
Practitioners’ Views on Good Software
Testing Practices

Pavneet Singh Kochhar∗, Xin Xia†?, David Lo‡
∗Microsoft, Canada

†Faculty of Information Technology, Monash University, Australia
‡School of Information Systems, Singapore Management University, Singapore

pavneetk@microsoft.com, xin.xia@monash.edu, davidlo@smu.edu.sg

Abstract—Software testing is an integral part of software
development process. Unfortunately, for many projects, bugs are
prevalent despite testing effort, and testing continues to cost
significant amount of time and resources. This brings forward
the issue of test case quality and prompts us to investigate what
make good test cases. To answer this important question, we
interview 21 and survey 261 practitioners, who come from many
small to large companies and open source projects distributed
in 27 countries, to create and validate 29 hypotheses that
describe characteristics of good test cases and testing practices.
These characteristics span multiple dimensions including test case
contents, size and complexity, coverage, maintainability, and bug
detection. We present highly rated characteristics and rationales
why practitioners agree or disagree with them, which in turn
highlight best practices and trade-offs that need to be considered
in the creation of test cases. Our findings also highlight open
problems and opportunities for software engineering researchers
to improve practitioner activities and address their pain points.

I. INTRODUCTION

Testing is a crucial element in the software development
lifecycle. The purpose of testing is to ensure that a soft-
ware product meets its functional as well as non-functional
requirements. The increase in size and complexity of soft-
ware has further necessitated the need of software testing as
bugs can have serious implications on the economy [1]. Test
cases are a central piece in testing and practitioners put in
a significant amount of time writing and maintaining them.
However, despite testing effort, it is often seen that bugs
appear in programs. Moreover, for many projects, testing effort
continues to be high as systems evolve. These bring forward
the issue of test case quality and prompt us to investigate the
question of what make good test cases.

Several empirical studies have looked into various aspects
of testing such as coverage, mutants, bug detection, and
automated test generation tools [2]–[5]. While many of these
studies consider automatically generated test cases, most test
cases today are created manually – c.f., [6]. Furthermore,
studies described above only analyze artifacts that practitioners
make (e.g., code and bug reports) rather than surveying or
interviewing practitioners. The latter is often needed to get
deeper insights into rationales behind practitioner actions.

The closest work to our study is by [7], which surveys
developers to understand motivation for writing unit tests,

?Corresponding author

main activities during unit testing, how developers write unit
tests, and usage of automated unit test tools. They also ask
respondents about importance of different aspects such as
coverage, execution speed, robustness, etc. when writing new
test cases. The study shows that the developers perform unit
testing out of conviction and management requirements and
73% mention strong desire to have more test cases. Our
study extends the above-mentioned study by going beyond
unit testing, and investigating many more factors practitioners
consider while writing test cases (e.g., test cases’ contents,
size & complexity, maintainability, etc.) Furthermore, different
from the above study, we conduct interviews before doing a
survey with large number of practitioners and ask rationales
for selecting ratings.

While the above study looks particularly into unit testing
practices, our study investigates many more factors such as
contents, size & complexity, maintainability etc. practitioners
consider while writing test cases.

In this study, we complement the existing empirical studies
that investigate test case quality by conducting interviews
with industrial and open-source practitioners to understand the
characteristics of good test cases and testing practices. We val-
idate the hypotheses that we formulate from the interviews by
doing a survey on 261 practitioners from Facebook, Microsoft,
Google, LinkedIn, Salesforce, other small to large companies,
and top 650 projects (ranked based on their popularity, i.e.,
number of stars + number of forks) on GitHub. Our study
produces 29 validated hypotheses on characteristics of good
test cases in several dimensions: test case contents, size
and complexity, coverage, maintainability, bug detection, and
others.

The following is our list of contributions:
1) We interview and survey hundreds of industrial and

open-source practitioners from 27 countries to investigate
characteristics of good test cases.

2) We provide a list of 29 characteristics of what make good
test cases in six dimensions: test case contents, size and
complexity, coverage, maintainability, bug detection, and
others. These characteristics can give practitioners insight
on factors that they need to consider for the creation of
test cases and follow good testing practices.

3) We describe rationales why practitioners agree or dis-
agree with each of the characteristics and in the process

highlight trade-offs and special circumstances that prac-
titioners need to consider in the creation of test cases.

II. RESEARCH METHODOLOGY

Our study consists of two parts: open-ended practitioner
interviews and a validation survey. The goal of the first part
(Section II-A) is to get insights into practitioner views to help
us formulate a set of hypotheses. These hypotheses are then
checked by the validation survey (Section II-B) which is sent
to a large number of practitioners (i.e., hundreds of them).

