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Abstract—Software quality assurance efforts often focus on
identifying defective code. To find likely defective code early,
change-level defect prediction – aka. Just-In-Time (JIT) defect
prediction – has been proposed. JIT defect prediction models
identify likely defective changes and they are trained using
machine learning techniques with the assumption that historical
changes are similar to future ones. Most existing JIT defect
prediction approaches make use of manually engineered features.
Unlike those approaches, in this paper, we propose an end-to-end
deep learning framework, named DeepJIT, that automatically ex-
tracts features from commit messages and code changes and use
them to identify defects. Experiments on two popular software
projects (i.e., QT and OPENSTACK) on three evaluation settings
(i.e., cross-validation, short-period, and long-period) show that
the best variant of DeepJIT (DeepJIT-Combined), compared
with the best performing state-of-the-art approach, achieves
improvements of 10.36-11.02% for the project QT and 9.51-
13.69% for the project OPENSTACK in terms of the Area Under
the Curve (AUC).

I. INTRODUCTION

As software systems are becoming the backbone of our
economy and society, defects existing in those systems may
substantially affect businesses and people’s lives in many
ways. For example, Knight Capital1, a company which ex-
ecutes automated trading for retail brokers, lost $440 millions
in only one morning in 2012 due to an overnight faulty update
to its trading software. A flawed code change, introduced into
OpenSSL’s source code repository, caused the infamous Heart-
bleed2 bug which affected billions of Internet users in 2014.
As software grows significantly in both size and complexity,
finding defects and fixing them become increasingly difficult
and costly.

One common best practice for cost saving is identifying
defects and fixing them as early as possible, ideally before
new code changes (i.e. commits) are introduced into code-
bases. Emerging research has thus developed Just-In-Time
(JIT) defect prediction models and techniques which help
software engineers and testers to quickly narrow down the
most likely defective commits to a software codebase [1], [2].
JIT defect prediction tools provide early feedback to software
developers to prioritize and optimize effort for inspection and

1https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-
mishap-cost-it-440-million/

2http://heartbleed.com

(regression) testing, especially when facing with deadlines and
limited resources. They have therefore been integrated into the
development practice at large software organizations such as
Avaya [3], Blackberry [4], and Cisco [5].

Machine learning techniques have been widely used in
existing work for building JIT defect prediction models. A
common theme of existing work (e.g. [3], [6]–[8]) is carefully
crafting a set of features to represent a code change, and using
them as defectiveness predictors. Those features are mostly
derived from properties of code changes, such as change size
(e.g. lines deleted or added), change scope (e.g. number of
files or directories modified), history of changes (e.g. number
of prior changes to the updated files), track record of the author
and code reviewers, and activeness of the code review of the
change. This set of features can then be used as an input
to a traditional classifier (e.g. Random Forests or Logistic
Regression) to predict the defectiveness of code changes.

The aforementioned metric-based features however do not
represent the semantic and syntactic structure of the actual
code changes. In many cases, two different code changes
which have exactly the same metrics (e.g. the number of lines
deleted and added) may generate different behaviour when
executed, and thus have a different likelihood of defectiveness.
Previous studies have showed the usefulness of harvesting the
semantic information and syntactic structure hidden in source
code to perform various software engineering tasks such as
code completion, bug detection and defect prediction [9]–[13].
This information may enrich representations for defective code
changes, and thus improve JIT defect prediction.

A recent work [14] used a deep learning model (i.e. Deep
Belief Network) to improve the performance of JIT defect
prediction models. However, their approach does not leverage
the true notions of deep learning as they still employ the same
set of features that are manually engineered as in previous
work, and their model is not end-to-end trainable.

To more fully explore the power of deep learning for JIT de-
fect prediction, in this paper, we present a new model (named
DeepJIT) which is built upon the well-known deep learning
technique, namely Convolutional Neural Network (CNN) [15].
CNN has produced many breakthroughs in Natural Language
Processing (NLP) [16]–[20]. Our DeepJIT model processes
both a commit message (in natural language, if available) and



the associated code changes (in programming languages) and
automatically extracts features which represent the “meaning”
of the commit. Unlike commit messages, code changes are
more complex as they include a number of deleted and added
lines across multiple files. Our model automatically learns
the semantic features of each deleted or added line in each
changed file. Those features are then aggregated to generate
a new representation of the changed file, which is used to
construct the features of the code changes in a given commit.
This approach removes the need for software practitioners
to manually design and extract features, as what was done
in previous work [21]. The features extracted from commit
messages and code changes are then collectively used to train
a model to predict whether a given commit is buggy or not.

The main contributions of our paper include:
• An end-to-end deep learning framework (DeepJIT) to au-

tomatically extract features from both commit messages
and code changes in a given commit.

• An evaluation of DeepJIT on two software projects (i.e.,
QT and OPENSTACK). This dataset was originally col-
lected by McIntosh and Kamei to evaluate their proposed
technique [21] that we use as one of the baselines. The
experiments show the superiority of DeepJIT compared
to state-of-the-art baselines.

II. BACKGROUND

In this section, we first present an example of a buggy
change and briefly describe a typical buggy change identi-
fication process that is followed by QT and OPENSTACK.
We then introduce background knowledge about Convolutional
Neural Network (CNN).

