
PatchNet: A Tool for Deep Patch Classification
Thong Hoang1, Julia Lawall2, Richard J. Oentaryo4, Yuan Tian3, David Lo1

1Singapore Management University/Singapore, 2Sorbonne University/Inria/LIP6
3Queen’s University/Canada, 4McLaren Applied Technologies/Singapore

vdthoang.2016@smu.edu.sg, Julia.Lawall@lip6.fr, richard.oentaryo@mclaren.com,
yuan.tian@cs.queensu.ca, davidlo@smu.edu.sg

Abstract—This work proposes PatchNet, an automated tool
based on hierarchical deep learning for classifying patches by
extracting features from commit messages and code changes.
PatchNet contains a deep hierarchical structure that mirrors
the hierarchical and sequential structure of a code change,
differentiating it from the existing deep learning models on source
code. PatchNet provides several options allowing users to select
parameters for the training process. The tool has been validated
in the context of automatic identification of stable-relevant
patches in the Linux kernel and is potentially applicable to auto-
mate other software engineering tasks that can be formulated as
patch classification problems. A video demonstrating PatchNet is
available at https://goo.gl/CZjG6X. The PatchNet implementation
is available at https://github.com/hvdthong/PatchNetTool.

I. INTRODUCTION AND RELATED WORK

Deep learning techniques have recently been used to au-
tomate some software engineering tasks such as code clone
detection [1], software traceability link recovery [2], and bug
localization [3]. However, no existing work has investigated
the problem of learning a semantic representation of code
changes, i.e., patches, for classifying them into predefined
classes. Patches are composed of a short text describing a
change, the lines removed by the change, and the lines added
by the change, and all these pieces need to be considered
in a holistic way to produce a good semantic representation.
Patch classification is an important problem since many auto-
mated software engineering tasks, such as just-in-time defect
prediction [4], tangled change prediction [5], code reviewer
recommendation for a commit [6], etc. can be mapped to it.

Close to our work on patch classification is the prior work
by Tian et al. [7] that proposes an automated patch classifi-
cation approach integrating LPU (Learning from Positive and
Unlabeled Examples) [8] and SVM (Support Vector Machine)
to build a classification model. To apply LPU+SVM to patches,
Tian et al. manually defined a set of features extracted from
patches. However, this manual creation process may overlook
features that are helpful to classify patches. The chosen
features are also specific to a particular patch classification
setting (i.e., bug fixing patch identification), and a new set of
features is likely needed for other settings. In this work, we
replace this manual feature engineering step by leveraging the
power of deep learning. In particular, we construct a model
that can extract a good semantic representation capturing a
patch’s hierarchical and structural properties.

This paper presents our tool PatchNet that performs learning
on a set of patches. PatchNet performs deep patch classifica-

tion in two phases. In the training phase, it takes as input a set
of labeled patches to learn a deep learning model. This model
is then used in the prediction phase on a set of unlabeled
patches to produce scores that estimate how likely the given
patches fit the class labels. Specifically, PatchNet aims to
automatically learn two embedding vectors, representing a
commit message and a set of code changes in a given patch,
respectively. The two embedding vectors are then used to
compute a prediction score from a given patch estimating how
likely the patch is relevant to a particular class.

PatchNet is implemented as a command line tool. In the
training phase, the user provides a file of labeled patches
and the name of a folder in which to put the trained Patch-
Net model. In the prediction phase, the command used to
produce the prediction scores also takes two inputs: a file
of unlabeled patches and the name of the folder containing
the previously trained model. PatchNet also provides several
supplementary options to allow users to select hyperparameters
for the training process. PatchNet targets binary classification
tasks, however, it can also be used for multi-label classification
tasks by reducing the problem of multi-label classification to
multiple binary classification problems [9]. PatchNet currently
only supports patches on C code.