A. Open Ended Interviews

1) Participants: We contact the top 42 practitioners who
contributed the most to Apache projects hosted on GitHub
(ranked based on their number of commits), and practitioners
from our industry partner in China to find practitioners who are
willing to spend a block of their time to get interviewed. Many
Apache practitioners are highly experienced and many Apache
projects are well-known. This motivates us to pick Apache
practitioners as our candidate interviewees. Our industry part-
ner in China, i.e., Insigma Hengtian [8], is a large software
outsourcing provider in China. Its service include delivering
test cases (i.e., test outsourcing) and solutions for its clients
which include Fortune 500 companies. We pick Hengtian due
to its long experience as a test outsourcing provider and our
prior experience conducting research with them – c.f., [9]–
[11]. Many practitioners in the company have created a large
number of test cases for many external systems belonging to
many clients coming from different industries and parts of the
globe.

Following [12], to get more participants, we use several
ways to conduct interviews: face-to-face, via Skype, via email,
and via an online form. At the end, we get 5 participants
from Apache who are willing to be interviewed – either
via Skype, email, or online form. These participants include
members of Apache Hadoop, Hive, SystemML, Commons-
Math, Sling, etc. with an average professional experience of
20 years. We also get 16 participants from Hengtian who are
willing to be interviewed face-to-face or via online form. The
average experience of these practitioners is 4 years. In total,
we interview 13 practitioners face-to-face or via Skype, and 8
practitioners via email or online form. We also translate our
questions to Chinese to make it easier for respondents from
China.

2) Protocol: Asynchronous: via email or online form.
We first ask participants some demographic questions (e.g.,
their number of years of professional experience, etc.). Next,
we ask a set of open-ended questions including:
a) How would you define a good and a bad test case?
b) What criteria do you use to characterize a test case quality?
c) What factors do you consider while writing test cases?
d) What kinds of issues do you face in the creation and
management of test cases?
The participants respond to these questions in writing via an
online form or through email.

Synchronous: face-to-face or via Skype. We start the in-
terview by describing our study and asking for permission
to record the interview. Then, initial questions which are
related to the participant demographics are asked. Next, we
start our discussion which is loosely guided by a set of
open-ended questions which we prepare in advance. These
questions are the same questions that we ask participants who
prefer to provide their responses via email or online form. We
encourage the practitioners to talk in detail about any relevant
topic which our questions do not cover. We ask follow up
and clarification questions for answers we find interesting. At
the end of the interview, we allow the participants to provide
suggestions, comments, and opinions about writing better test
cases. The interviews typically last between 30 minutes to 1
hour.

3) Data Analysis: At the end of the interviews, we create
interview transcripts manually by replaying the recordings.
These transcripts are then analyzed to create a set of hypothe-
ses. We also consider various blog posts, online articles and
past experience of authors as software engineers to supplement
the information from interviews to create hypotheses. We
group similar hypotheses into a small set of dimensions. All
the authors were involved in creating and categorizing the
hypotheses. Table I lists the hypotheses that we have created
divided into seven dimensions. We choose to create hypotheses
that can hold true for testing at various levels of granularity
(unit, integration, or system). These hypotheses are the input
of the second part of our study (i.e., validation survey).

B. Validation Survey

1) Respondents: In the validation survey, we try to get
as many practitioners as possible to support or refute our
hypotheses. We follow a multi-pronged approach to get survey
respondents:

• First, we contact professionals in our network who are
working for various organizations such as Facebook, Mi-
crosoft, Google, Box.com, LinkedIn, Salesforce, Infosys,
Tata Consultancy Services (TCS) and many other small
to large companies in various countries. We ask them to
fill in our survey and distribute it to their friends and
colleagues. Doing this helps us in getting diverse set of
responses from industrial practitioners around the world.

• Second, we invite people working on the top 650 most
popular open source projects in GitHub (based on the
sum of their number of stars and number of forks). Many
projects in GitHub are “toy” projects, and thus, similar to
prior studies, e.g., [13], we only consider highly popular
ones. We analyze the commit history of practitioners and
rank them based on the number of commits in which a test
file was added or edited. Following [14], we heuristically
identify test files by looking for the occurrence of the
word “Test” in the file name. We send invitations to
the top 1,000 practitioners who have committed at least
10 commits in which at least a test file was changed
in each commit. Doing this helps us in getting diverse
set of responses from open source practitioners around

TABLE I
LIST OF HYPOTHESES. THE THIRD COLUMN CORRESPONDS TO THE

AVERAGE LIKERT SCORE FROM THE SURVEY RESPONSE.