A. Buggy Changes and Their Identification
Figure 1 shows an example of a buggy commit in OPEN-

STACK. The buggy commit contains many pieces of infor-
mation, i.e., a commit id (line 1), an author name (line 2),
a commit date (line 3), a commit message (line 4-10) and
a set of code changes (i.e., 11-28). A set of code changes
includes changes to multiple files and each file includes a
number of deleted and added lines representing the change.
In Figure 1, line 16 (starting with -) and lines 17-20 (starting
with +) indicate the deleted and added lines of a changed
file (namely 3cb5d900c5de_security_groups.py),
respectively. The commit message also plays an important role
as a good commit message can help maintainers to speed up
the reviewing process and write a good release note.

To review a commit, QT and OPENSTACK use Gerrit 3,
which is a code review tool for git-based software project.
The process of reviewing code changes is as follows:
• Upload change revision: An author of a code changes

submits a new change to Gerrit and invites reviewers to
comment it.

• Execute sanity tests: Sanity tests verify that the code
changes are compliant with the coding style conventions
before sending to the reviewers.

3https://code.google.com/p/gerrit/

1. commit d60f6efd7f70efba1ccd007d55b1fa740fb98c76

2. Author: Dan Prince <email address hidden>

3. Date: Mon Jan 14 12:26:36 2013 -0500

4. Name the securitygrouprules.direction enum. 

5. Updates to the SecurityGroupRule model and migration so that we

6. explicitly name the securitygrouprules.direction enum. This fixes 

7. 'Postgresql ENUM type requires a name.' errors.

8.

9. Fixes LP Bug #1099267.

10. Change-Id: Ia46fe8d4b0793caaabbfc71b7fa5f0cbb8c6d24b

11. diff --git a/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de

_security_groups.py

12. index ff39de84a..cf565af0f 100644

13. --- a/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de_

security_groups.py

14. +++ b/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de_

security_groups.py

15. @@ -62,7 +62,10 @@ def upgrade(active_plugin=None, options=None):

16. - sa.Column('direction', sa.Enum('ingress', 'egress'), nullable=True),

17. +        sa.Column('direction',

18. +                  sa.Enum('ingress', 'egress',

19. +                          name='securitygrouprules_direction'),

20. +                  nullable=True),

21. diff --git a/quantum/db/securitygroups_db.py b/quantum/db/securitygroups_db.py

22. index 9903a6493..5bd890bbe 100644

23. --- a/quantum/db/securitygroups_db.py

24. +++ b/quantum/db/securitygroups_db.py

25. @@ -62,7 +62,8 @@ class SecurityGroupRule(model_base.BASEV2, models_v2.HasId,

26. - direction = sa.Column(sa.Enum('ingress', 'egress'))

27. +    direction = sa.Column(sa.Enum('ingress', 'egress',

28. +                                  name='securitygrouprules_direction'))

Fig. 1: An example of a buggy commit change in OPEN-
STACK.

• Solicit peer feedback: The reviewers are asked to examine
the code changes after it passes the sanity tests.

• Initiate integration request: Teams are allowed to verify
the code changes before integrating it into git reposito-
ries.

• Execute integration tests: The integration testing system
is run to ensure that the code changes that put in the git
repositories is clean.

• Final integration: After passing the integration testing,
Gerrit automatically commits the code changes into the
git repositories.

B. Convolutional Neural Network

One of the most promising neural networks is the Convolu-
tional Neural Network (CNN) [15]. CNNs have been widely
used for many problems (i.e., image pattern recognition,
natural language processing, information retrieval, etc.) and
demonstrated to achieve promising results [22]–[24]. CNNs
receive an input and perform a product operation followed by a
nonlinear function. The last layer is the output layer containing
objective functions [25] associated with the labels of the input.

Figure 2 illustrates a simple CNN for classification task.
The simple CNN includes an input layer, a convolutional layer,
followed by the application of the rectified linear unit (RELU)
which is a nonlinear activation function, a pooling layer, a
fully-connected layer, and an output layer. We briefly explain
these layers in the following paragraphs.

The input layer typically takes as an input a 2-dimensional
matrix and passes it through a series of convolutional layers.
The convolutional layers play a vital role in CNN and it
takes advantage of the use of learnable filters. These filters
are small in spatial dimensionality, but they are applied along
the entirety of the depth of the input data. For example, given
an input data I ∈ RH×W×D and a filter K ∈ Rh×w×D, we
produce an activation map A ∈ R(H−h)×(W−w)×1. The RELU
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Fig. 2: A simple convolutional neural network architecture.

is then applied to each value of the activation map as follows:

f(x) = max(0, x) (1)

The pooling layer aims to reduce the dimensionality of
the activation map and the number of parameters to control
overfitting problem [26]. The pooling layer operates on the
activation map and scales its dimensionality. There are three
different types of pooling layers:
• Max pooling takes the largest element from each region

of the activation map.
• Average pooling constructs the average value from each

region of the activation map.
• Sum pooling sums all the elements from each region of

the activation map.
In practice, max pooling often achieves a better performance
compared to the other two pooling techniques [27]. The output
of the pooling layer is flatten and directly passed to a fully
connected layer. The output of the fully connected layer is
passed to the output layer to calculate an objective function (or
a loss function). The objective function is normally optimized
using stochastic gradient descent (SGD) [28].