PatchNet has been applied to the task of stable patch iden-
tification in the Linux kernel. Specifically, the Linux kernel
follows a two-tiered release model in which a mainline version
accepts bug fixes and feature enhancements, and a series of
stable versions accepts only bug fixes [10]. While the mainline
targets users who want to benefit from the latest features, the
stable versions target users who value the stability of their
kernel. The stable kernel development process requires that all
patches be submitted to the mainline, and then propagated by
maintainers from there to review for inclusion in stable kernels.
The wide variation in rates at which patches are propagated by
maintainers to stable kernels across the code base suggest that
some bug-fixing patches may be being overlooked. There is
thus the potential for an automated, learning-based approach to
improve this process. Our evaluation on 82,403 recent Linux
patches shows that PatchNet outperforms the state-of-the-art
baseline (i.e., LPU+SVM), achieving precision of 0.839 and
recall of 0.907. By releasing our tool, we hope to enable others
to apply PatchNet to other patch classification tasks.

The rest of this paper is organized as follows. Section II
provides a bird’s-eye view of the PatchNet architecture. Sec-
tion III describes how PatchNet preprocesses the patch data

ar
X

iv
:1

90
3.

02
06

3v
2 

 [
cs

.S
E

] 
 2

6 
M

ar
 2

01
9

https://goo.gl/CZjG6X
https://github.com/hvdthong/PatchNetTool


before initiating the learning process. Section IV illustrates
how PatchNet can be used in various scenarios. Section V
summarizes some experiments with PatchNet. Finally, we
conclude in Section VI.

II. OVERALL DESIGN

Figure 1 shows the overall design of PatchNet. PatchNet
accepts as input a set of patches, each of which contains both
a commit message and a code change. The output of PatchNet
associates each patch with a prediction score reflecting how
likely the patch satisfies the criteria of the classification.
Our framework includes three main modules: the commit
message module, the code change module, and the classifi-
cation module. The commit message module and the code
change module transform the commit message and the code
change into embedding vectors em and ec, respectively. The
two embedding vectors are then passed to the classification
module, which computes the prediction score. In the rest of
this section, we give an overview of each of these modules.
Commit message module: The architecture of the commit
message module is the same as the one proposed by Kim [11]
for sentence classification. This module takes a commit mes-
sage as input and outputs an embedding vector that represents
the most salient features of the message. Specifically, we
encode the commit message as a two-dimensional matrix
by viewing the message as a sequence of vectors where
each vector represents a word appearing in the message. We
then apply a convolutional layer followed by a max-pooling
operation to obtain the message’s salient features.
Code change module: Similar to a commit message, a code
change can be viewed as a sequence of words. This view,
however, overlooks the structure of code changes, as needed
to distinguish between changes to different files, changes
in different hunks (contiguous sequences of removed and
added code), and different kinds of changes (removals or
additions). To address this challenge, PatchNet contains a
deep hierarchical structure that mirrors the hierarchical and
sequential structure of patch code, making it distinctive from
the existing deep learning models on source code [12]. For
the code changes in a given patch, PatchNet outputs an
embedding vector that represents the most salient features of
these changes.

The code change module contains a file module that auto-
matically builds an embedding vector representing the code
changes made to a given file in the patch. Figure 2 shows the
architecture of the file module. This module takes as input two
matrices (denoted by “–” and “+” in Figure 2) representing the
removed code and added code for the affected file in a patch,
respectively. These two matrices are passed to the removed
code module and the added code module, respectively, to
construct the corresponding embedding vectors by taking into
account the structure of the removed or added code.

The input of the removed code module is a three dimensional
matrix, indicating the removed code in the affected file of the
given patch, denoted by Br ∈ RH×N×L, where H, N , and L
are the number of hunks, the number of removed code lines

for each hunk, and the number of words of each removed code
line in the affected file, respectively. This module constructs
an embedding vector (denoted by er) representing the removed
code in the affected file. The added code module also takes
as input a three dimensional matrix, indicating the added
code in the affected file of the given patch. It follows the
same architecture as the removed code module to construct an
embedding vector (denoted by ea) representing the added code
in the affected file. These changes in the added and removed
code are padded or truncated to have the same number of
hunks (H), number of lines for each hunk (N ), and number
of words in each line (L) for parallelization. Moreover, both
modules also share the same vocabulary.

