrank

are statistically significant. The resulting p-values are sum-
marized in Table 10. As before, the NetML integrator sig-
nificantly outperforms the AML integrator in terms of Top
1, Top 5, Top 10, and MAP scores. Moreover, the NetML
integrator is significantly better than SVMrank in all evalu-
ation metrics (i.e., Top 1, Top 5, Top 10, and MAP). All in
all, these justify the effectiveness of our NetML integrator
component.

4.4.4 RQ4: Effect of Varying Number of Neighbors
To address this research question, we varied the number
of nearest neighbors from K = 5 to all bug reports in the
training set (i.e., K = ∞) for both NetML and AML. The
results are shown in Table 11. We can see that, as we increase
K , the performance of both multi-modal techniques im-
proves until a certain point (i.e., K = 15), and decreases be-
yond that. This suggests that including more neighbors can
improve performance to some extent. However, an overly
large number of neighbors may lead to an increased level of
noise (i.e., the number of irrelevant neighbors), resulting in a
degraded performance. Nevertheless, the differences in the
Top N and MAP scores are fairly marginal, which justifies
the robustness of our NetML approach. Looking at Table 11,
it is also clear that NetML consistently outperforms AML
for all K values (i.e., from K = 5 to K =∞).

TABLE 9: Comparisons among different integrator models.
The percentage in parentheses indicates the proportion of
bug reports whose faulty methods are correctly localized.

Metrics Project NetML AML SVMrank

Top 1

Ant 13 (24.53%) 9 (16.98%) 7 (13.21%)
AspectJ 11 (26.83%) 7 (17.07%) 4 (9.76%)
Lang 30 (46.15%) 28 (43.08%) 27 (41.54%)
Lucene 12 (32.43%) 11 (29.73%) 10 (27.03%)
Math 32 (30.19%) 25 (23.58%) 26(24.53%)
Rhino 10 (38.46%) 4 (15.38%) 4 (15.38%)
Time 8 (32.77%) 4 (24.79%) 5 (23.38%)
Overall 116 (32.68%) 88 (24.79%) 83 (23.38%)

Top 5

Ant 24 (45.28%) 22 (41.51%) 24 (45.28%)
AspectJ 15 (36.59%) 13 (31.71%) 11 (26.83%)
Lang 55 (84.62%) 48 (73.85%) 45 (69.23%)
Lucene 25 (67.57%) 22 (59.46%) 23 (62.16%)
Math 69 (65.09%) 47 (44.34%) 46 (43.40%)
Rhino 18 (69.23%) 14 (53.85%) 13 (50.00%)
Time 13 (48.15%) 13 (48.15%) 13 (48.15%)
Overall 219 (61.69%) 179 (50.42%) 175 (49.30%)

Top 10

Ant 35 (66.04%) 31 (58.49%) 31 (58.49%)
AspectJ 16 (39.02%) 13 (31.71%) 14 (34.15%)
Lang 62 (95.38%) 53 (81.54%) 54 (83.08%)
Lucene 30 (81.08%) 29 (78.38%) 26 (70.27%)
Math 75 (70.75%) 53 (50.00%) 55 (51.89%)
Rhino 19 (73.08%) 19 (73.08%) 16 (61.54%)
Time 18 (66.67%) 15 (55.56%) 16 (59.26%)
Overall 255 (71.83%) 213 (60.00%) 212 (59.72%)

MAP

Ant 0.270 0.234 0.234
AspectJ 0.219 0.187 0.131
Lang 0.638 0.542 0.540
Lucene 0.290 0.284 0.267
Math 0.358 0.255 0.269
Rhino 0.302 0.243 0.227
Time 0.354 0.294 0.287
Overall 0.347 0.291 0.279

TABLE 10: The p-values of the Wilcoxon test applying the
BH procedure on various pairs of integrator model.

Metrics NetML vs. SVMrank NetML vs. AML
Top 1 3× 10−7 (**) 2× 10−5 (**)
Top 5 2× 10−3 (**) 1× 10−3 (**)
Top 10 4× 10−4 (**) 2× 10−3 (**)
MAP 9× 10−10 (**) 2× 10−8 (**)
(**): smaller than 0.01

4.4.5 RQ5: How Effective is NetML in Cross-Project Bug
Localization?
Table 12 shows the overall performance of NetML and the
baseline methods (i.e., AML, Savant, Ochiai, and Dstar)
for the cross-project setting, in terms of the Top N and
MAP scores respectively. Ochiai and Dstar are unsupervised
learning methods, which do not depend on training labels.
In this case, they give the same result for both cross-project
and within-project settings. Hence, we reuse their results in
Table 4. For the remaining techniques (i.e., NetML, AML,
and Savant), we use a source project that has the best MAP

13

TABLE 11: Effect of varying the number of nearest neighbors on NetML and AML. The percentage in parentheses indicates
the proportion of bug reports whose faulty methods are correctly localized.

#Neighbors Top 1 Top 5 Top 10 MAP
NetML AML NetML AML NetML AML NetML AML

K = 5 112 (31.55%) 84 (23.66%) 224 (63.10%) 181 (50.99%) 254 (71.55%) 212 (59.72%) 0.342 0.289
K = 10 116 (32.68%) 88 (24.79%) 219 (61.69%) 179 (50.42%) 255 (71.83%) 213 (60.00%) 0.347 0.291
K = 15 117 (32.96%) 86 (24.23%) 223 (62.82%) 175 (49.30%) 255 (71.83%) 212 (59.72%) 0.347 0.291
K = 20 115 (32.39%) 86 (24.23%) 210 (61.97%) 173 (48.73%) 251 (70.70%) 210 (59.15%) 0.345 0.29
K = 25 110 (30.99%) 81 (22.81%) 210 (61.97%) 173 (48.73%) 251 (70.70%) 209 (58.87%) 0.331 0.285
K =∞ 110 (30.99%) 79 (22.26%) 208 (58.59%) 169 (47.61%) 251 (70.70%) 205 (57.75%) 0.329 0.283

TABLE 12: Overall Top N (N ∈ {1, 5, 10} and Mean Average Precision (MAP) results in cross-project setting. The percentage
in parentheses indicates the proportion of bug reports whose faulty methods are correctly localized.

Methods Top 1 Top 5 Top 10 MAP
NetML 74 (20.85%) 157 (44.23%) 197 (55.49%) 0.218
AML 58 (16.34%) 131 (36.90%) 170 (47.89%) 0.174
Savant 45 (14.33%) 106 (33.76%) 135 (42.99%) 0.133
Ochiai 48 (12.11%) 94 (26.48%) 124 (34.93%) 0.138
Dstar 43 (13.52%) 88 (24.79%) 106 (29.86%) 0.114

TABLE 13: The p-values of the Wilcoxon test applying the BH procedure on various pairs of integrator model in cross-
project setting.

Method Comparison Top 1 Top 5 Top 10 MAP
NetML vs. AML 0.012 (*) 0.048 (*) 0.040 (*) 0.029 (*)
NetML vs. Savant 0.003 (**) 0.001 (**) 0.007 (**) 0.003 (**)
NetML vs. Ochiai 1 ×10−5 (**) 0.003 (**) 8 ×10−7 (**) 1 ×10−18 (**)
NetML vs. Dstar 4× 10−4 (**) 7 ×10−5 (**) 6 ×10−7 (**) 7 ×10−17 (**)
(*): smaller than 0.05, (**): smaller than 0.01

score for a target project. The results show that NetML
outperforms the best baseline (i.e., AML) by 27.59%, 19.85%,
and 15.88% in terms of the Top 1, Top 5, and Top 10
methods, respectively. In terms of MAP, NetML outperforms
AML, Savant, Ochiai, and Dstar by 25.29%, 63.91%, 91.23%,
and 57.97% respectively. For more details on the Top N
results for each pair of source and target projects, please
see Tables 17 and 18 in the Appendix.

We also perform Wilcoxon test to compare the overall
results of the different techniques in the cross-project setting.
Table 13 shows the p-values for different evaluation metrics
(i.e., Top 1, Top 5, Top 10, and MAP) and pairs of techniques.
The results indicate that NetML significantly outperforms
all the baseline techniques (i.e., AML, Savant, Ochiai, and
Dstar) for all the four metrics, thus demonstrating the supe-
rior performance of NetML in cross-project setting.

5 RESULTS ANALYSIS AND DISCUSSION

In this section, we present a detailed analysis of the results
obtained in Section 4.4. Firstly, we present some examples
to understand the scenarios in which NetML would per-
form well or poorly in Section 5.1 and Section 5.2, respec-
tively. Section 5.3 subsequently presents an analysis on how
NetML can improve the MAP performance.

5.1 Successful Cases

We first present two examples of successful bug localization,
with the goal of showing how NetML can take advantage
of two types of similarity: 1) similarity among bug reports,
and 2) similarity among methods.