III. APPROACH

In this section, we first formulate the Just-In-Time (JIT)
defect prediction problem and provide an overview of our
framework. We then describe the details of each part inside
the framework. Finally, we present an algorithm for learning
effective settings of our model’s parameters.

A. Framework Overview

The goal of a JIT defect prediction model is to auto-
matically classify a commit change as buggy or clean. This
helps software teams prioritize effort and optimize testing and
inspection. We consider the JIT defect prediction problem as
a learning task to construct prediction function f : X 7−→ Y ,
where yi ∈ Y = {0, 1} indicates whether a commit change
xi ∈ X is clean (yi = 0) or contains a buggy code (yi = 1).
The prediction function f can be learned by minimizing the
following objective function:

min
f

∑
i

L(f(xi), yi) + λΩ(f) (2)
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Fig. 3: The general framework of the Just-In-Time defect
prediction model.

where L(.) is the empirical loss function measuring the
difference between the predicted and the output label, Ω(f) is
a regularization function to prevent the over fitting problem,
and λ the trade-off between L(.) and Ω(f). Figure 3 illustrates
the overview framework of the JIT defect prediction model
(namely DeepJIT). The model consists of four parts: input
layer, feature extraction layer, feature combination layer, and
the output layer. We explain the details of each part in the
following subsections.

B. Parsing a Commit to Input Layer

To feed the raw textual data to convolutional layers for
feature learning, we first encode a commit message and code
changes into arrays and feed them in the input layer. For
the commit message, we use NLTK [29], which is a suite
of libraries for natural language processing (NLP), to extract
a sequence of words from it. We employ PorterStemmer [30]
to produce root forms of words. We also remove stop words
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and rare words (e.g. those occurring less than three times in
the commit messages).

We again use NLTK for parsing the code changes of a given
commit. In particular, each change file in the code changes is
parsed into a set of deleted and added lines, and each line is
parsed into a sequence of words. We ignore comments and
blank lines in the change file (see Figure 5). Following a
previous work [31], we replace a number (i.e., an integer, real
number, hexadecimal number) with a special <num> token.
We also replace rare code token (e.g. those occurring less than
three times in the commit codes) and tokens existing in test
data but absent in the training data with a special <unk>
token. We add a <deleted> token or a <added> token
at the beginning of deleted or added line respectively so that
DeepJIT recognizes whether this code line is a deleted line or
an added line.

We represent each word in the commit message and code
changes as a d-dimensional vector. After the preprocessing
step, Xmi and X ci , which are the encoded data of the commit
message and code changes respectively, are input to the
convolutional layers to generate the commit message and
code changes features. In the convolutional layers, the commit
messages and code changes are processed independently to
extract the features based on each type of textual information.
These features from the commit messages and code changes
are then combined into a unified feature representation, and
followed by a linear hidden layer connected to output layer
used to produce the output label Y indicating whether the
commit change xi is clean or contains a buggy code.

The core of the DeepJIT lies in the convolutional network
layers for code changes (see Section III-D) and the feature
combination layers (see Section III-E). In the following sub-
sections, we firstly discuss the convolutional layers for the
commit message and then present the core parts of DeepJIT
in Section III-D and Section III-E.

C. Convolutional Network Architecture for Commit Message

CNN was first used to automatically learn the salient fea-
tures in the images from raw pixel values [24]. Recently, CNN
has also generated multiple breakthroughs in various Natural

Language Processing (NLP) applications [16]–[20]. The archi-
tecture of CNN allowed it to extract the structural information
features from raw text data of word embedding. Figure 4
presents an architecture of CNN for commit messages. The
architecture includes a convolutional layer with multiple filters
and a nonlinear activation function (i.e., RELU). We briefly
explain it in the following paragraphs.

Given a commit message m which is essentially a sequence
of words [w1, . . . , w|m|]. We aim to obtains its matrix repre-
sentation m→M ∈ R|m|×dm , where the matrix M comprises
a set of words wi →Wi, i = 1, . . . , |m| in the given commit
message. Each word wi now is represented by an embedding
vector, i.e., Wi ∈ Rdm , where dm is a dm-dimensional vector
of a word appearing in the commit message.

Following the previous works [16], [19], the dm-
dimensional representing an embedding vector extracted from
an embedding matrix which is randomly initialized and jointly
learned with the CNN model. In our paper, the embedding
matrix of commit message is randomly initialized and learned
during the training process. Hence, the matrix representation
M of the commit message m with a sequence of |m| words
can be represented as follows:

M = [W1, . . . ,W|m|] (3)

For the purpose of parallelization, all commit messages are
padded or truncated to the same length |m|.