The two embedding vectors are then concatenated to repre-
sent the code changes in each affected file, i.e., ef = er ⊕ ea.
The embedding vectors of the code changes at the file level
are then concatenated into a single vector representing all the
code changes made by the patch.
Classification module: The classification module takes as
input the commit message embedding vector (em) and the
code change embedding vector (ec) (see Figure 1). These
two vectors are then concatenated to form a single vector
representing the patch, i.e., e = em ⊕ ec. The concatenated
vector e is passed to a fully-connected layer and an output
layer, which computes a probability score for the patch. If
an additional source of information is available, PatchNet can
be easily extended by concatenating an additional information
vector (denoted by ei), collected from the data, to the commit
message embedding vector and the code change embedding
vector (i.e., e = em⊕ec⊕ei) to form a new vector representing
the given patch.
Parameter learning: During the training process, PatchNet
uses adaptive moment estimation (Adam) [13] to minimize
the regularized loss function [14]. PatchNet learns the fol-
lowing parameters: the word embedding matrices for commit
messages and code changes, the filter matrices and bias of
the convolutional layers, and the weights and bias of the fully
connected layer and the output layer.

III. DATA SELECTION AND PREPROCESSING

The user is responsible for selecting commits for training
and annotating them according to the chosen classification
scheme. For each commit, preprocessing is then applied to
the commit message and the code changes. For the commit
message, PatchNet applies standard natural language prepro-
cessing techniques, such as stemming and stop word elimi-
nation. For the code changes, PatchNet detects the changed
lines using diff, and then expands these changes to include
the complete innermost enclosing simple statement, if any, or
the header of a conditional or loop, if the change occurs in
such code. Lines within the changes are annotated as error-
checking code (an if test that checks for failure of a previous
operation), error-handling code (code that performs cleanup
in case of failure of a previous operation) or normal (for
everything else), reflecting one aspect of the semantics of the
code. PatchNet keeps the names of called functions that are

2



Code change module

Log message 
module

e"

e$
a sample patch

PatchNet

FC

a fully-
connected layer 

output layer

Classification module

e

File module

Fig. 1. The overall design of PatchNet to classify stable vs. non-stable patches. A sample patch contains both a textual commit message (lines 5-12) and a
set of code changes (lines 14-28) that are applied to an affected file. em and ec are embedding vectors collected by the commit message module and code
change module, respectively. e is a single vector formed by concatenating these two embedding vectors.

removed code 

module

added code 

module

File module
an embedding 

vector

e𝑟

e𝑎

e𝒇

Fig. 2. Architecture of the file module for mapping a file in a given patch
to an embedding vector. The input of the module is the removed code and
added code of the affected file, denoted by “–” and “+”, respectively.

not defined in the current file and that occur at least five times
in the training dataset. Other identifiers are represented as a
generic “identifier” token. Because these preprocessing steps
require knowledge of the syntax of the language used by the
source code, PatchNet currently only supports C code.

IV. USAGE

In this section, we first describe the use of the preprocessor
and then illustrate several usage scenarios for the training
and classification process. Moreover, we describe a number
of PatchNet’s key hyperparameters used during the training
process.

A. Preprocessing

The preprocessing step is time consuming for large datasets,
and is thus separated from the rest of the training and classi-
fication process. The main input to the preprocessing step is a
file containing a list of commit identifiers and their labels.
The preprocessing step also needs to know the pathname
of the git tree containing the commits and a prefix used to
construct the names of the various output files. The output
is a pair of files, containing the patch data and a dictionary
for interpreting the patch data. Only the former needs to be
provided to the subsequent training and classification process.
A typical command line is:

getinfo --commit_list commit_list_file
--git /path/to/git -o training_data

B. Scenario I - Simple Command
PatchNet is implemented in Python 2.7 with Tensorflow

1.4.1,1 scikit-learn 0.19.1,2 and numpy1.14.3.3 PatchNet per-
forms deep patch classification in two phases: the training
phase and the prediction phase.