Contents
H1 A good test case is specific or atomic, i.e., one test case should

be testing one aspect of a requirement.
3.93

H2 Test cases in a test suite should be self-contained, i.e., independent
of one another.

3.95

H3 Good test cases should check for normal and exceptional flow. 4.47
H4 Test cases must perform boundary value analysis i.e., take as input

values at the extreme ends of an input domain.
4.24

H5 Test cases should serve as a good reference documentation. 3.93
Size and Complexity

H6 Most test cases should be small in size (in terms of its lines of
code).

3.85

H7 Large test cases are often hard to understand and maintain. 3.73
H8 Large test cases may be needed to detect difficult bugs. 3.59
H9 A good suite contains lots of small test cases (with fewer LOC)

and few large test cases.
3.97

H10 Increased complexity in a test case can lead to bugs in the test
code itself.

4.04

Coverage
H11 Code coverage is necessary but not sufficient. 3.97
H12 Code coverage should be used to understand what is missing in

the tests and create tests based on that.
3.97

H13 Higher coverage does not mean that a test suite can detect more
bugs.

4.02

H14 Each test case should have a small footprint, i.e., the amount of
code it executes.

3.92

H15 A test case that is designed to maximize coverage is often long,
not understandable and brittle (i.e., breaks easily).

3.50

H16 Designing test cases to cover different requirements is often more
important than designing test cases to cover more code.

4.00

Maintainability
H17 A good test case should be well-modularized. 4.62
H18 A good test case should be readable and understandable. 4.58
H19 Test cases should be simpler than the code being tested. 4.20
H20 Test code should be designed with maintainability in mind since

evolution of code often requires changing of test code.
4.16

H21 Traceability links should be maintained between test code, require-
ments, and source code.

3.97

Bug Detection
H22 A good test case should attempt to break functionality to find

potential bugs.
4.11

H23 Test even the simplest things that cannot go wrong. 3.89
H24 During maintenance, when a bug is fixed, it is good to add a test

case that covers it.
4.40

H25 Test assertions can help detect subtle errors that might otherwise
go undetected.

4.51

H26 Adding common errors and possible causes as comments in test
code is helpful to debug failures.

3.98

Others
H27 A good test case should be designed such that its results are

deterministic.
4.07

H28 Test cases in a test suite should not have side effects so running
a test before or after another should not change the results.

4.28

H29 Test cases should use tags or categories, such as slow tests, fast
tests etc., so as to be able to run a specific set of tests easily at a
time.

3.93

the world. Of the 1,000 invitations, 64 of these are not
successfully delivered and we receive one automatic reply
notifying the receiver’s absence.

In total, we receive 261 responses. The top two countries
where the respondents come from are China and United States.
The professional experience of these 261 respondents vary
from 0.2 years to 30 years, with an average of 6.22 years and
median of 5 years. 53% of the respondents have a Bachelor’s
degree and 33% have an advanced degree, i.e., Master’s or
Ph.D. Our respondents are spread out in 29 countries.

2) Protocol: Our validation survey consists of two parts:
hypotheses and rationales. We describe them below:

1) In the first part, we present our hypotheses as statements

that we ask our respondents to rate. Each respondent can
rate each statement as: strongly agree, agree, neutral, dis-
agree, strongly disagree, and N/A or I don’t understand.
We include the option N/A or I don’t understand to pre-
vent respondents providing arbitrary ratings to hypotheses
that they are not clear about. Respondents can also choose
not to provide any rating to any question.

2) Although ratings help us to understand respondent po-
sitions on the hypotheses, they are not sufficient for
us to understand respondent reasonings. Thus, in the
second part, we ask a few additional questions. First,
we randomly select two statements that a respondent
has rated as strongly agree or agree. We then ask the
respondent the reason why he/she has provided such
ratings. Second, we randomly select two statements that a
respondent has rated as strongly disagree or disagree and
ask he/she to provide his/her reasons. Answering these
questions is optional.

3) Data Analysis: Hypotheses part: We collate the ratings
that the practitioners provide to the hypotheses. We convert
each rating to a Likert score from 1 to 5. We map strongly
disagree, disagree, neutral, agree, and strongly agree to 1, 2,
3, 4, and 5, respectively. We then compute the average Likert
score of each statement and plot Likert scale graph. A Likert
scale graph () is a bar chart which shows number
of responses corresponding to strongly agree, agree, neutral,
disagree, strongly disagree, and N/A or I don’t understand,
respectively.
Rationale part: We collect arguments that practitioners have
provided to support or refute each hypothesis. We then sum-
marize these arguments.