To extract the commit message’s salient features, a filter
f ∈ Rk×dm , followed by a non-linear activation function α(.),
is applied to a window of k words to produce a new feature
as follows:

ci = α(f ∗Mi:i+k−1 + bi) (4)

where ∗ is a sum of element-wise product, and bi ∈ R is the
bias value. In our paper, we choose the rectified linear unit
(RELU) as our activation function since it achieves a better
performance compared to other activation functions [32]–
[34]. The filter f is applied to every k-words of the commit
message, these outputs of this process are then concatenated
to product output vector c such that:

c = [c1, . . . , c|m|−k+1] (5)

By applying the filter f on every k-words of the commit
message, the CNN is able to exploit the semantic information
of its input. In practice, the CNN model may include multiple
filters with different k. These hyperparameters need to be set
by the user before starting the training process. To characterize
the commit message, we apply a max pooling operation [15]
over the output vector c to obtain the highest value as follows:

max
1≤i≤|m|−k+1

ci (6)

The results of the max pooling operation from each filter
are then used to form an embedding vector (i.e., zm) of the
commit message (see Figure 3).
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code line with respect to the code change structure. The output of the convolutional neural network is the embedding vector
zFi

representing the salient features of the each change file.

D. Convolutional Network Architecture for Code Changes

In this section, we focus on building convolutional networks
for code changes to solve the Just-In-Time defect prediction
problem. Code change, although it can be viewed as a se-
quence of words, differs from natural language mainly because
of its structure. The natural language carries sequences of
words, and the semantics of the natural language can be
inferred from a bag of words [35]. On the other hand, the
code change includes a change in different files and different
kinds of changes (removals or additions) for each file. Hence,
to extract salient features from the code changes, the con-
volutional networks should obey the code changes structure.
Based on the aforementioned considerations, we propose a
deep learning framework for extracting silent features from
code changes based on convolutional neural networks.

Given a code change C including a change in different
source code files [F1, . . . ,Fn], where n is a number of files in
the code change, we aim to extract salient features for each
different file Fi. The salient features of each file are then
concatenated to each other to represent the features for the
given code change. In the rest of this section, we explain how
the convolutional networks can extract the salient features for
each file in the code change and how these salient features are
concatenated.

Suppose Fi represents a change in each different file, Fi
contains a number of lines (removals or additions) in a code
change file. We also have a sequence of words in each line
in Fi. Similar to the section III-C, we first aim to obtain its
matrix representation Fi → Fi ∈ RN×L×dc , where N is the
number of lines in a code change file, L presents a sequence
of words in each line, and dc is a dc-dimensional vector of a
word appearing in the Fi. For the purposed of parallelization,
all the source code files are padded or truncated to the same
N and L.

For each line Ni ∈ RL×dc , we follow the convolutional
network architecture for commit message described in Sec-
tion III-C to extract its embedding vector, called zNi

. The
embedding vector zNi

aims to learn the salient features or the
semantic of a code line based on the words within the code
line. These features zNi are then stacked to produce the new
representation of the code change file Fi as follows:

Fi = [zN1
, . . . , zN|N| ] (7)

We again apply the convolutional layer and pooling layer on
the new representation of the code change (i.e., Fi) to extract
its embedding vector, namely zFi

. The zFi
aims to learn the

salient features or the semantics conveyed by the interactions
between deleted or added lines. Figure 5 presents an overall
convolutional network architecture for each change file Fi in
code changes. The first convolutional and pooling layers aim
to learn a new representation of the file, and the subsequent
convolutional and pooling layers aim to extract the salient
features from the new representation of the change file.

For each change file Fi ∈ C, we build its embedding vector
zFi

. These embedding vectors are then concatenated to build
a new embedding vector representing the salient features of
the code change C as follows:

zC = zF1
⊕ · · · ⊕ zFn

(8)

where ⊕ is the concatenation operator.

E. Feature Combination

Figure 6 shows the details of architecture of the feature
combination. The inputs of this architecture are the two
embedding vectors zm and zC which represent the salient
features extracted from the commit message and code change,
respectively.
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combination. The embedding vector of commit message zm
and code change zC are concatenated to generate a single
vector (i.e., z).

These vectors are then concatenated to generate a unified
feature representation, i.e., a new vector (z), representing the
commit change:

z = zm ⊕ zC (9)

The new vector then feed into a fully-connected (FC) layer,
which outputs a vector h as follows:

h = α(wh · z + bh) (10)

where · is a dot product, wh is a weight matrix of the vector
h and the FC layer, bh is the bias value, and α(·) is the RELU
activation function. The vector h is passed to an output layer
to compute a probability score for a given commit:

Finally, the vector h is passed to an output layer, which
computes a probability score for a given patch:

p(yi = 1|xi) =
1

1 + exp(−h · wo)
(11)

where wo is the weight matrix between the FC layer and the
output layer.

F. Parameters Learning

In the training process, DeepJIT aims to learn the following
parameters: the word embedding matrices of commit messages
and commit code in a given commit, the convolutional layers
matrices, the weights and bias of the fully connected layer and
the output layer.