Bug report similarity. Our first example involves Bug
307985 and Bug 439696 from project Ant – see Fig. 1. It has
been briefly described in Section 1. NetML can outperform
AML in identifying the buggy method of Bug 43969 by tak-
ing advantage of similarity among bug reports. To confirm
that indeed these two bug reports are similar, we can apply
the Vector Space Model (VSM) [46]. We represent each bug
report as a TF-IDF vector [56], and then compute the cosine
similarity between the TF-IDF vector of Bug 30798 and that
of the remaining bug reports. We find that Bug 43969 is
ranked at position #3. Likewise, we compute the cosine
similarity between Bug 43969 and the other bug reports.
Here, Bug 30798 is ranked at position #5. This shows that
Bug 30798 and Bug 43969 are indeed very similar. AML
assumes that the bug reports are independent and, owing
to the lack of information on the textual description of Bug
43969, it fails to localize the faulty method. In contrast, we
found that NetML learns similar model parameters (i.e., ~ub)
for the two bug reports, and exploits this to compensate for
the insufficient information when localizing Bug 43969.

Additionally, we find that none of the other baselines
perform as well as NetML. Savant can localize the faulty
method of Bug 30798 in its top-10 list, but it fails to do so
for Bug 43969. For the other baselines (i.e., Ochiai, Dstar,
PROMESIR, DITA, DITB, LRA, LRB , and MULTRIC), none
of them is able to localize the faulty method for both bug
reports. Among them, the two best performers (i.e., Ochiai
and Dstar) give a high suspiciousness score to the faulty
method, but there are more than 100 methods sharing this
score.

5. https://bz.apache.org/bugzilla/show bug.cgi?id=30798
6. https://bz.apache.org/bugzilla/show bug.cgi?id=43969

https://bz.apache.org/bugzilla/show_bug.cgi?id=30798
https://bz.apache.org/bugzilla/show_bug.cgi?id=43969

14

Program IntrospectionHelper.java
public void throwNotSupported(final Project project,
final Object parent, final String elementName) {

final String msg = project.getElementName)(parent)
+ NOT SUPPORTED CHILD PREFIX
+ elementName
+ NOT SUPPORTED CHILD POSTFIX;

throw new UnsupportedElementException(msg, element-
Name);
}

Program IntrospectionHelper.java
public Class〈?〉 getElementType(final String elementName)
throws BuildException {

final Class〈?〉 nt = nestedTypes.get(elementName);
if (nt == null) {

throw new UnsupportedElementException(“Class” +
bean.getName() + “doesn’t support the nested \” +
elementName + “\” element.”, elementName); }

return nt;
}

Bug 31389
Summary: incorrect error text with invalid “javac” task after a “presetdef”
Description:
What steps will reproduce the problem? See below for the build.xml that was used and the faulty error message.

1. I made a preset definition containing a javac task
2. I made a normal target (not using the preset definition) containing a javac task with an illegal tag name
3. When running ant, the error message says that the error is in the preset definition instead of the javac task.
(The line number in the message is good.)
. . .

Fig. 3: Example of successful bug localization of two methods in project Ant that need to be resolve the same bug report.
The two methods have high cosine similarity score. The colored text indicates some common word tokens occurring in the
two methods.

Method similarity. Fig. 3 presents the description
of Bug 313897 in project Ant. The bug resides in the
throwNotSupported and getElementType methods of
IntrospectionHelper.java. NetML is able to local-
ize both methods at positions #1 and #9 respectively,
all within the top 10 list. Meanwhile, AML is able to
put the throwNotSupported method in the top 10 list,
but it ranks the getElementType method at position
#17. Ochiai, Dstar, PROMESIR and MULTRIC localize the
throwNotSupported method in the top 10 list, but they
fail to put the getElementType into the top 10 list. The
other baselines give low relevancy scores to the two meth-
ods, and exclude them from the top 10 list.

As with the previous example, we try to analyze this fur-
ther by computing the cosine similarity of the TF-IDF repre-
sentation of the methods’ source code. Specifically, we com-
pute the cosine similarity between throwNotSupported
and remaining methods. The result shows that the
getElementType method is ranked at position #4. Look-
ing at the content of these two methods, it can again
be seen that they share many common word tokens
(e.g., “elementName”, etc.). Accordingly, NetML would en-
force the corresponding method parameters to be similar.
As such, NetML manages to successfully to localize the
getElementType method at position #9. In contrast, AML
assumes that the methods are independent, and thus fails
to leverage the strength of similar methods to localize the
getElementType method.

To see how typical the successful cases are in our dataset,
we randomly select 75 out of 183 successful cases, in which
NetML manages to localize a faulty method within the
top 10 list whereas the other baseline methods (i.e., AML,
Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA, LRB ,
and MULTRIC) fail to do so. Among these cases, in total, we

7. https://bz.apache.org/bugzilla/show bug.cgi?id=31389

find that 63 successful cases, which constitute the majority
(84%) of our samples, are similar to the first (17 cases) and
second (46 cases) examples we presented earlier.

5.2 Unsuccessful Cases
Next, we present two examples whereby NetML fails to
localize a bug. These examples serve to provide an under-
standing of cases in which NetML may not perform well.

Bug report similarity. We first consider Bug 3388 and
Bug 3589 from project Math shown in Fig. 4. The faulty
method for these two bug reports is the integrate
method in EmbeddedRungeKuttaIntegrator.java. In-
terestingly, Ochiai and Dstar manage to localize this faulty
method for these two bug reports within the top 10 list. On
the other hand, NetML, AML, and Savant fail to localize the
faulty integrate method for Bug 358. Specifically, NetML,
AML, and Savant rank the faulty method at positions #14,
#19, and #23 respectively. MULTRIC assigns a high suspi-
ciousness score to the integrate method for both Bug
338 and Bug 358. However, there are around 30 methods
sharing this score. Also note that the remaining baselines
(i.e., PROMESIR, DITA, DITB, LRA, and LRB) fail to localize
the faulty method for both bug reports.

Similar to Section 5.1, we calculate the cosine similarity
between Bug 338 and the remaining bug reports. We found
that Bug 358 is ranked at position #53, suggesting that the
two bug reports are dissimilar. As such, there is less incen-
tive for NetML to leverage the strength of common words
shared by the two bug reports, which potentially explains
why it fails to localize the faulty method for Bug 358. This
also suggests that, when the data contain bug reports that
are largely dissimilar (i.e., share very few common word
tokens), our NetML approach may not work as well as some

8. https://issues.apache.org/jira/browse/MATH-338
9. https://issues.apache.org/jira/browse/MATH-358

https://bz.apache.org/bugzilla/show_bug.cgi?id=31389
https://issues.apache.org/jira/browse/MATH-338
https://issues.apache.org/jira/browse/MATH-358

15

Bug 338
Summary: Wrong parameter for first step size guess for
Embedded Runge Kutta methods

Description:
What steps will reproduce the problem? In a space
application using DOP853 i detected what seems to be a
bad parameter in the call to the method initializeStep of
class AdaptiveStepsizeIntegrator. . . .

Bug 358
Summary: ODE integrator goes past specified end of
integration range

Description:
What steps will reproduce the problem? End of integra-
tion range in ODE solving is handled as an event. In some
cases, numerical accuracy in events detection leads to error
in events location. . . .

Fig. 4: Example of unsuccessful bug localization of two bug reports which have the same faulty method in project Math.
The two bug reports have low cosine similarity score

Program ChangeLogParser.java
private Date parseDate(final String date) {

try {
return c inputDate.parse(date);
} catch (ParseException e) {

//final String message = REZ.getString(
//“changelog.bat-date.error”, date);
//getContext().error(message);
return null;
}

}

Program ChangeLogParser.java
private void processGetPreviousRevision(final String line)
{

if (!line.startsWith(“revision”)){
throw new IllegalStateException(“Unexpected line
from CVS:” + line);
}
m previousRevision = line.substring(9);
saveEntry();
m revision = m previousRevision;
m status = GET DATE;
}

Bug 30962
Summary: cvschangelog crashes with NullPointerException
Description:
What steps will reproduce the problem? I try to make cvschangelog running and face a strange problem that nobody
else seems to have: cvschangelog crashes with a NullPointerException. My task looks like:
〈target name=“cvs.changelog”〉
〈cvschangelog dir=“somedir” destfile=“changelog.xml”〉
. . .

Fig. 5: Example of unsuccessful bug localization of two methods in project Ant that need to be modified to resolve the
same bug report. The two methods have low cosine similarity score.

spectrum-based fault localization techniques such as Ochiai
and Dstar.

Method similarity. Fig. 5 shows the de-
scriptions of Bug 3096210 in project Ant. The
bug is associated with two faulty methods, i.e.,
parseDate and processGetPreviousRevision in
ChangeLogParser.java. We find that Ochiai and Dstar
successfully localize these two methods in the top 10 list.
NetML and AML are able to localize the parseDate
method within the top 10 list. However, they fail to localize
the faulty processGetPreviousRevision method
for Bug 30962. In particular, NetML and AML place the
processGetPreviousRevision method at positions #17
and #15 respectively. The remaining techniques (i.e., Savant,
PROMESIR, DITA, DITB, LRA, LRB) fail to localize these
two methods in the top 10 list.

To better understand this, we again compute the
cosine similarity between the parseDate method and
the remaining methods in project Ant. In this case, the
processGetPreviousRevision method is ranked at po-
sition #478. This suggests that these two methods have

10. https://bz.apache.org/bugzilla/show bug.cgi?id=30962

low proximity, which gives less incentive for NetML to
utilize their common words in the localization of the
processGetPreviousRevision method. It also suggests
that, when the data contain methods that are mostly dis-
similar, spectrum-based fault localization techniques (e.g.,
Ochiai and Dstar) may perform better than NetML.