In the training phase, PatchNet takes the command-line
arguments --train indicating the training phase, --data
indicating the path of a list of labeled patches, and --model
indicating the name of the output folder in which to put the
model. A sample command that trains a model is as follows:

python PatchNet.py --train
--data training_data.out --model patchnet

This command instructs PatchNet to train a model using the
data training_data.out with the default hyperparam-
eters. In the default setting, the dimension of the embedding
vectors, the number of filters, and the number of hidden layers
are set to 32, 32, and 10, respectively. The dropout for the
training process, the regularization error, and the learning
rate are set to 0.5, 1e−5, and 1e−4, respectively. PatchNet
automatically creates a new folder with the name patchnet
(or empties a folder with that name, if it exists) and saves
a learned model, consisting of three files, in the folder. For
parallelization, the number of changed files, the number of
hunks for each file, the number of lines for each hunk, the
number of words of each removed or added code are set to 5,
8, 10, and 120, respectively.

In the prediction phase, PatchNet takes the command-
line arguments --predict indicating the prediction phase,
--data indicating the path of a list of unlabeled patches,
and --model indicating the name of the folder containing
the model. The following is a sample command to collect a
list of prediction scores for a set of unlabeled patches:

python PatchNet.py --predict
--data test_data.out --model patchnet

PatchNet has been developed and tested on the Linux
platform. However, we believe that PatchNet can be employed

1https://www.tensorflow.org/
2http://scikit-learn.org/stable/
3http://www.numpy.org/

3

https://www.tensorflow.org/
http://scikit-learn.org/stable/
http://www.numpy.org/


TABLE I
THE KEY HYPERPARAMETERS OF PATCHNET

Hyperparameters Description
--data_type Type of data (commit messages, code

change, or both) used to construct a model.
Default: both.

--embedding_dim Dimension of embedding vectors.
Default: 32.

--filter_sizes Sizes of filters used by the convolutional
layers. Default: “1, 2”.

--num_filters Number of filters. Default: 32.
--hidden_layers Number of hidden layers. Default: 16.
--dropout_keep_prob Dropout for training PatchNet. Default: 0.5.
--l2_reg_lambda Regularization rate. Default: 1e−5.
--learning_rate Learning rate. Default: 1e−4.
--batch_size Batch size. Default: 64.
--num_epochs Number of epochs. Default: 25.

on other platforms such as Windows or MacOS if all the nec-
essary libraries are installed (i.e., Tensorflow, scikit-learn, and
numpy). More details about PatchNet’s installation instructions
can be found at https://github.com/hvdthong/PatchNetTool.

C. Scenario II - Tuning PatchNet’s Hyperparameters

Table I highlights the key hyperparameters that control how
PatchNet trains its model. The --data_type flag allows the
user to choose what information to include from the patches
(i.e., commit messages, code changes, or both). The user can
also change other hyperparameters of the model such as the di-
mension of embedding vectors (i.e., “--embedding_dim”),
number of filter sizes (i.e., “--filter_sizes”), number of
filters (i.e.,“--num_filters”), etc. The following example
illustrates how to execute PatchNet with custom settings:

python PatchNet.py --train
--data data.out --model patchnet
--embedding_dim 128 --filter_sizes "1,2"
--num_filters 64

V. STABLE PATCH IDENTIFICATION

We have applied PatchNet to the problem of identifying
Linux kernel bug-fixing patches that should be backported
to previous stable versions. Based on a set of 42,408 stable
patches and 39,995 non-stable patches drawn from Linux
kernel versions from v3.0 (July 2011) to v4.12 (July 2017),
we trained and tested the PatchNet model using its default
hyperparameters following 5-fold cross-validation. Considered
patches are limited to 100 lines of changed code, following the
Linux kernel stable patch guidelines. Non-stable patches in the
dataset are chosen to have the same size properties (number
of files and number of changes lines) as the stable ones.