Just-In-Time defect prediction datasets often suffer the im-
balance problem: only a few commits contain a buggy code
while a large number of commits are clean. This imbalance
nature increases the difficulty in learning a prediction func-
tion [36]. Specifically, the imbalance problem may affect the
performance of a defect prediction model as the overall accu-
racy is biased to the majority class (e.g., commits containing a
buggy code), leading to misclassification of the minority class
(e.g., commits containing a non-buggy code). Inspired by [37],
[38], we propose an unequal misclassification loss function
which specifically aims to reduce the negative influence of
the imbalanced data. Unlike traditional methods, this “cost-
senstive” learning technique does not treat all misclassification
equally. Instead, we impose a higher cost on misclassification
of the minority class (i.e., buggy commits) than we do with

misclassification of the majority class (i.e., clearn commits).
Details of this technique is as follows.

Let wn and wp denote the cost of incorrectly associating
a commit change and the cost of missing a buggy com-
mit change, respectively. The parameters of DeepJIT can be
learned by minimizing the following objective function:

O = − log

(∏
i=1

p(yi|xi)

)
+
λ

2
‖θ‖22

= −
∑
i=1

[wn(1− yi) log(1− p(yi|xi))

+ wpyi log(p(yi|xi))] +
λ

2
‖θ‖22

(12)

where p(yi|xi) is the probability score from the output layer
and θ contains all parameters our model. The term λ

2 ‖θ‖
2
2

is used to mitigate data overfitting in training deep neural
networks [39]. We also apply the dropout technique [40] to
improve the robustness of our model.

We choose Adam [41], which is a variant of stochastic gra-
dient descent (SGD) [28], to minimize the objective function
in the equation 12. We choose Adam due to its computational
efficiency and low memory requirements compared to other
optimization techniques [41]–[43]. To efficiently compute the
gradients in linear time (with respect to the neural network
size), we use backpropagation [44], which is a simple imple-
mentation of the chain rule of partial derivatives.

IV. EXPERIMENTS

In this section, we first describe the dataset used in our
paper. We then introduce all baselines and the evaluation
metric. Finally, we present our research questions and results.

A. Dataset

We used two well-known software projects (i.e., QT and
OPENSTACK) to evaluate the performance of Just-In-Time
(JIT) models. QT 4, developed by the Qt Company, is a cross-
platform application framework and allows contributions from
individual developers and organizations. On the other hand,
OPENSTACK 5 is an open-source software platform for cloud
computing and is deployed as an infrastructure-as-a-service
which allows customers to access its resources.

TABLE I: Summary of the dataset used in this work

Dataset
Timespan Commits

Start End Total Defective
QT 06/2011 03/2014 25,150 2,002 (8%)

OPENSTACK 11/2011 02/2014 12,374 1,616 (13%)

Table I briefly summarizes the dataset used in our paper.
This dataset was originally collected and cleaned by McIntosh
and Kamei [21]. After their cleaning process, the QT dataset
contains 25,150 commits, while the OPENSTACK dataset
contains 12,374 commits. McIntosh and Kamei stratified the

4https://www.qt.io/
5https://www.openstack.org/

https://www.qt.io/
https://www.openstack.org/


dataset into six months periods for time-sensitive training-and-
testing settings.

B. Baselines

We compared DeepJIT with two state-of-the-art baselines
for Just-In-Time (JIT) defect prediction:
• JIT: This method for identifying buggy code changes was

proposed by McIntosh and Kamei [21]. The method used
a nonlinear variant of multiple regression modeling [56]
to build a classification model for automatically identify-
ing defects in commits. McIntosh and Kamei manually
designed a set of code features, using six families of
code change properties, which were primarily derived
from prior studies [3], [6]–[8]. These properties were: the
magnitude of changes, the dispersion of the changes, the
defect proneness of prior changes, the experience of the
author, the code reviewers, and the degree of participation
in the code review. Table II briefly summarizes the code
features extracted from code change properties.

• DBNJIT: This approach adopted Deep Belief Network
(DBN) [57] to generate a more expressive set of features
from an initial feature set [14]. The generated feature set,
which is a nonlinear combination of the initial features,
was put into a machine learning classifier [58] to predict
buggy commits. For a fair comparison, we used McIntosh
and Kamei [21]’s features as the initial feature set for
DBNJIT.

For all the above-mentioned techniques, we employ the
same parameters and settings as described in the respective
papers.

C. Evaluation Metric

To evaluate the accuracy of Just-In-Time (JIT) models,
we calculate threshold-independent measures of model per-
formance. Since our dataset is imbalanced, we avoid using
threshold-dependent measures (i.e., precision, recall, or F1)
since these measures strongly depend on arbitraily thresh-
olds [59], [60]. Following the previous work by McIntosh
and Kamei [21], we use the Area Under the receiver operator
characteristics Curve (AUC) to measure the discriminatory
power of DeepJIT, i.e., their ability to differentiate between
defective or clean commits. AUC computes the area under the
curve plotting the true positive rate against the false positive
rate, while applying multiple thresholds to determine if a
commit is buggy or not. The values of AUC range between 0
(worst discrimination) and 1 (perfect discrimination).