To again evaluate how typical the unsuccessful cases
are in seven projects, we randomly select 75 (out of 80)
unsuccessful cases whereby NetML fails to localize a faulty
method within the top 10 list, but one of the baseline method
(i.e., AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB,
LRA, LRB , and MULTRIC) succeed. Among them, in total,
we discover that 70 unsuccessful cases, which constitute
93% of our samples, are similar to the first (21 cases) and
second (49 cases) unsuccessful examples presented earlier.

5.3 Improved vs. Deteriorated Bug Reports

To understand how the MAP results improve due to
NetML, following Chaparro et al. [20], we perform a
finer-grained analysis in terms of the number of bug re-
ports improved/deteriorated and the expected magnitude
of improvement/deterioration. We compare our approach

https://bz.apache.org/bugzilla/show_bug.cgi?id=30962

16

TABLE 14: Comparison of number of samples, expected average precision difference, and expected rank difference between
NetML and AML.

Project
Improved Deteriorated Unchanged

No. of samples E[∆AP] E[∆Rank] No. of samples E[∆AP] E[∆Rank] No. of samples
Ant 35 (66.04%) 12.57% 186.86 3 (5.66%) -8.47% -54.27 15 (28.3%)
Aspectj 32 (78.05%) 23.02% 59.31 3 (7.32%) -39.67% -39.67 6 (14.63%)
Lang 37 (56.92%) 29.94% 26.93 5 (7.69%) -36.11% -35.52 23 (35.38%)
Lucene 14 (37.84%) 11.94% 372.64 10 (27.03%) -14.97% -297.2 13 (35.14%)
Math 70 (66.04%) 37.37% 16.45 10 (9.43%) -6.33% -13.07 26 (24.53%)
Rhino 22 (84.62%) 36.39% 54.54 2 (7.69%) -15.51% -15.32 2 (7.69%)
Time 16 (59.26%) 24.15% 60.5 6 (22.22%) -7.54% -10.12 5 (18.52%)
Overall 229 (63.66%) 27.75% 212.91 39 (10.98%) -14.36% -69.09 90 (25.35%)

against the best baseline method (i.e., AML). A bug report
is improved if the rank of the top faulty method produced
by NetML is better than the rank of the top faulty method
produced by AML. On the other hand, a bug report is
deteriorated if the rank of the top faulty method produced
by NetML is worse than that produced by AML. Otherwise,
a bug report is unchanged. Ideally, we wish to have a higher
number of improved bug reports than that of deteriorated bug
reports. To measure the relative magnitude of improvement
or deterioration for each bug report, we adopt the approach
described in [20]. In particular, for improved and deterio-
rated bug reports, we compute the expected average preci-
sion (AP) difference E[∆AP] and expected rank difference
E[∆Rank] as follows:

E[∆AP] =
1

|B|

B∑
b=1

(APNetML
b −APAML

b) (27)

E[∆Rank] =
1

|B|

B∑
b=1

(RankAML
b −RankNetML

b) (28)

where |B| is the number of bug reports, APNetML
b and

APAML
b are the average precision produced by NetML and

AML for bug report b, and RankNetML
b and RankAML

b

are the rank produced by NetML and AML, respectively.
Intuitively, if NetML is better than AML, we expect the
E[∆AP] and E[∆Rank] for improved bug reports to be
larger than those of deteriorated bug reports.

Table 14 shows the number of improved, deteriorated, and
unchanged bug reports in our seven projects. Additionally,
Table 14 presents the E[∆AP] and E[∆Rank] for improved
and deteriorated cases of different projects. The results show
that the number of improved bug reports is indeed higher
than the number of deteriorated bug reports for all different
projects. It is also evident that the overall E[∆AP] and
E[∆Rank] of improved bug reports are higher than those
of deteriorated bug reports. This implies that MAP improve-
ment comes from improvements across the boards and not
due to a few outlier bug reports or projects.

6 THREATS TO VALIDITY

This section presents a number of threats that may poten-
tially impact the validity of our study.

6.1 Number of Failed Test Cases and Its Impact
In our experiments with 355 bugs, most of the bugs were
found to come with few failed test cases (average = 2.155).
We have investigated if the number of failed test cases
impacts the effectiveness of our approach. To this end, we
computed the differences between the average number of
failed test cases for bugs that are successfully localized
at Top-N positions (N = 1,5,10) and bugs that are not
successfully localized. We found that the differences are
small (-0.362 to 0.055 test cases). These indicate that the
number of test cases does not impact the effectiveness of
our approach significantly and typically 1 to 3 failed test
cases are sufficient for our approach to be effective.

6.2 Threats to Internal Validity
Threats to internal validity relate to implementation and
dataset errors. We have checked our implementations and
datasets. However, there could still be errors that we do not
notice. Threats to external validity relate to the generaliz-
ability of our findings. In this work, we have analyzed 355
real bugs from seven medium-large software systems. In
the future, we plan to reduce the threats to external validity
by investigating more real bugs from additional software
systems, written in various programming languages.

7 RELATED WORK

In this section, we highlight a number of research studies
that are closely related to our work.

7.1 Multi-Modal Feature Location
Multi-modal feature location takes as input a feature de-
scription and a program spectra, and finds program ele-
ments that implement the corresponding feature. There are
several multi-modal feature location techniques proposed in
the literature [54], [41], [24].

Poshyvanyk et al. proposed an approach named
PROMESIR that computes weighted sums of scores re-
turned by an IR-based feature location solution (LSI [47])
and a spectrum-based solution (Tarantula [29]), and
rank program elements based on their corresponding
weighted sums [54]. Then, Liu et al. proposed an ap-
proach named SITIR which filters program elements re-
turned by an IR-based feature location solution (LSI [47])
if they are not executed in a failing execution trace [41].
Later, Dit et al. used HITS, a popular algorithm that
ranks the importance of nodes in a graph, to filter

17

TABLE 15: Top N (N ∈ {1, 5, 10}) results of NetML vs. AML, Savant, Ochiai, Dstar, and PROMESIR. The percentage in
parentheses indicates the proportion of bug reports whose faulty methods are correctly localized.

Top N Project NetML AML Savant Ochiai Dstar PROMESIR

1

Ant 13 (24.53%) 9 (16.98%) 8 (15.09%) 6 (11.32%) 6 (11.32%) 7 (13.21%)
Aspectj 11 (26.83%) 7 (17.07%) – 3 (7.32%) 1 (2.44%) 4 (9.76%)
Lang 30 (46.15%) 28 (43.08%) 29 (44.62%) 13 (20.00%) 12 (18.46%) 19 (29.23%)
Lucene 12 (32.43%) 11 (29.73%) 3 (8.11%) 6 (16.22%) 5 (13.51%) 8 (21.62%)
Math 32 (30.19%) 25 (23.58%) 22 (20.75%) 14 (13.21%) 13 (12.26%) 20 (18.87%)
Rhino 10 (38.46%) 4 (15.38%) 0 (0.00%) 4 (15.38%) 4 (15.38%) 2 (7.69%)
Time 8 (29.63%) 4 (14.81%) 5 (18.52%) 2 (7.41%) 2 (7.41%) 1 (3.70%)
Overall 116 (32.68%) 88 (24.79%) 67 (21.34%) 48 (13.52%) 43 (12.11%) 61 (17.18%)

5

Ant 24 (45.28%) 22 (41.51%) 11 (20.75%) 12 (22.64%) 10 (18.87%) 17 (32.08%)
Aspectj 15 (36.59%) 13 (31.71%) – 5 (12.20%) 1 (2.44%) 6 (14.63%)
Lang 55 (84.62%) 48 (73.85%) 41 (63.08%) 20 (30.77%) 22 (33.85%) 38 (58.46%)
Lucene 25 (67.57%) 22 (59.46%) 7 (18.92%) 14 (37.84%) 14 (37.84%) 18 (48.65%)
Math 69 (65.09%) 47 (44.34%) 47 (44.34%) 30 (28.30%) 30 (28.30%) 44 (41.51%)
Rhino 18 (69.23%) 14 (53.85%) 4 (15.38%) 8 (30.77%) 6 (23.08%) 13 (50.00%)
Time 13 (48.15%) 13 (48.15%) 12 (44.44%) 5 (18.52%) 5 (18.52%) 3 (11.11%)
Overall 219 (61.69%) 179 (50.42%) 122 (38.85%) 94 (26.48%) 88 (24.79%) 139 (39.15%)

10

Ant 35 (66.04%) 31 (58.49%) 15 (28.3%) 23 (43.40%) 16 (30.19%) 28 (52.83%)
Aspectj 16 (39.02%) 13 (31.71%) – 6 (14.63%) 1 (2.44%) 9 (21.95%)
Lang 62 (95.38%) 53 (81.54%) 45 (69.23%) 26 (40.00%) 25 (38.46%) 46 (70.77%)
Lucene 30 (81.08%) 29 (78.38%) 12 (32.43%) 15 (40.54%) 15 (40.54%) 21 (56.76%)
Math 75 (70.75%) 53 (50%) 57 (53.77%) 39 (36.79%) 38 (35.85%) 52 (49.06%)
Rhino 19 (73.08%) 19 (73.08%) 9 (34.62%) 9 (34.62%) 6 (23.08%) 14 (53.85%)
Time 18 (66.67%) 15 (55.56%) 14 (51.85%) 6 (22.22%) 5 (18.52%) 4 (14.81%)
Overall 255 (71.83%) 213 (60.00%) 152 (48.41%) 124 (34.93%) 106 (29.86%) 174 (49.01%)

TABLE 16: Top N (N ∈ {1, 5, 10}) results of NetML vs. DITA, DITB, LRA, LRB , and MULTRIC. The percentage in
parentheses indicates the proportion of bug reports whose faulty methods are correctly localized.