III. TEST CASE CHARACTERISTICS

In this section, we describe characteristics of good test
cases. We first describe how software engineers rated the 29
different hypotheses that we have grouped into 6 dimensions:
test case contents, size and complexity, coverage, maintain-
ability, bug detection, and others. And then we present the
rationales that the software engineers provided to support or
refute their ratings. We consider the following three research
questions:

• RQ1: How respondents rate the 29 hypotheses describing
characteristics of good test cases? (Section III-A)

• RQ2: What are the reasons why practitioners agree or dis-
agree with certain test case characteristics? (Section III-B)

A. RQ1: Ratings of the 29 Hypotheses

The third column of Table I presents the average Likert
score of the 29 hypotheses. Participants varying degree of
agreement to the hypotheses; the average Likert score varies
from 3.50 (H15: A test case that is designed to maximize
coverage is often long, not understandable and brittle) to 4.58
(H17: A good test case should be well-modularized.). Thirteen
out of the 29 hypotheses receive an average Likert score of
4.0 (i.e., agree) and above.

B. RQ2: Reasons

To answer RQ2, we present arguments that support or refute
each hypothesis as provided by our interview participants and
survey respondents.

1) Contents: Intuitively, the contents of a test case would
significantly affect its quality. In this dimension, we investigate
practitioners agreement on some hypotheses that describe
characteristics of good test cases based on their contents.

Specific (H1).
In general, practitioners advice that a test case should be

specific, i.e., it should try to test only one functionality. Out
of the responses that we receive, 96 indicate strong agreement
and 92 agreement with hypothesis H1. The overall Likert score
is 3.93 (i.e., close to “agree”). The following are some of the
comments that support (U) or refute (D) the hypothesis:

U “I prefer atomic things or smaller test cases that test one
thing if possible. It’s easy to understand, easy to manage.”

U “One test case should be testing one aspect of a use case.”
D “...If you are in a scenario where test is actually taking little

extra time then at least I do not see a problem in verifying
multiple different things in the same test or testing multiple
scenarios in the same test.”

From the above comments, we note that many practitioners
support this hypothesis since specific (or atomic) test cases
are easier to understand. However, in cases where tests take
longer to run, testing multiple things in one test case may be
a more efficient alternative.

Self-Contained (H2).
Most respondents express that test cases should be self-

contained with no or minimal dependency on other test cases
present in a suite. The average Likert score for this hypothesis
is 3.95 (i.e., mostly “agree”). Interestingly, 48, 19, and 6
respondents neither agree/disagree (i.e., they are neutral), dis-
agree, or strongly disagree with this hypothesis, respectively.
The following are some comments that support or refute the
hypothesis:
U “The more isolated the tests, the better. ”
U “I try to be maybe have 3 or 4 instance variables within

the setup and I am using the nested classes to minimize the
scope so you are not sharing, not a lot of globals floating
around, fairly localized to where they are used but a bit of
reuse is fine I think.”

D “Some test cases may share commonalities.”
D “There may be inherent relationships or dependencies be-

tween test cases.”
From the above comments, again we note that respondents

prefer self-contained test cases since they are easier to un-
derstand. On the other hand, we note that there is a trade-
off between the simplicity achieved by self-contained test
cases and reuse potentials. Respondents that disagree with this
statement often highly value reuse over simplicity. Some test
cases are inherently related or dependent on one another and
keeping them self-contained may mean a lot of duplication.

Consider Different Flows (H3).
Almost all of our respondents strongly agree (140 respon-

dents) or agree (107 respondents) that it is important for test
cases to check both normal and exceptional flow. The Likert

score for this statement is 4.47 which is substantially higher
than the scores for H1 and H2. We do not receive any comment
that refutes the hypothesis. The following are comments that
support the hypothesis:
U “You focus on the happy case to verify the business func-

tionality was needed ... then [write tests] to make sure any
edge cases have been properly addressed.”

U “A test case will typically have some assertions to check
for the happy cases ...It is important to write test cases for
failure path... ”

This hypothesis seems to be more or less universally sup-
ported, at least among the practitioners whom we interview
and survey. Among the five hypotheses in the content dimen-
sion, this hypothesis gathers the most support.

Perform Boundary Value Analysis (H4).
Boundary value analysis refers to testing at the boundaries

between partitions of the input space, which include both valid
and invalid values. This hypothesis receives the second highest
support among the five hypotheses with an average Likert
score of 4.24. The comments that we receive include:
U “Test cases should be considered as a whole. Some must

address nominal input with intermediate values well within
the application domain, some must address nominal input
with special values (zero, input at boundaries, null size),
some must address invalid input in order to check errors
are correctly detected.”

U “You have always want to test corner cases because that is
where things tend to go wrong.

D “Too much effort for too little benefit most of the time.”
D “Not every situation requires boundary value analysis.”