D. Training and hyperparameters

One of the key challenges in training DeepJIT is how to
select the dimension of the word vectors for the commit
message (dm) and code changes (dc), and the size of the
convolution layers (i.e., see Section III-C and Section III-D).
We evaluated the performance of DeepJIT, using 5-fold cross
validation, across different word dimensions and number of
filters. Figure 7 and Figure 8 present the AUC results of
DeepJIT for these hyperparameters. The figures show that
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Fig. 7: The AUC results of DeepJIT across two different
hyperparameters in QT project.
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Fig. 8: The AUC results of DeepJIT across two different
hyperparameters in OPENSTACK project.

DeepJIT achieves the best AUC results when the dimension
of word vectors and the number of filters are set to 64. We set
the other hyperparameters as follows: The batch size was set
to 32. The size of DeepJIT’s fully-connected layer described
in Section III-E was set to 512. These hyperparameter settings
are commonly used in prior deep learning work [61]–[64].

We trained DeepJIT using Adam method [41] with shuffled
mini-batches. We also trained DeepJIT for 100 epochs. We ap-
plied an early stopping strategy [39], [65] to avoid overfitting
problem during the training process. We stopped the training
if the value of the objective function (see Equation 12) has
not been updated in the last 5 epochs.

E. Research Questions and Results

RQ1: How effective is DeepJIT compared to the state-of-
the-art baseline?



TABLE II: A summary of McIntosh and Kamei’s code features [21].

Property Description Rationale
Si

ze Lines deleted The number of deleted lines. The more deleted or added code, the more likely that defects
Lines added The number of added lines. may appear [45], [46].

D
iff

us
io

n Subsystems The number of modified subsystems. Scattered changes may have more defects compared to focused one [47],
[48].

Directories The number of modified directories.
Files The number of modified files.
Entropy The spread of modified lines across file.

H
is

to
ry

Unique changes The number of prior changes to the modified files. More changes may lead to have defects since developers need to track
many previous changes [6].

Developers The number of developers who have changed the
modified files in the past.

Files touched by many developers may include defects [49].

Age The time interval between the last and current
changes.

More recently changed code likely contains defects compared to older
code [50].

A
ut

ho
r/

R
ev

.E
xp

er
ie

nc
e

Prior changes The number of prior changes that an actor has
participated in.

Changes produced by novices are likely to be more defective than changes
produced by experienced developers [3].

Recent changes The number of prior changes that an actor has
participated in weighted by the age of the changes
(older changes are given less weight than recent
ones).

Subsystem
changes

The number of prior changes to the modified
subsystem(s) that an actor has participated in.

Awareness The proportion of the prior changes to the mod-
ified subsystem(s) that an actor has participated
in.

Changes made by developers who are aware of the prior changes in the
impacted subsystems are likely to be less risky.

R
ev

ie
w

Iterations Number of times that a change was revised prior
to integration.

The quality of a change likely improves with each iteration. Hence,
changes that undergo iterations prior to integration may be less risky [51],
[52].

Reviewers Number of reviewers who have voted on whether
a change should be integrated or abandoned.

Changes observed by many reviewers are likely to be less risky [53].

Comments The number of non-automated, non-owner com-
ments posted during the review of a change.

Changes with short discussions may be more risky [54], [55].

Review window The length of time between the creation of a re-
view request and its final approval for integration.

Changes with shorter review windows may be more risky [51], [52].

Period 1 Period 2 Period 3 Period 4 Period 5

Long-period training data Short-period 

training data

Fig. 9: An example of choosing the training data for short-
period and long-period models. The last period is used as
testing data.

TABLE III: The AUC results of DeepJIT vs. with other
baselines in three types of JIT models: cross-validation, short-
period, and long-period.

Settings Models QT OPENSTACK

Cross-validation

JIT 0.701 0.691
DBNJIT 0.705 0.694
DeepJIT 0.768 0.751

Short-Period

JIT 0.703 0.711
DBNJIT 0.714 0.716
DeepJIT 0.764 0.781

Long-period

JIT 0.702 0.706
DBNJIT 0.708 0.712
DeepJIT 0.765 0.771

To address RQ1, we evaluated the accuracy of a trained
JIT model in predicting buggy changes using test data. In
particular, we considered three evaluation settings:
• Cross-validation: To evaluate machine learning algo-

rithm, most people use k-fold cross-validation [66] in

which a dataset is randomly divided to k folds, each fold
is considered as testing data for evaluating JIT model
while k− 1 folds are considered as training data. In this
case, the JIT model is trained on a mixture of past and
future data. In our paper, we set k = 5.

• Short-period: The JIT model is trained using commits
that occurred at one time period. We assume that older
commits changes may have characteristics that no longer
effects to the latest commits.

• Long-period: Inspired by the work [67], suggesting that
larger amounts of training data tend to achieve a better
performance in defect prediction problem, we train the
JIT model using all commits that occurred before a
particular period. We discover whether additional data
may improve the performance of the JIT model.

Figure 9 describes how the training data is selected to train
models following the short-period and long-period settings. We
used the last period (i.e., period 5) as a testing data. While
the short-period model was trained using the commits that
occurred during period 4, the long-period model was trained
using the commits that occurred from period 1 to 4. After
training short-period and long-period models, we measured
their performance using AUC evaluation metric described in
Section IV-C.