Top N Project NetML DITA DITB LRA LRB MULTRIC

1

Ant 13 (24.53%) 3 (5.66%) 3 (5.66%) 1 (1.89%) 11 (20.75%) 2 (3.77%)
Aspectj 11 (26.83%) 4 (9.76%) 3 (7.32%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Lang 30 (46.15%) 12 (18.46%) 11 (16.92%) 4 (6.15%) 21 (32.31%) 23 (35.38%)
Lucene 12 (32.43%) 7 (18.92%) 7 (18.92%) 1 (2.70%) 7 (18.92%) 4 (10.81%)
Math 32 (30.19%) 13 (12.26%) 12 (11.32%) 6 (5.66%) 23 (21.70%) 30 (28.3%)
Rhino 10 (38.46%) 2 (7.69%) 1 (3.85%) 0 (0.00%) 2 (7.69%) 2 (7.69%)
Time 8 (29.63%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 2 (7.41%) 7 (25.93%)
Overall 116 (32.68%) 41 (11.55%) 37 (10.42%) 12 (3.38%) 66 (18.59%) 68 (19.15%)

5

Ant 24 (45.28%) 10 (18.87%) 10 (18.87%) 11 (20.75%) 20 (37.74%) 7 (13.21%)
Aspectj 15 (36.59%) 4 (9.76%) 3 (7.32%) 0 (0.00%) 0 (0.00%) 1 (2.44%)
Lang 55 (84.62%) 17 (26.15%) 17 (26.15%) 13 (20.00%) 39 (60.00%) 39 (60.00%)
Lucene 25 (67.57%) 13 (35.14%) 13 (35.14%) 6 (16.22%) 16 (43.24%) 13 (35.14%)
Math 69 (65.09%) 30 (28.30%) 29 (27.36%) 34 (32.08%) 48 (45.28%) 55 (51.89%)
Rhino 18 (69.23%) 13 (50.00%) 5 (19.23%) 2 (7.69%) 8 (30.77%) 8 (30.77%)
Time 13 (48.15%) 1 (3.70%) 1 (3.70%) 1 (3.70%) 6 (22.22%) 10 (37.04%)
Overall 219 (61.69%) 88 (24.79%) 78 (21.97%) 67 (18.87%) 137 (38.59%) 133 (37.46%)

10

Ant 35 (66.04%) 20 (37.74%) 20 (37.74%) 19 (35.85%) 32 (60.38%) 15 (28.30%)
Aspectj 16 (39.02%) 4 (9.76%) 3 (7.32%) 0 (0.00%) 0 (0.00%) 2 (4.88%)
Lang 62 (95.38%) 23 (35.38%) 22 (33.85%) 30 (46.15%) 46 (70.77%) 41 (63.08%)
Lucene 30 (81.08%) 20 (54.05%) 20 (54.05%) 10 (27.03%) 24 (64.86%) 16 (43.24%)
Math 75 (70.75%) 33 (31.13%) 34 (32.08%) 51 (48.11%) 59 (55.66%) 65 (61.32%)
Rhino 19 (73.08%) 14 (53.85%) 7 (26.92%) 3 (11.54%) 12 (46.15%) 11 (42.31%)
Time 18 (66.67%) 3 (11.11%) 3 (11.11%) 3 (11.11%) 8 (29.63%) 12 (44.44%)
Overall 255 (71.83%) 117 (32.96%) 109 (30.7%) 116 (32.68%) 181 (50.99%) 162 (45.63%)

program elements returned by SITIR [24]. Several vari-
ants are described in their paper and the best per-
forming ones are IRLSIDynbinWMHITS(h, bin)bottom and
IRLSIDynbinWMHITS(h, freq)bottom. We refer to these
two as DITA and DITB , respectively. They have showed that
these variants outperform SITIR, though they have never
been compared with PROMESIR.

In this work, we compare our proposed approach against
PROMESIR, DITA and DITB . We show that our approach
outperforms all of them on all datasets.

7.2 IR-Based Bug Localization
Various IR-based bug localization approaches that employ
information retrieval techniques to calculate the similarity
between a bug report and a program element (e.g., a method
or a source code file) have been proposed [57], [45], [36], [62],
[81], [60], [67], [68], [77].

Lukins et al. used a topic modeling algorithm named
Latent Dirichlet Allocation (LDA) for bug localization [45].
Then, Rao and Kak evaluated the use of many standard IR
methods for bug localization including VSM and Smoothed
Unigram Model (SUM) [57]. In the IR community, VSM
has a long history, proposed four decades ago by Salton et
al. [61] and followed by many other IR methods including

18

TABLE 17: Top N (N ∈ {1, 5, 10} results on cross-project setting, for different pairs of source and target projects. The
percentage in parentheses indicates the proportion of bug reports whose faulty methods are correctly localized.

Source Target
Top 1 Top 5 Top 10

NetML AML Savant NetML AML Savant NetML AML Savant
Aspectj Ant 8 (15.09%) 8 (15.09%) – 20 (37.74%) 20 (37.74%) – 28 (58.49%) 31 (52.83%) -
Lang Ant 8 (15.09%) 7 (13.21%) 6 (11.32%) 19 (39.62%) 21 (35.85%) 9 (16.98%) 28 (56.6%) 30 (52.83%) 12 (22.64%)
Lucene Ant 8 (15.09%) 7 (13.21%) 5 (9.43%) 17 (43.4%) 23 (32.08%) 11 (20.75%) 26 (58.49%) 31 (49.06%) 15 (28.30%)
Math Ant 9 (16.98%) 8 (15.09%) 4 (7.55%) 24 (41.51%) 22 (45.28%) 10 (18.87%) 31 (58.49%) 31 (58.49%) 13 (24.53%)
Rhino Ant 8 (15.09%) 7 (13.21%) 7 (13.21%) 21 (39.62%) 21 (39.62%) 9 (16.98%) 27 (56.60%) 30 (50.94%) 14 (26.42%)
Time Ant 7 (13.21%) 7 (13.21%) 2 (3.77%) 21 (28.30%) 15 (39.62%) 3 (5.66%) 30 (50.94%) 27 (56.60%) 3 (5.66%)
Ant Aspectj 2 (4.88%) 3 (7.32%)

–

7 (17.07%) 9 (21.95%)

-

9 (21.95%) 9 (21.95%)