There is higher probability of finding bugs at the boundaries
of input partitions (i.e., corner cases) as they are often the less
tested parts of the code. However, there is a trade-off between
time and effort and thus, respondents suggest performing this
analysis in specific circumstances.

Serve as a Reference Documentation (H5).
Well commented, named and designed test cases may serve

as a good reference documentation. Most of our survey respon-
dents agree that test cases should be designed as such – its
average Likert score is 3.93. This hypothesis however receives
the lowest support among the hypotheses in this dimension.
The following are some comments that we receive:
U “I am a big fan of using tests as reference documentation.

Writing readable tests so that you don’t have, if want, to
document the details of an API... If you can stay at the
overview level in the documentation and details in the tests,
it is very efficient.”

U “Test cases are often written before documentation exam-
ples and should provide example use cases for functional-
ity.”

D “Writing easy to understand tests is hard and is not worth.
It’s better to have separate reference code, which can be
runnable as tests.”

From the comments, practitioners view test cases as a
good complement to traditional documentation (e.g., API’s
textual documentation). High-level overview can be given in
the documentation, while details are pushed to test cases.
However, some practitioners push back on the idea because
writing easy-to-understand test cases is hard, and they view
the benefit is not worth the effort. Previous research on over

1400 projects shows that 96.44% of the unit test methods
did not have outer comments and 85.98% did not have inner
comments [15]. This might explain the lower score obtained
for this hypothesis as “Comments need to be maintained which
adds complexity to the task.” [15].

2) Size and Complexity: Size and complexity of test cases
are important attributes to consider. The size and complexity
of a piece of code have often been associated to its quality
[16]. Unfortunately, no or little study has focused on test code.
In this dimension, we consider five hypotheses that describe
characteristics of good test cases in terms of their size and
complexity, and investigate developer support, or lack of, to
them.

Small in Size (H6).
A large number of respondents agree that test cases should

be small whereas some are neutral or even disagree with
this hypothesis (average Likert score = 3.85). Some of the
comments we receive are:
U “A good test should be short, should fit on to 10 lines or

less of code, is self-contained, has a clear intent and its
scope is obvious...”

U “I am more a fan of many small tests than few big ones.”
U “Each test method should test one feature.”
D “Some codes need complicated test logic to cover logics of

it.”
D “I am careful to keep the simplicity, but not care the number

of lines.”
Practitioners mention that as test cases should be clear, test

only one functionality, and should be small in size as larger
test cases are often complex.

Understandability and Maintainability of Large Test Cases
(H7).

In general, practitioners confirm that large test cases are hard
to understand and maintain (average Likert score = 3.73):
U “Large cases attempting to do everything at once are

difficult to understand and more importantly difficult to
maintain. When code changes, the tests must be rewritten,
which is bad.”

U “For me it is a bad sign if test becomes long and compli-
cated. It can also be a sign of bad design.”

D “Large test cases are often necessary, especially in testing
cases that require bootstrapping.”

D “It is Ok to have some for smoke testing...It is the exception
not the rule and it is for a particular purpose.”

From the comments, large test cases are often viewed
as harder to understand and maintain and can also be an
indication of bad design (either in the test code or in the
system under test (SUT)). However, they might be required
for specialized testing or for cases that require bootstrapping
– these should be exceptions and not the rule though.

Large, Complex Test Cases and Difficult Bugs (H8).

Previously, practitioners express that large test cases are
hard to understand and maintain (H7). In this hypothesis, we
would like to confirm whether practitioners agree that large
test cases can be useful to detect difficult-to-find bugs. We
find that 150 respondents strongly agree or agree with this
hypothesis. A substantial number of respondents choose to be

neutral or disagree (73 neutral respondents, and 35 respondents
who disagree or strongly disagree). The average Likert score is
3.59 which is the lowest among hypotheses in this dimension.
Some of the comments that we receive are:
U “Complex test cases will cover integration environment and

they can lead to some very good bugs being discovered.”
U “Sometimes the most awkward bugs appear when a series

of steps are happening in the code.”
D “...will detect less bugs ultimately because they would be

harder for us to understand and maintain. It goes together
with the readability factor. ”

D “...strategy matters, not the size of test case.”

From the comments, many practitioners agree that long and
complex test cases can detect some hard-to-find bugs since
they can cover long series of steps that cannot be simulated
by simple test cases. However, some practitioners disagree by
stating that poor understandability will make such test cases
less able to find bugs in the long run. Others argue that what
matters is the strategy practitioners apply for testing – with a
good strategy, small and simple test cases can be sufficient to
find many hard-to-find bugs.