Table III shows the AUC results of DeepJIT as well
as other baselines considering the three evaluation settings:
cross-validation, short-period, and long-period. The difference



between results obtained using cross-validation, short-period,
and long-period settings is relatively small (i.e., below 2.2%)
which suggests that there is no difference between training
on past or future data. In the QT project, DeepJIT achieved
AUC scores of 0.768, 0.764, and 0.765 in three different
evaluation settings: cross-validation, short-period, and long-
period, respectively. Comparing them to the best performing
baseline (i.e., DBNJIT), DeepJIT achieved improvements of
8.96%, 7.00%, and 8.05% in terms of AUC. In the OPEN-
STACK project, DeepJIT also constituted improvements of
8.21%, 9.08%, and 8.29% in terms of AUC compared to
DBNJIT (the best performing baseline). We also employed
the Scott-Knott test [68] on the cross-validation evaluation
setting to statistically compare the differences between the
three considered JIT models. The results show that DeepJIT
consistently appears in the top Scott-Knott ESD rank in terms
of AUC (i.e, DeepJIT > DBNJIT > JIT).

RQ2: Does the proposed model benefit from both commit
message and the code changes?

TABLE IV: Contribution of feature components in DeepJIT.

Settings Models QT OPENSTACK

Cross-validation

DeepJIT-Msg 0.641 0.689
DeepJIT-Code 0.738 0.729
DeepJIT 0.768 0.751

Short-Period

DeepJIT-Msg 0.609 0.583
DeepJIT-Code 0.734 0.769
DeepJIT 0.764 0.781

Long-period

DeepJIT-Msg 0.638 0.659
DeepJIT-Code 0.727 0.738
DeepJIT 0.765 0.771

To answer this question, we employed an ablation test [69],
[70], by ignoring the commit message and the code change in a
commit and then evaluate the AUC performance. Specifically,
we created two different variants of DeepJIT, namely DeepJIT-
Msg and DeepJIT-Code. DeepJIT-Msg only considers commit
message information while DeepJIT-Code only uses commit
code information. We again used the three evaluation settings
(i.e., cross-validation, short-period, and long-period) and the
AUC scores to evaluate the performance of our models.
Table IV shows the performance of DeepJIT degrades if
we ignore any one of the considered types of information
(i.e. commit messages or code changes). The AUC scores
dropped by 19.81%, 28.45%, and 19.01% in the project QT
and dropped by 9.00%, 33.96%, and 16.00% in the project
OPENSTACK for the three evaluation settings if we ignore
commit messages. The AUC scores dropped by 4.07%, 4.09%,
and 5.23% in the project QT and dropped by 3.02%, 1.56%,
and 4.47% in the project OPENSTACK for the three evaluation
settings if we ignore code changes information. It suggests that
each information type contributes to DeepJIT’s performance.
Moreover, it also indicates that code changes are more impor-
tant to detect buggy commits than commit messages.

RQ3: Does DeepJIT benefit from the manually extracted
code changes features?

TABLE V: Combination of DeepJIT with the manually crafted
code features from [21].

Settings Models QT OPENSTACK

Cross-validation
DeepJIT 0.768 0.751
DeepJIT-Combined 0.779 0.76

Short-Period
DeepJIT 0.764 0.781
DeepJIT-Combined 0.788 0.814

Long-period
DeepJIT 0.765 0.771
DeepJIT-Combined 0.786 0.799

TABLE VI: Training time of DeepJIT

Dataset Cross-validation Short-period Long-period
QT 5 hours 43 mins 17.2 mins 1 hours 18 mins
OPENSTACK 12 hours 15 mins 10.1 mins 2 hours 37 mins

To address this question, we incorporated the code features,
derived from [21], into our proposed model. Specifically,
the code features, namely zr, are concatenated with the two
embedding vectors zm and zC , representing the salient features
of commit message and code change (see Section III-E), to
build a new single vector z as follows:

z = zm ⊕ zC ⊕ zr (13)

where ⊕ is the concatenation operator. Table V shows the
AUC results of a DeepJIT variant (referred to as DeepJIT-
Combined) that also leverages McIntosh and Kamei [21]’s
manually crafted features. We find that the AUC scores in-
creased by 1.43%, 3.14%, and 2.75% in the project QT and
they increased by 1.20%, 4.23%, and 3.63% in the project
OPENSTACK for the three evaluation settings (i.e. cross-
validation, short-period, long-period). DeepJIT-Combined im-
proved the best baseline model (i.e. DBNJIT) by 10.50%,
10.36%, and 11.02% in the project QT and 9.51%, 13.69%,
12.22% in the project OPENSTACK for the there evalua-
tion settings. This suggests that the manually extracted code
features are complementary and can be used to improve the
performance of our proposed approach.

RQ4: What are the time costs of DeepJIT?
We trained and tested DeepJIT on a NVIDIA DGX1 server

with Tesla P100 [71]. Table VI shows the time costs of
training DeepJIT for the three evaluation settings (i.e., cross-
validation, short-period, and long-period) on QT and OPEN-
STACK. Cross-validation setting requires longest training time
since we performed 5-fold cross-validation to evaluate the
performance of DeepJIT. Long-period setting requires more
training time than short-period setting since it considers all
commits occurring before a particular period. Once DeepJIT
has been trained, it only takes a few milliseconds to generate
the prediction score for a given commit.