-

Lang Aspectj 3 (7.32%) 3 (7.32%) 9 (21.95%) 8 (19.51%) 10 (24.39%) 9 (21.95%)
Lucene Aspectj 4 (9.76%) 3 (7.32%) 8 (19.51%) 8 (19.51%) 10 (24.39%) 9 (21.95%)
Math Aspectj 3 (7.32%) 2 (4.88%) 11 (26.83%) 3 (7.32%) 11 (26.83%) 4 (9.76%)
Rhino Aspectj 4 (9.76%) 4 (9.76%) 10 (24.39%) 6 (14.63%) 11 (26.83%) 8 (19.51%)
Time Aspectj 7 (17.07%) 2 (4.88%) 11 (26.83%) 3 (7.32%) 13 (31.71%) 5 (12.20%)
Ant Lang 17 (26.15%) 17 (26.15%) 7 (10.77%) 35 (53.85%) 31 (47.69%) 29 (44.62%) 45 (69.23%) 39 (60.00%) 37 (56.92%)
Aspectj Lang 17 (26.15%) 16 (24.62%) – 38 (58.46%) 31 (47.69%) – 46 (70.77%) 37 (56.92%) -
Lucene Lang 15 (23.08%) 17 (26.15%) 7 (10.77%) 34 (52.31%) 33 (50.77%) 26 (40.00%) 42 (64.62%) 40 (61.54%) 38 (58.46%)
Math Lang 19 (29.23%) 17 (26.15%) 17 (26.15%) 36 (55.38%) 31 (47.69%) 38 (58.46%) 42 (64.62%) 39 (60.00%) 44 (67.69%)
Rhino Lang 19 (29.23%) 17 (26.15%) 10 (15.38%) 38 (58.46%) 31 (47.69%) 37 (56.92%) 45 (69.23%) 38 (58.46%) 43 (66.15%)
Time Lang 20 (30.77%) 12 (18.46%) 15 (23.08%) 39 (60.00%) 29 (44.62%) 38 (58.46%) 46 (70.77%) 35 (53.85%) 46 (70.77%)
Aspectj Lucene 7 (18.92%) 7 (18.92%) – 19 (51.35%) 17 (45.95%) – 23 (62.16%) 22 (59.46%) -
Ant Lucene 9 (24.32%) 7 (18.92%) 2 (5.41%) 22 (59.46%) 16 (43.24%) 7 (18.92%) 27 (72.97%) 21 (56.76%) 7 (18.92%)
Lang Lucene 9 (24.32%) 7 (18.92%) 2 (5.41%) 20 (54.05%) 16 (43.24%) 6 (16.22%) 25 (67.57%) 21 (56.76%) 9 (24.32%)
Math Lucene 8 (21.62%) 7 (18.92%) 4 (10.81%) 21 (56.76%) 16 (43.24%) 7 (18.92%) 25 (67.57%) 21 (56.76%) 9 (24.32%)
Rhino Lucene 10 (27.03%) 7 (18.92%) 9 (24.32%) 23 (62.16%) 15 (40.54%) 16 (43.24%) 26 (70.27%) 21 (56.76%) 17 (45.95%)
Time Lucene 10 (27.03%) 6 (16.22%) 2 (5.41%) 26 (70.27%) 12 (32.43%) 3 (8.11%) 28 (75.68%) 16 (43.24%) 3 (8.11%)
Ant Math 20 (18.87%) 14 (13.21%) 6 (5.66%) 39 (36.79%) 39 (36.79%) 8 (7.55%) 54 (50.94%) 49 (46.23%) 12 (11.32%)
Aspectj Math 19 (17.92%) 14 (13.21%) – 42 (39.62%) 35 (33.02%) – 50 (47.17%) 49 (46.23%) -
Lang Math 17 (16.04%) 14 (13.21%) 8 (7.55%) 41 (38.68%) 37 (34.91%) 15 (14.15%) 52 (49.06%) 48 (45.28%) 24 (22.64%)
Lucene Math 16 (15.09%) 14 (13.21%) 6 (5.66%) 36 (33.96%) 38 (35.85%) 15 (14.15%) 47 (44.34%) 49 (46.23%) 17 (16.04%)
Rhino Math 16 (15.09%) 14 (13.21%) 9 (8.49%) 42 (39.62%) 38 (35.85%) 20 (18.87%) 53 (50.00%) 49 (46.23%) 30 (28.30%)
Time Math 15 (14.15%) 11 (10.38%) 11 (10.38%) 42 (39.62%) 35 (33.02%) 36 (33.96%) 53 (50.00%) 49 (46.23%) 50 (47.17%)
Ant Rhino 4 (15.38%) 3 (11.54%) 0 (0.00%) 11 (42.31%) 11 (42.31%) 1 (3.85%) 15 (57.69%) 14 (53.85%) 1 (3.85%)
Aspectj Rhino 5 (19.23%) 5 (19.23%) – 12 (46.15%) 10 (38.46%) – 17 (65.38%) 14 (53.85%) –
Lang Rhino 4 (15.38%) 2 (7.69%) 2 (7.69%) 9 (34.62%) 8 (30.77%) 2 (7.69%) 11 (42.31%) 13 (50.00%) 4 (15.38%)
Lucene Rhino 4 (15.38%) 3 (11.54%) 0 (0.00%) 7 (26.92%) 11 (42.31%) 1 (3.85%) 8 (30.77%) 15 (57.69%) 2 (7.69%)
Math Rhino 5 (19.23%) 3 (11.54%) 2 (7.69%) 12 (46.15%) 10 (38.46%) 2 (7.69%) 17 (65.38%) 14 (53.85%) 4 (15.38%)
Time Rhino 5 (19.23%) 2 (7.69%) 0 (0%) 10 (38.46%) 9 (34.62%) 0 (0.00%) 16 (61.54%) 12 (46.15%) 1 (3.85%)
Ant Time 3 (11.11%) 3 (11.11%) 1 (3.7%) 5 (18.52%) 3 (11.11%) – 7 (25.93%) 6 (22.22%) 1 (3.70%)
Aspectj Time 2 (7.41%) 2 (7.41%) – 4 (14.81%) 4 (14.81%) 1 (3.70%) 5 (18.52%) 6 (22.22%) –
Lang Time 3 (11.11%) 2 (7.41%) 0 (0.00%) 5 (18.52%) 5 (18.52%) 1 (3.70%) 7 (25.93%) 6 (22.22%) 1 (3.70%)
Lucene Time 3 (11.11%) 2 (7.41%) 1 (3.70%) 5 (18.52%) 4 (14.81%) 1 (3.70%) 7 (25.93%) 7 (25.93%) 1 (3.70%)
Math Time 3 (11.11%) 2 (7.41%) 1 (3.70%) 5 (18.52%) 4 (14.81%) 3 (11.11%) 7 (25.93%) 5 (18.52%) 5 (18.52%)
Rhino Time 3 (11.11%) 2 (7.41%) 1 (3.70%) 6 (22.22%) 5 (18.52%) 2 (7.41%) 8 (29.63%) 7 (25.93%) 2 (7.41%)

SUM and LDA, which address the limitations of VSM.
More recently, a number of approaches which consider

information aside from text in bug reports to better locate
bugs were proposed. Sisman and Kak proposed a version
history-aware bug localization method that considers past
buggy files to predict the likelihood of a file to be buggy and
uses this likelihood along with VSM to localize bugs [62].
Around the same time, Zhou et al. [81] proposed an ap-
proach named BugLocator that includes a specialized VSM
(named rVSM) and considers the similarities among bug
reports to localize bugs. Next, Saha et al. [60] developed an
approach that considers the structure of source code files
and bug reports and employs structured retrieval for bug
localization, and it outperforms BugLocator. Wang and Lo
proposed an approach that integrates the approaches by
Sisman and Kak, Zhou et al. and Saha et al. for more ef-
fective bug localization [67]. Most recently, Ye et al. devised
an approach named LR that combines multiple ranking
features using learning-to-rank to localize bugs, and these
features include surface lexical similarity, API-enriched lex-
ical similarity, collaborative filtering, class name similarity,
bug fix recency, and bug fix frequency [77].

All these approaches can be used as the AMLText com-
ponent of our approach. In this work, we experiment with

a basic IR technique namely VSM. Our goal is to show that
even with the most basic IR-based bug localization compo-
nent, we can outperform existing approaches including the
state-of-the-art IR-based approach by Ye et al. [77].

7.3 Spectrum-Based Bug Localization

Various spectrum-based bug localization approaches have
been proposed [29], [11], [42], [43], [39], [40], [14], [15],
[80], [79], [21], [44]. These approaches analyze a program
spectra which is a record of program elements that are
executed in failed and successful executions, and generate a
ranked list of program elements. Many of these approaches
propose various formulas that can be used to compute the
suspiciousness of a program element given the number of
times it appears in failing and successful executions.

Jones and Harrold proposed Tarantula that uses a sus-
piciousness score formula to rank program elements [29].
Later, Abreu et al. proposed another suspiciousness formula
called Ochiai [11], which outperforms Tarantula. Then, Lu-
cia et al. investigated 40 different association measures and
highlighted that some of them including Klosgen and Infor-
mation Gain are promising for spectrum-based bug local-
ization [42], [43]. Recently, Xie et al. conducted a theoretical

19

TABLE 18: Mean Average Precision (MAP) results in cross-
project setting.

Source Target
MAP

NetML AML Savant
Aspectj Ant 0.191 0.181 –
Lang Ant 0.185 0.188 0.054
Lucene Ant 0.183 0.210 0.082
Math Ant 0.198 0.192 0.057
Rhino Ant 0.186 0.188 0.077
Time Ant 0.187 0.164 0.022
Ant Aspectj 0.106 0.08

–

Lang Aspectj 0.098 0.088
Lucene Aspectj 0.098 0.087
Math Aspectj 0.052 0.091
Rhino Aspectj 0.103 0.100
Time Aspectj 0.156 0.066
Ant Lang 0.276 0.275 0.336
Aspectj Lang 0.324 0.334 –
Lucene Lang 0.349 0.319 0.331
Math Lang 0.330 0.300 0.514
Rhino Lang 0.330 0.260 0.387
Time Lang 0.335 0.296 0.491
Aspectj Lucene 0.185 0.152 –
Ant Lucene 0.218 0.150 0.069
Lang Lucene 0.228 0.150 0.044
Math Lucene 0.166 0.150 0.07
Rhino Lucene 0.228 0.149 0.144
Time Lucene 0.220 0.131 0.012
Ant Math 0.236 0.235 0.075
Aspectj Math 0.221 0.234 –
Lang Math 0.227 0.205 0.103
Lucene Math 0.236 0.194 0.095
Rhino Math 0.232 0.204 0.143
Time Math 0.208 0.202 0.195
Ant Rhino 0.188 0.148 0.023
Aspectj Rhino 0.205 0.167 –
Lang Rhino 0.177 0.126 0.095
Lucene Rhino 0.187 0.117 0.028
Math Rhino 0.196 0.139 0.095
Time Rhino 0.171 0.121 0.006
Ant Time 0.109 0.096 0.047
Aspectj Time 0.153 0.067 0.033
Lang Time 0.109 0.071 –
Lucene Time 0.189 0.069 0.047
Math Time 0.109 0.067 0.104
Rhino Time 0.171 0.075 0.081

analysis and found that several families of suspiciousness
score formulas outperform other families [74]. Next, Yoo
proposed to use genetic programming to generate new
suspiciousness score formulas that can perform better than
many human designed formulas [78]. Subsequently, Xie et
al. theoretically compared the performance of the formulas
produced by genetic programming and identified the best
performing ones [75]. Most recently, Xuan and Monperrus
combined 25 different suspiciousness score formulas into a
composite formula using their proposed algorithm named
MULTRIC, which performs its task by making use of an off-
the-shelf learning-to-rank algorithm named RankBoost [76].
MULTRIC has been shown to outperform the best perform-
ing formulas studied by Xie et al. [74] and the best perform-
ing formula constructed by genetic programming [78], [75].