Large and Small Test Case Mix (H9).
Most practitioners are of the opinion that a test suite should

contain a good mix of many short and a few large test cases
(average Likert score = 3.97). Few of the comments that came
out during interview and survey are:
U “A combination of lots of small tests and some large tests

is ideal but you cannot throw away large test by a lot of
small tests.”

U “Small tests eg unit tests and large tests like fuzzers,
integration tests, etc will find *different* bugs.”

U “This would cover most situations of requirements.”
D “For me it is better to have lots of [small] tests.”

Complexity and Bugs in Test Cases (H10).
In our interviews, several practitioners state that test cases

can often become long and hard to manage. This increased
complexity of test cases can lead to bugs in the test code. A
large number of our survey respondents agree with this hy-
pothesis (average Likert score = 4.04). Some of the comments
practitioners made to justify their support or lack of support
are:
U “If the test is really hard to read and understand and it is

complex in its own right there is a good chance that... there
is a bug in the test itself.”

U ‘We might put ourselves at risk of not understanding the
test when we come back to it later. ”

D “Complex test cases make an environment less productive,
but do not directly cause bugs.”

In general practitioners find that there is a higher likelihood
of bugs appearing in the test code if the complexity of test
cases increases. Empirical evidence shows that projects often
have bugs in test code and they can cause false alarms, which
correspond to test failure when production code is correct [17].
This hypothesis received the maximum agreement in the size
and complexity dimension.

3) Coverage: Code coverage, the amount of code covered
by test cases, is often used as a measure of test quality.
Coverage information can help practitioners in finding parts
of the code which are not covered and might contain bugs.

Code Coverage, Necessary but Insufficient (H11).
A hundred and ninety four of our respondents support

(agree or strongly agree with) this hypothesis – resulting in an
average Likert score of 3.97. The following are some of their
comments that support or refute the hypothesis:
U “The more coverage you got, generally speaking, the bet-

ter.”
U “It does not measure the combinatorial explosion of possi-

ble interactions.”
D “I could certainly write tests that provide good code cov-

erage but do not actually test what users are going to use
from the software.”

D “Code coverage is nice but not all that useful. Running a
line isn’t an indicator that you’ve tested it. ”

In general, many practitioners find that code coverage is a
good starting point as it gives information whether we have
exercised a piece of code. However, some practitioners argue
that covering a code may not mean that it has been tested, and
a test case that covers a code may not mimic what real users
would do in practice. This is in line with the past research
which advises developers not to use coverage blindly [3], [4].

Code Coverage and New Test Cases (H12).
Practitioners in general agree that coverage information

can be leveraged to understand shortcomings of current test
cases to write new tests (average Likert score = 3.97). Some
practitioners provide these rationales:
U “Use code coverage to understand what is missing in the

tests and then create intelligent test based on that.”
U “I look at my code coverage, I am not at 100% then I know

I must have not got any tests for place order where there
is probably some interesting business functionality”

D “I prefer to focus on features, rather than code coverage.”

Higher Coverage and Detecting More Bugs (H13).
In general, practitioners agree that a higher coverage does

not mean that a test suite can detect more bugs. This hypothesis
receives an average Likert score of 4.02, which is the highest
for hypotheses in this dimension. More than 200 practitioners
agree or strongly agree with this statement. Here are some of
the comments:
U “Because high coverage is useless unless you are also

making the right assertions.”
U “Because code coverage does not consider semantic of the

code.”
D “More coverage, less chance of bugs.”
D “Hitting all code passes increases probability of finding

edge test case that was not thought of.”
From the comments, many practitioners complain that code

coverage does not consider the semantic of the code and is
useless without good assertions. However, eighteen practition-
ers whom we survey disagree with the statement stating that
coverage has its place in detecting bugs.

Small Footprint (H14).
This hypothesis is a slightly controversial one; only a slight

majority of our survey respondents (52.17%) agree or strongly
agree that a single test case should have a small footprint
(i.e., the amount of code it executes). Still, the average Likert
score is 3.92, and thus the balance tips towards agreement with
many practitioners (85 of them) on the fence. The following
are the rationales that practitioners give to support or refute
the hypothesis:

U “Developer test should test a single responsibility but does
not necessarily mean a method ”

U “Simple. The larger the footprint the more bottlenecks there
are in the testing process and the slower the testing process
is.”

D “...this is overrated. Tests should be maintainable...But
worshipping this principle can often be the enemy of
maintainable tests.”

D “If you can write a simple test that covers a lot of code,
that can make writing tests more efficient.”

The proponents of this hypothesis argue that a single test
case should have a single responsibility. Also, test cases that
cover a lot of code can cause bottlenecks and slow down the
testing process. Others disagree that by covering as much code
as possible with as few test cases, one can save the cost of
writing test cases.