V. THREATS TO VALIDITY

We mitigated concerns related to construct validity by evalu-
ating our approach on a publicly available dataset that has been
used in previous work. This dataset contains commits extracted
from real projects (QT and OPENSTACK) and buggy/no-
buggy labels on those commits. Threats to conclusion validity



was also minimized by using Area Under the Curve (AUC),
a standard performance measure recommended for assessing
the predictive performance of defect prediction models [72].

We have compared our approach against two baselines
which have been proposed and implemented in existing work.
Since the source code of their original implementation were
not made publicly available, we needed to re-implement our
own version of those techniques. Our implementation closely
followed the description of their work, it might not have all of
the details of the original implementation, specifically those
not explicitly presented in their papers. Our study considers
two large open source projects which are significantly different
in size, complexity and revision history. However, due to small
sample sizes, our findings may not generalize to all software
projects. Further studies are needed to confirm our results for
other types of software projects.

VI. RELATED WORK

A. JIT Defect Prediction

Some previous studies focus on change-level defect pre-
diction (i.e. JIT defect prediction). For example, Mockus
and Weiss [3] predict commits as being buggy or not in
an industrial project. They use metric-based features, such
as the number of subsystems touched, the number of files
modified, the number of lines of added code, and the number
of modification requests. Motivated by their previous work,
Kamei et al. [6] built upon the set of code change features,
reporting that the addition of a variety of features that were
extracted from the Version Control System (VCS) and the
Issue Tracking System (ITS) helped to improve the prediction
accuracy. They conduct an empirical study of the effectiveness
of JIT defect prediction on a set of six open source and five
commercial projects and also evaluate their findings when
considering the effort required to review the changes.

Aversano et al. [73] and Kim et al. [74] used source
code change logs to predict commits as being buggy or not.
For example, Kim et al. [74] used the identifiers in added
and deleted source code and the words in change logs. The
experimental results on the dataset collected from 12 open
source software projects show that the proposed approach
achieved 78 percent accuracy and a 60 percent recall.

Kononenko et al. [8] find that the addition of code change
features that were extracted from code review databases con-
tributed a significant amount of explanatory power to JIT
models. McIntosh and Kamei also used 5 families of code and
review features in the context of JIT defect prediction. Through
a case study of 37,524 changes from QT and OpenStack
systems, the paper shows that the importance of impactful
families of code change features like Size and Review are
consistently under or overestimated in the studied systems.

Comparing with these previous studies, we introduce the
JIT defect prediction model (DeepJIT) that learns a deep
representation of commits. We also evaluate the prediction
performance of DeepJIT comparing with other JIT models on
the dataset including code change properties. We extended the

dataset that McIntosh and Kamei used to analyze 6 by adding
commit messages and code changes.

B. Deep Learning Models in Defect Prediction

Deep learning has recently attracted increasing interests in
software defect prediction. Deep Belief Network (DBN) [57]
has been commonly used in previous work. For example, a
recent work [14] used the Deep Belief Network to build JIT
defect prediction models. Their approach still however rely
on the same set of metric-based features that are manually
engineered as in earlier work. Other studies (e.g., [9], [14],
[75]) also used Deep Belief Network to automatically learn
features for defect prediction. Unlike our approach, their
models are not end-to-end trainable, i.e., features are learned
separately (not using the defect ground-truths) and are then
input to a separate traditional classifier. This approach has
also been used in previous work (e.g. [76], [77]) where two
other well-known deep learning architectures (Long Short
Term Memory in [77] and Convolutional Neural Network in
[76]) was leveraged to automatic feature learning for defect
prediction. There is a risk in those approaches that the learned
features may not correlate with defect outcomes. End-to-end
models like our approach address this issue by enforcing the
models to learn and generate features that best correlate with
the target label.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an end-to-end deep learning model
(namely DeepJIT) for Just-In-Time defect prediction problem.
For a given commit, DeepJIT automatically extracts features
from the commit message and the set of code changes. These
features are then combined to evaluate how likely the commit
is buggy. DeepJIT also allows users to add their manually
crafted features to make it more robust. We evaluate DeepJIT
on two popular software projects (i.e. QT and OPENSTACK)
on three evaluation settings (i.e. cross-validation, short-period,
and long-period). The evaluation results show that compared
to the best performing state-of-the-art baseline (DBNJIT),
the best variant of DeepJIT (DeepJIT-Combined) achieves
improvements of 10.50%, 10.36%, and 11.02% in the project
QT and 9.51%, 13.69%, 12.22% in the project OPENSTACK
in terms of the Area Under the Curve (AUC).

Our future work involves extending our evaluation to other
open source and commercial projects. We also plan to extend
DeepJIT using attention neural network [78] so that our model
can explain its predictions to software practitioners. We also
plan to implement DeepJIT into a tool (e.g. a GitHub plugin)
to assess its usefulness in practice.
Dataset and Code. The dataset and code for DeepJIT
are available at https://github.com/AnonymousAccountConf/
DeepJTT MSR.
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