Wong et al. [72] provided a comprehensive literature
review of a large number of spectrum-fault localization
techniques, and pointed out avenues for future work. Perez
et al. [53] proposed DUU, a new metric for evaluating the
diagnosability of a test-suite when applying spectrum-based
fault localization approaches. Sohn et al. [63] presented

FLUCCs, a fault localization technique that learns to rank
program elements based on existing spectrum-fault localiza-
tion techniques and source code metrics such as age, code
churn, and complexity. Li et al. [37] proposed TraPT, an-
other learning-to-rank approach that transforms programs
and test outputs/messages in order to localize faults effec-
tively. Pearson et al. [52] highlighted that results found
by evaluating spectrum-based and mutation-based fault
localization techniques on artificial faults are significantly
different than when they are evaluated on real faults. They
thus recommended that fault localization techniques should
be evaluated using real faults. Moreover, they introduced
several new variants of a mutation-based fault localization
technique that also use coverage information (in addition to
mutation information). The best variant outperforms Dstar
by 2-6% and 3-6% considering the Top 5 and Top 10 results
respectively.

Many of the above mentioned approaches that compute
suspiciousness scores of program elements can be used in
the AMLSpectra component of our proposed approach. In
this work, we experiment with a popular spectrum-based
fault localization technique namely Tarantula, published a
decade ago, which is also used by PROMESIR [54]. Our goal
is to show that even with a basic spectrum-based bug local-
ization component, we can outperform existing approaches
including the state-of-the-art spectrum-based approaches.

7.4 Other Related Studies
There are many studies that compose multiple methods
together to achieve better performance. For example, Koca-
guneli et al. [48] combined several single software effort
estimation models to create more powerful multi-model
ensembles. Also, Rahman et al. [55] used static bug-finding
to improve the performance of statistical defect prediction
(and vice versa). Le et al. [34] proposed SpecForge that com-
bines different automaton based specification miners using
model fission and model fusion in order to create a more
effective specification miner. Kellogg et al. [32] presents
N-Prog that combines static bug detection and test case
generation to avoid unnecessary human effort. In particular,
N-Prog produces no false alarms, by construction, since its
output alarm is either a new test case or a bug in a program.

8 CONCLUSION AND FUTURE WORK

In this paper, we put forward a novel multi-modal bug lo-
calization approach named Network-clustered Multi-modal
Bug Localization (NetML). Deviating from the contempo-
rary multi-modal localization approaches, NetML is able to
achieve an effective bug localization through the interplay
of two sets of model parameters characterizing both bug
reports and methods. It also features an adaptive learn-
ing procedure that stems from a strictly convex objective
function formulation, thereby provides a sound theoretical
guarantee on the uniqueness of the optimal solution.

We have extensively evaluated NetML on 355 real bugs
from seven different software projects (i.e., Ant, AspectJ,
Lang, Lucene, Math, Rhino, and Time). Among the 355 bugs,
NetML is able to successfully localize 116, 219, and 255 bugs
when developers inspect the Top 1, Top 5, and Top 10 meth-
ods, respectively. Compared to the best performing baseline

20

(i.e., AML), NetML can successfully localize 31.82%, 22.35%,
and 19.72% more bugs when developers inspect the Top
1, Top 5, and Top 10 methods, respectively. Furthermore,
in terms of MAP, NetML outperforms the other baselines
by 19.24%. Based on the Wilcoxon signed-rank test using
BH procedure, we show that the results of NetML are
significantly better across the seven projects, in terms of Top
1, Top 5, Top 10, and MAP scores.

Although NetML offers a powerful bug localization ap-
proach, there remains room for improvement. For example,
the current approach as well as the IR-based techniques
capture both bug reports and program elements (method)
using a simple bag-of-words (e.g., TF-IDF) representation,
ignoring the inherent structure within the source codes of a
program, such as function call and/or data dependencies.
In the future, we wish to consider a richer set of structural
information within a program element, which carries addi-
tional semantics beyond the lexical terms. In particular, we
would like to leverage both program structure information
and lexical source code to localize potential bugs. We also
plan to develop a more sophisticated technique, e.g., based
on deep learning [26], to automatically learn the feature
representation of bug reports and program elements.

Dataset and Codes. The codes and data for NetML are now
available at https://github.com/JHoangSMU/NetML.

APPENDIX

Tables 15 and 16 provide a detailed breakdown of the Top
N results in Tables 4 and 5 produced by NetML and the
other baseline methods for each software project (i.e., the
within-project setting).

Meanwhile, Tables 17 and 18 present the detailed break-
down of the Top N and MAP results in Table 12 for each
pair of source and target projects in cross-project setting,
respectively.

REFERENCES
[1] “Apache Ant,” http://ant.apache.org/, accessed: 2015-07-15.
[2] “Apache Commons-Lang,” https://commons.apache.org/

proper/commons-lang/, accessed: 2015-07-15.
[3] “Apache Commons-Math,” http://commons.apache.org/proper/

commons-math/, accessed: 2015-07-15.
[4] “Apache Lucene,” http://lucene.apache.org/core/, accessed:

2015-07-15.
[5] “AspectJ,” http://eclipse.org/aspectj/, accessed: 2015-07-15.
[6] “Cobertura: A code coverage utility for Java.” http://cobertura.

github.io/cobertura/, accessed: 2015-07-15.
[7] “Eclipse Java development tools (JDT),” http://www.eclipse.org/

jdt/, accessed: 2015-07-15.
[8] “Joda-time,” http://www.joda.org/joda-time/, accessed: 2015-07-

15.
[9] “Mysql 5.6 full-text stopwords,” http://dev.mysql.com/doc/

refman/5.6/en/fulltext-stopwords.html, accessed: 2015-07-15.
[10] “Rhino,” http://developer.mozilla.org/en-US/docs/Rhino, ac-

cessed: 2015-07-15.
[11] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A

practical evaluation of spectrum-based fault localization,” Journal
of Systems and Software, vol. 82, no. 11, pp. 1780–1792, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2009.06.035

[12] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION, ser. TAICPART-MUTATION ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 89–98. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1308173.1308264

[13] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an
open bug repository,” in Proceedings of the 2005 OOPSLA
Workshop on Eclipse Technology eXchange, ser. Eclipse ’05. New
York, NY, USA: ACM, 2005, pp. 35–39. [Online]. Available:
http://doi.acm.org/10.1145/1117696.1117704

[14] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test
generation for effective fault localization,” in Proceedings of the
19th International Symposium on Software Testing and Analysis, ser.
ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 49–60. [Online].
Available: http://doi.acm.org/10.1145/1831708.1831715

[15] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical fault localization
for dynamic web applications,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 265–274.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806840

[16] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A
learning-to-rank based fault localization approach using likely
invariants,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA ’16. New York,
NY, USA: ACM, 2016, pp. 177–188. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931049

[17] R. E. Bank and D. J. Rose, “Global approximate newton methods,”
Numerische Mathematik, vol. 37, no. 2, pp. 279–295, Jun. 1981.
[Online]. Available: http://dx.doi.org/10.1007/BF01398257

[18] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: A practical and powerful approach to multiple testing,”
Journal of the Royal Statistical Society Series B (Methodological),
vol. 57, no. 1, pp. 289–300, 1995. [Online]. Available: http:
//dx.doi.org/10.2307/2346101

[19] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and
L. Réveillère, “Empirical evaluation of bug linking,” in CSMR,
2013, pp. 89–98.

[20] O. Chaparro, J. M. Florez, and A. Marcus, “Using observed behav-
ior to reformulate queries during text retrieval-based bug localiza-
tion,” in IEEE International Conference on Software Maintenance and
Evolution, ser. ICSME ’17. IEEE, 2017, pp. 376–387.