Maximizing Code Coverage, and Long, Not Understand-
able, and Brittle Test Cases (H15).

This hypothesis is also a slightly controversial one; only
54.25% of the respondents agree or highly agree that a test
case that is designed to maximize coverage is often long,
not understandable and brittle (i.e., breaks easily). Although
this hypothesis receives the lowest agreement among others
in this dimension, the balance again tips towards agreement
with an average Likert score of 3.50. The following are some
comments given by practitioners:
U “If you try to over-focus on code coverage people will try

to go through all sorts of loops... it is quite difficult. You
have to go through a lot of effort to trigger that to occur
and it is not just worth the effort.”

U “Because the desire for coverage often makes people lose
sight of the true goal of a given test case.”

D “Optimizing for coverage doesn’t mean complicated tests
unless the code being tested is complicated.”

D “The more code I can test with a maintainable test the
better.”

Most practitioners agree that focussing solely on coverage
can create problems since people can often lose sight on
the true goal of testing, and start creating peculiar code
– one respondent puts it as ”all sorts of loops” – which
can be harmful. However, 46 respondents disagree and 6
strongly disagree with the hypothesis stating that one can often
optimize coverage without causing issues mentioned in the
hypothesis.

Code Versus Requirement Coverage (H16).
Most practitioners agree that requirement coverage is more

important than code coverage resulting in the average Likert
score of 4.00. We only receive positive comments supporting
this hypothesis which include:
U “The core goal for me would not be to maximize code

coverage. It will be to maximize testing basic case and
corner cases for a feature.”

U “I don’t believe it is an effective use of time to test the most
basic of code (getter/setter, etc...)”

U “Code coverage is a technical measure that isn’t directly
related to user-facing features. User-facing features are the
actual thing that an application should care about.”

From the comments, we find that practitioners prefer re-
quirement coverage, since some code is of little value and
is less likely to be buggy (e.g., getter or setter methods).
Moreover, test cases that achieve requirement coverage often
mimic well how clients would use a piece of SUT.

4) Maintainability: Software system evolves and so should
its test cases. Maintainability of code (including test code) is
an important aspect as it helps to ensure that a software system
continues to serve its intended purpose. In a recent survey
conducted by Li et al. [15] on over 200 practitioners, 89.15%
developers “agree” or “strongly agree” that maintenance of
good test cases is important for the quality of a system.

Well-Modularized (H17).
Most respondents agree or strongly agree that test cases

should be well modularized. Among the hypotheses in this
dimension, this one receives the highest Likert score of 4.62.
Only 4 respondents disagree or strongly disagree with this
hypothesis. Following are some of the comments that support
or refute the hypothesis:
U “Test code is code. If the test is simple for people to

understand, it should be short and simple in the code.”
U “...It might mean that you are trying to test too much stuff

at once and maybe you should break that down into smaller
modules or units.”

U “It is easier to maintain it if it is...”
D “Tests that are too modularized, tend to make debugging of

regressions more complex.”
From the comments, most practitioners agree that if a

test case is large, it should be broken down into smaller
modules or units, since it would then be simpler to read and
easier to change as a software system evolves. However, too
modularized test may make debugging more complex.

Readable (H18).
More than 96% of the respondents agree that test cases

should be readable and understandable. Practitioners give a
number of supportive comments, including the following:
U “Like any code, if you have to maintain it you better be

able to understand it.”
U “Tests reflect intent. Tests should tell a story of how the

code is supposed to work. Tests are one of our best tools
for understanding the way code is meant to work. Tests
communicate across time to future developers about the
code.”

From the comments, we find that practitioners highly value
readable and understandable code. A few respondents mention
that this is hard to achieve though. One of them mentions:
“It is challenging to keep the unit test looking nice.” We do
not receive any comments that refute this hypothesis. Similar
observations were made by previous research works - [7]
observe that test cases that are difficult to understand can make
it harder to fix failing tests. Li et al. find that over 60% of the
developers indicated a “moderate” to “very hard” difficulty
with respect to understanding the test cases [15]. These works
strengthens the argument that tests should be readable and
understandable.

Simpler than Tested Code (H19).
57.42% of the respondents agree or strongly agree that test

code should be simpler than the tested code, while 16.41%
indicate their disagreement or strong disagreement (average
Likert score = 4.20). We receive the following rationales:
U “If the test is complicated it is harder to understand what

is the actual failure. Code could get complicated but tests
never should.”

U “If the test is more complicated than the code being tested
then the API being tested is too complicated.”