Table II shows the performance (i.e., accuracy, precision,
recall, and F1) on this problem of LPU+SVM [7] and three
variants of PatchNet: PatchNet-C, PatchNet-M, and Patch-
Net. PatchNet-C uses only code change information while
PatchNet-M uses only commit message information. PatchNet
uses both commit message and code change information.
Accuracy, precision, recall, F1, and AUC for the stable patch
identification problem drop by 15-20% if we ignore code

TABLE II
CONTRIBUTION OF COMMIT MESSAGES AND CODE CHANGES TO

PATCHNET’S PERFORMANCE

Accuracy Precision Recall F1 AUC
LPU+SVM 0.731 0.751 0.716 0.733 0.731
PatchNet-C 0.722 0.727 0.748 0.736 0.741
PatchNet-M 0.737 0.732 0.778 0.759 0.753
PatchNet 0.862 0.839 0.907 0.871 0.860

changes and 14-17% if we ignore the commit message,
showing the interest of a model that incorporates both kinds
of information. Table II also shows that PatchNet outperforms
the state-of-the-art baseline (i.e., LPU+SVM) for the task of
stable patch identification.

VI. CONCLUSION

In this work, we present PatchNet, a tool that learns a
semantic representation of patches for classification purposes.
PatchNet contains a deep hierarchical structure that mirrors
the hierarchical and sequential structure of commit code,
making it distinctive from the existing deep learning models
on source code. We have demonstrated the tool’s applicability
in identifying stable patches in Linux kernel. We encourage
future researchers to benefit from PatchNet by applying it
to other tasks that can be mapped to a patch classification
problem. PatchNet is open-source and can be run from the
command line with simple options.

Acknowledgement. This research was supported by the Singa-
pore National Research Foundation (award number: NRF2016-
NRF-ANR003) and the ANR ITrans project.

REFERENCES

[1] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in ASE, 2016, pp. 87–98.

[2] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in ICSE, 2017.

[3] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug lo-
calization with combination of deep learning and information retrieval,”
in ICPC, Buenos Aires, Argentina, 2017, pp. 218–229.

[4] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” Empirical Software Engineering, 2016.

[5] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! are you
committing tangled changes?” in ICPC. ACM, 2014, pp. 262–265.

[6] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in ICSE Companion. IEEE, 2016, pp. 222–231.

[7] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,”
in Proc. of ICSE. IEEE Press, 2012, pp. 386–396.

[8] F. Letouzey, F. Denis, and R. Gilleron, “Learning from positive and
unlabeled examples,” in ALT. Springer, 2000, pp. 71–85.

[9] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[10] G. K. Lee and R. E. Cole, “From a firm-based to a community-
based model of knowledge creation: The case of the Linux kernel
development,” Organization science, vol. 14, no. 6, pp. 633–649, 2003.

[11] Y. Kim, “Convolutional neural networks for sentence classification,” in
EMNLP, 2014, pp. 1746–1751.

[12] X. Huo and M. Li, “Enhancing the unified features to locate buggy files
by exploiting the sequential nature of source code,” in IJCAI, 2017.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[14] S. S. Haykin, Kalman filtering and neural networks. Wiley Online
Library, 2001.

4

https://github.com/hvdthong/PatchNetTool

	I Introduction and Related Work
	II Overall Design
	III Data selection and preprocessing
	IV Usage
	IV-A Preprocessing
	IV-B Scenario I - Simple Command
	IV-C Scenario II - Tuning PatchNet's Hyperparameters

	V Stable Patch Identification
	VI Conclusion
	References