[21] H. Cleve and A. Zeller, “Locating causes of program
failures,” in Proceedings of the 27th International Conference
on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 342–351. [Online]. Available: http:
//doi.acm.org/10.1145/1062455.1062522

[22] M. Collins, R. E. Schapire, and Y. Singer, “Logistic regression,
adaboost and bregman distances,” Machine Learning, vol. 48,
no. 1-3, pp. 253–285, Sep. 2002. [Online]. Available: http:
//dx.doi.org/10.1023/A:1013912006537

[23] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in Proceedings of the 20nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’07. New York, NY, USA: ACM, 2007, pp. 433–436. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321702

[24] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve
feature location in software,” Empirical Software Engineering,
vol. 18, no. 2, pp. 277–309, 2013. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-011-9194-4

[25] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection
of likely invariants,” Science of Computer Programming, vol. 69, no.
1-3, pp. 35–45, 2007.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[27] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso:
Clustering and optimization in large graphs,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’15. New York,
NY, USA: ACM, 2015, pp. 387–396. [Online]. Available:
http://doi.acm.org/10.1145/2783258.2783313

[28] T. Joachims, “Optimizing search engines using clickthrough
data,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’02.
New York, NY, USA: ACM, 2002, pp. 133–142. [Online]. Available:
http://doi.acm.org/10.1145/775047.775067

[29] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005,
pp. 273–282. [Online]. Available: http://doi.acm.org/10.1145/
1101908.1101949

https://github.com/JHoangSMU/NetML
http://ant.apache.org/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://lucene.apache.org/core/
http://eclipse.org/aspectj/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.joda.org/joda-time/
http://dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html
http://dev.mysql.com/doc/refman/5.6/en/fulltext-stopwords.html
http://developer.mozilla.org/en-US/docs/Rhino
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dl.acm.org/citation.cfm?id=1308173.1308264
http://doi.acm.org/10.1145/1117696.1117704
http://doi.acm.org/10.1145/1831708.1831715
http://doi.acm.org/10.1145/1806799.1806840
http://doi.acm.org/10.1145/2931037.2931049
http://dx.doi.org/10.1007/BF01398257
http://dx.doi.org/10.2307/2346101
http://dx.doi.org/10.2307/2346101
http://doi.acm.org/10.1145/1062455.1062522
http://doi.acm.org/10.1145/1062455.1062522
http://dx.doi.org/10.1023/A:1013912006537
http://dx.doi.org/10.1023/A:1013912006537
http://doi.acm.org/10.1145/1321631.1321702
http://dx.doi.org/10.1007/s10664-011-9194-4
http://dx.doi.org/10.1007/s10664-011-9194-4
http://www.deeplearningbook.org
http://doi.acm.org/10.1145/2783258.2783313
http://doi.acm.org/10.1145/775047.775067
http://doi.acm.org/10.1145/1101908.1101949
http://doi.acm.org/10.1145/1101908.1101949

21

[30] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database
of existing faults to enable controlled testing studies for java
programs,” in Proceedings of the 23rd International Symposium
on Software Testing and Analysis, ser. ISSTA ’14. New York,
NY, USA: ACM, 2014, pp. 437–440. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2628055

[31] C. Kelley, Solving Nonlinear Equations with Newton’s Method. Soci-
ety for Industrial and Applied Mathematics, 2003. [Online]. Avail-
able: http://epubs.siam.org/doi/abs/10.1137/1.9780898718898

[32] M. Kellogg, “Combining bug detection and test case generation,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ISSTA ’16, Seattle,
WA, USA,, 2016, pp. 1124–1126. [Online]. Available: http:
//doi.acm.org/10.1145/2950290.2983970

[33] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
’16. New York, NY, USA: ACM, 2016, pp. 165–176. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931051

[34] T. B. Le, X. D. Le, D. Lo, and I. Beschastnikh, “Synergizing
specification miners through model fissions and fusions,”
in Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’15, Lincoln,
NE, USA,, 2015, pp. 115–125. [Online]. Available: http:
//dx.doi.org/10.1109/ASE.2015.83

[35] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE ’15. New York, NY, USA: ACM, 2015, pp. 579–590.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786880

[36] T.-D. B. Le, S. Wang, and D. Lo, “Multi-abstraction concern local-
ization,” in Proceeding of IEEE International Conference on Software
Maintenance, ser. ICSM ’13, vol. 00. Los Alamitos, CA, USA: IEEE
Computer Society, 2014, pp. 364–367.

[37] X. Li and L. Zhang, “Transforming programs and tests in tandem
for fault localization,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 92:1–92:30, Oct. 2017. [Online].
Available: http://doi.acm.org/10.1145/3133916

[38] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, ser. PLDI ’03. New York, NY,
USA: ACM, 2003, pp. 141–154. [Online]. Available: http:
//doi.acm.org/10.1145/781131.781148

[39] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 15–26. [Online]. Available: http://doi.acm.org/10.1145/
1065010.1065014

[40] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
Statistical model-based bug localization,” in Proceedings of the
10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. ESEC/FSE-13. New York, NY,
USA: ACM, 2005, pp. 286–295. [Online]. Available: http:
//doi.acm.org/10.1145/1081706.1081753

[41] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
location via information retrieval based filtering of a single
scenario execution trace,” in Proceedings of the 20nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’07. New York, NY, USA: ACM, 2007, pp. 234–243. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321667

[42] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive
evaluation of association measures for fault localization,”
in Proceedings of the 2010 IEEE International Conference on
Software Maintenance, ser. ICSM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2010.5609542

[43] Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended
comprehensive study of association measures for fault
localization,” Journal of Software: Evolution and Process,
vol. 26, no. 2, pp. 172–219, 2014. [Online]. Available:
http://dx.doi.org/10.1002/smr.1616

[44] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in
Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 127–138. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642983

[45] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software
Technology, vol. 52, no. 9, pp. 972–990, Sep. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2010.04.002

[46] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[47] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using semantic indexing,” in
Proceedings of the 25th International Conference on Software
Engineering, ser. ICSE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 125–135. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776832

[48] T. Menzies, E. Kocaguneli, and J. W. Keung, “On the value of
ensemble effort estimation,” IEEE Transactions on Software Engi-
neering, vol. 38, pp. 1403–1416, 2012.

[49] Mozilla, “Bug fields,” https://bugzilla.mozilla.org/page.cgi?id=
fields.html, accessed: 2015-03-16.

[50] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[51] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proceedings of the 2011
International Symposium on Software Testing and Analysis, ser. ISSTA
’11. New York, NY, USA: ACM, 2011, pp. 199–209. [Online].
Available: http://doi.acm.org/10.1145/2001420.2001445

[52] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localiza-
tion,” in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17, Buenos Aires, Argentina, May 24–26,
2017.

[53] A. Perez, R. Abreu, and A. van Deursen, “A test-suite
diagnosability metric for spectrum-based fault localization
approaches,” in Proceedings of the 39th International Conference
on Software Engineering, ser. ICSE ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 654–664. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.66

[54] D. Poshyvanyk, Y.-G. Guhneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of
methods based on execution scenarios and information retrieval.”
IEEE Transactions on Software Engineering, vol. 33, no. 6, pp.
420–432, 2007. [Online]. Available: http://dblp.uni-trier.de/db/
journals/tse/tse33.html#PoshyvanykGMAR07

[55] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Comparing
static bug finders and statistical prediction,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE ’14.
New York, NY, USA: ACM, 2014, pp. 424–434. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568269

[56] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” Department of Computer Science, Rutgers University,
23515 BPO Way, Piscataway, NJ, 08855e, Tech. Rep., 2003.

[57] S. Rao and A. Kak, “Software libraries for bug localization:
A comparative study of generic and composite text models,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp.
43–52. [Online]. Available: http://doi.acm.org/10.1145/1985441.
1985451

[58] J. Renegar, A Mathematical View of Interior-point Methods in Convex
Optimization. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2001.

[59] M. Renieris and S. P. Reiss, “Fault localization with nearest
neighbor queries.” in Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, ser. ASE ’03. IEEE
Computer Society, 2003, pp. 30–39. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/kbse/ase2003.html#RenierisR03

[60] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in
Proceeding of 28th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’13, Silicon Valley, CA, USA,
November 11-15, 2013, pp. 345–355. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2013.6693093

[61] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Magazine Communications of the ACM, vol. 18,
no. 11, pp. 613–620, 1975.

[62] B. Sisman and A. C. Kak, “Incorporating version histories in
information retrieval based bug localization,” in Proceedings of
the 9th IEEE Working Conference on Mining Software Repositories,
ser. MSR ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 50–59.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2664446.
2664454

http://doi.acm.org/10.1145/2610384.2628055
http://epubs.siam.org/doi/abs/10.1137/1.9780898718898
http://doi.acm.org/10.1145/2950290.2983970
http://doi.acm.org/10.1145/2950290.2983970
http://doi.acm.org/10.1145/2931037.2931051
http://dx.doi.org/10.1109/ASE.2015.83
http://dx.doi.org/10.1109/ASE.2015.83
http://doi.acm.org/10.1145/2786805.2786880
http://doi.acm.org/10.1145/3133916
http://doi.acm.org/10.1145/781131.781148
http://doi.acm.org/10.1145/781131.781148
http://doi.acm.org/10.1145/1065010.1065014
http://doi.acm.org/10.1145/1065010.1065014
http://doi.acm.org/10.1145/1081706.1081753
http://doi.acm.org/10.1145/1081706.1081753
http://doi.acm.org/10.1145/1321631.1321667
http://dx.doi.org/10.1109/ICSM.2010.5609542
http://dx.doi.org/10.1002/smr.1616
http://doi.acm.org/10.1145/2642937.2642983
http://dx.doi.org/10.1016/j.infsof.2010.04.002
http://dl.acm.org/citation.cfm?id=776816.776832
https://bugzilla.mozilla.org/page.cgi?id=fields.html
https://bugzilla.mozilla.org/page.cgi?id=fields.html
http://doi.acm.org/10.1145/2001420.2001445
https://doi.org/10.1109/ICSE.2017.66
http://dblp.uni-trier.de/db/journals/tse/tse33.html#PoshyvanykGMAR07
http://dblp.uni-trier.de/db/journals/tse/tse33.html#PoshyvanykGMAR07
http://doi.acm.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/1985441.1985451
http://doi.acm.org/10.1145/1985441.1985451
http://dblp.uni-trier.de/db/conf/kbse/ase2003.html#RenierisR03
http://dblp.uni-trier.de/db/conf/kbse/ase2003.html#RenierisR03
http://dx.doi.org/10.1109/ASE.2013.6693093
http://dl.acm.org/citation.cfm?id=2664446.2664454
http://dl.acm.org/citation.cfm?id=2664446.2664454

22

[63] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics
to improve fault localization,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA ’17. New York, NY, USA: ACM, 2017, pp. 273–283.
[Online]. Available: http://doi.acm.org/10.1145/3092703.3092717

[64] K. Sparck Jones and P. Willett, Eds., Readings in Information Re-
trieval. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997.

[65] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology,
Tech. Rep., 2002.

[66] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study
of bugs in machine learning systems,” in Proceedings of the 23rd
IEEE International Symposium on Software Reliability Engineering, ser.
ISSRE ’12, Dallas, TX, USA, November 27-30, 2012, pp. 271–280.

[67] S. Wang and D. Lo, “Version history, similar report, and
structure: Putting them together for improved bug localization,”
in Proceedings of 22nd International Conference on Program
Comprehension, ser. ICPC ’14. New York, NY, USA: ACM,
2014, pp. 53–63. [Online]. Available: http://doi.acm.org/10.1145/
2597008.2597148

[68] S. Wang, D. Lo, and J. Lawall, “Compositional vector space
models for improved bug localization,” in Proceedings of 30th IEEE
International Conference on Software Maintenance and Evolution, ser.
ICSME ’14, Victoria, BC, Canada, 2014, pp. 171–180. [Online].
Available: http://dx.doi.org/10.1109/ICSME.2014.39

[69] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 297–308. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884804

[70] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[71] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar
method for effective software fault localization,” IEEE Transaction
Reliability, vol. 63, no. 1, pp. 290–308, 2014. [Online]. Available:
https://doi.org/10.1109/TR.2013.2285319

[72] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software Engi-
neering, vol. 42, no. 8, pp. 707–740, 2016.

[73] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study of bugs
in software build systems,” in Proceedings of the 13th International
Conference on Quality Software, ser. ICQS ’13, Najing, China, 2013,

pp. 200–203.
[74] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical

analysis of the risk evaluation formulas for spectrum-based
fault localization,” ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 4, pp. 31:1–31:40, Oct. 2013. [Online].
Available: http://doi.acm.org/10.1145/2522920.2522924

[75] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman,
“Provably optimal and human-competitive results in sbse for
spectrum based fault localisation.” in Proceeding of the 5th
International Symposium Search Based Software Engineering, ser.
SSBSE ’13, G. Ruhe and Y. Zhang, Eds., vol. 8084. St. Petersburg,
Russia: Springer, 2013, pp. 224–238. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/ssbse/ssbse2013.html#XieKCYH13

[76] J. Xuan and M. Monperrus, “Learning to combine multiple
ranking metrics for fault localization,” in Proceedings of the 30th
IEEE International Conference on Software Maintenance and Evolution,
ser. ICSME ’14, Victoria, BC, Canada, 2014, pp. 191–200. [Online].
Available: http://dx.doi.org/10.1109/ICSME.2014.41

[77] X. Ye, R. C. Bunescu, and C. Liu, “Learning to rank relevant
files for bug reports using domain knowledge,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’14, Hong Kong, China, 2014, pp.
689–699.

[78] S. Yoo, “Evolving human competitive spectra-based fault
localisation techniques,” in Proceedings of the 4th International
Conference on Search Based Software Engineering, ser. SSBSE ’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 244–258. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33119-0 18

[79] A. Zeller, “Isolating cause-effect chains from computer programs,”
in Proceedings of the 10th ACM SIGSOFT Symposium on
Foundations of Software Engineering, ser. SIGSOFT ’02/FSE-10.
New York, NY, USA: ACM, 2002, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/587051.587053

[80] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transaction on Software Engineering,
vol. 28, no. 2, pp. 183–200, Feb. 2002. [Online]. Available:
http://dx.doi.org/10.1109/32.988498

[81] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
- more accurate information retrieval-based bug localization
based on bug reports,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 14–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337226

http://doi.acm.org/10.1145/3092703.3092717
http://doi.acm.org/10.1145/2597008.2597148
http://doi.acm.org/10.1145/2597008.2597148
http://dx.doi.org/10.1109/ICSME.2014.39
http://doi.acm.org/10.1145/2884781.2884804
https://doi.org/10.1109/TR.2013.2285319
http://doi.acm.org/10.1145/2522920.2522924
http://dblp.uni-trier.de/db/conf/ssbse/ssbse2013.html#XieKCYH13
http://dblp.uni-trier.de/db/conf/ssbse/ssbse2013.html#XieKCYH13
http://dx.doi.org/10.1109/ICSME.2014.41
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://doi.acm.org/10.1145/587051.587053
http://dx.doi.org/10.1109/32.988498
http://dl.acm.org/citation.cfm?id=2337223.2337226

23

Thong Hoang is a Ph.D candidate at School
of Information Systems, Singapore Management
University advised by Associate Professor David
Lo. He received his B.Eng and M.S in Computer
Science from University of Technology - Vietnam
and Konkuk University - South Korea, respectively.
He worked as research engineer in three years in
Ghent University. He spent for more than a year in
School of Information Systems, Singapore Man-
agement University. His research interests are
software bug localization, defect prediction, deep

learning and data mining area.

Richard J. Oentaryo is a Senior Data Scientist
at McLaren Applied Technologies Singapore, cur-
rently serving as a technical lead of the Public
Transport Business Unit in Singapore. Previously,
he was a Research Scientist at the Living Analyt-
ics Research Centre (LARC), School of Informa-
tion Systems, Singapore Management University
(SMU) in 2011-2016, and a Research Fellow at
the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University (NTU) in
2010-2011. He received Ph.D. and B.Eng. (First

Class Honour) degrees from the School of Computer Engineering (SCE),
NTU, in 2011 and 2004 respectively. Dr. Oentaryo is a member of the
Association for Computing Machinery (ACM) and Institute of Electrical and
Electronics Engineers (IEEE). He has published in numerous international
journals and conferences, and received such awards as the IES Pres-
tigious Engineering Achievement Award in 2011, IEEE-CIS Outstanding
Student Paper Travel Grant in 2006 and 2009, and ITMA Gold Medal cum
Book Prize in 2004.

Tien-Duy B. Le is a Research Scientist at School
of Information Systems, Singapore Management
University. He received his Ph.D. in Information
Systems from Singapore Management University
in 2017 under the supervision of Associate Profes-
sor David Lo. Before that, he studied and obtained
his B.Eng. in Computer Science from Hochiminh
City University of Technology, Vietnam in 2012.
His research interests include software bug local-
ization and specification mining.

David Lo received the PhD degree from the
School of Computing, National University of Sin-
gapore in 2008. He is currently an Associate Pro-
fessor in the School of Information Systems, Sin-
gapore Management University. He has more than
10 years of experience in software engineering
and data mining research and has more than 150
publications in these areas. He has received a
number of research awards including two ACM
Distinguished Paper awards. He has served in
many program and organizing committees, includ-

ing having served as the general chair of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2016).

	1 Introduction
	1.1 The Need for Multi-modal Bug Localization
	1.2 Proposed Approach
	1.3 Contributions
	1.4 Paper Organization

	2 Background
	2.1 IR-Based Bug Localization
	2.2 Spectrum-Based Bug Localization

	3 Proposed Framework
	3.1 Feature Extraction
	3.2 Graph Construction
	3.3 Integrator Model
	3.4 Objective Function
	3.5 Adaptive Learning

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Metrics and Settings
	4.3 Research Questions
	4.3.1 RQ1: How Effective is NetML Compared to Other State-of-the-Art Techniques?
	4.3.2 RQ2: Do Feature Components of NetML Contribute toward Its Overall Performance?
	4.3.3 RQ3: How Effective is the NetML Integrator?
	4.3.4 RQ4: What is the Effect of Varying the Number of Neighbors K on the Performance of NetML?
	4.3.5 RQ5: How Effective is NetML in Cross-Project Bug Localization?

	4.4 Results
	4.4.1 RQ1: Comparisons of NetML with Other Techniques
	4.4.2 RQ2: Contribution of Feature Components
	4.4.3 RQ3: Comparisons among Integrator Models
	4.4.4 RQ4: Effect of Varying Number of Neighbors
	4.4.5 RQ5: How Effective is NetML in Cross-Project Bug Localization?

	5 Results Analysis and Discussion
	5.1 Successful Cases
	5.2 Unsuccessful Cases
	5.3 Improved vs. Deteriorated Bug Reports

	6 Threats to Validity
	6.1 Number of Failed Test Cases and Its Impact
	6.2 Threats to Internal Validity

	7 Related Work
	7.1 Multi-Modal Feature Location
	7.2 IR-Based Bug Localization
	7.3 Spectrum-Based Bug Localization
	7.4 Other Related Studies

	8 Conclusion and Future Work
	Appendix
	References
	Biographies
	Thong Hoang
	Richard J. Oentaryo
	Tien-Duy B. Le
	David Lo