D “Sometimes a fairly simple algorithm can have a fair num-
ber of corner cases that warrant complicated test cases.”

D “Because sometimes test cases have a more elaborate setup
and teardown requirements than the code under test.”

From the comments, although many practitioners support
the hypothesis, some express their reservations. The earlier
group of respondents argues that simple tests are essential, for
example, for effective debugging, while the latter group argues
that some functionalities have many corner cases requiring
complicated tests, and others require elaborate setup and tear-
down requirements. The findings suggest that this hypothesis
can be used as a guiding principle, barring some exceptions.

Designed with Maintainability in Mind (H20).
Most practitioners agree or strongly agree that test code

should be designed with maintainability in mind (average
Likert score = 4.16). Some comments which support or refute
this hypothesis are:
U “Strongly Agree, it can be less fast, but should be designed

with maintainability”
U “...if your tests aren’t maintainable the code they test isn’t.”
D “Personally I will rewrite my tests instead of changing them

a lot.”
D “Spending too much time making tests clean and maintain-

able is a waste of time when the requirements change and
the test case is no longer applicable.”

Traceability Links (H21).
More than 190 practitioners agree or strongly agree that

traceability links should be maintained between test cases,
code and requirements (average Likert score = 3.97). Only
seven respondents disagree or strongly disagree with the
hypothesis. The following are some of the rationales that our
respondents give to support the hypothesis:
U “Can reduce other workload and help improve the efficiency

of the team.”
U “You can quickly locate the part needs to be updated, to

make quick updates and to update documentation.”
D “It sounds like a lot of project management overhead, which

would lead to slower development velocity. ”
5) Bug Detection: Bug detection is one of the main reasons

of writing test cases. When practitioners write a new function-
ality or add a piece of code, they need to test whether that code
is working fine or not.

Attempt to Break Functionality (H22).
A total of 215 respondents agree or strongly agree that a test

case should attempt to break a functionality. The hypothesis
receives an average Likert score of 4.11. The following are
some comments that we receive:
U “ The more ways we can think of to try to break our

code, the less it will break when users actually go do crazy
things.”

U “Many bugs can be found more easily by testing edge cases
that developers didn’t think about. ”

U “In a distributed system, it is common that some component
can’t perform the designed function well either due to
network issues or machine hang etc.”

D “First and foremost, tests should ensure the code works as
expected, in the environment its expected to run. Having
other negative tests is less important.”

Overall, practitioners agree that test cases should try hard to
break functionalities. This can be done by testing corner cases

or performing “crazy” things, which can assure that a system
would work well in practice under diverse environments and
usage patterns. On the other hand, due to schedule contraints
some practitioners mention that testing positive cases may
matter more.

Test Even the Simplest Things (H23).
The majority of respondents agree that testing even the

simplest things is valuable (average Likert score = 3.89).
However, a minority of respondents (i.e., 9.76%) disagree or
strongly disagree with 18.36% respondents on the fence. The
following are their rationales:
U “Even the simplest of things tested can give you useful

information... like hashcode for example or an equality
check, people do not actually break that in the future.”

U “Whenever you think something cannot go wrong, it prob-
ably will.”

U “Even write the stupid test because sometimes it is the one
that will find the very stupid bugs.”

D “It is wasting time and codes.”
D There’s a line where test cases become more of a burden

to carry than the value they provide. ”
The proponents argue that “the simplest things” (e.g.,

equals() and hashcode()) may also break sometime in the
future, and people make “stupid” mistakes. The opponents on
the hand argue that testing simplest things may not add much
value and adding them is a waste of time and code.

Add New Test Cases For Fixed Bugs (H24).
We receive a high agreement for this hypothesis (average

Likert score = 4.40), which is the highest for this dimension.
We only receive positive comments, which include the follow-
ing:
U “The test should be written *before* fixing the bug, to

ensure you actually understand the bug. Then, once the bug
is fixed, you *have* the test, so keep it.”

U “If a bug happened once, it can happen again.”

Practitioners support this hypothesis since writing test cases
helps one to understand a bug. Moreover, the generated test
case can help to ensure that the bug will not happen again
without being detected.

Use Assertions to Detect Subtle Errors (H25).
A test assertion contains an expression which describes a

property that should be (or should never be) observed for
a system under test. Most of our respondents agree that
assertions are a crucial part of test code and can be helpful
in detecting subtle errors (average Likert score = 4.51). We
present some practitioner comments below:
U “Yes because something you might be taking for granted to

be true could very well be false.”
U “You need something to fail, you need to have assertions

in a test otherwise you are just exercising the system and
not making any statements about what it should be doing.”

Practitioners argue that assertions are essential and one
cannot only rely on the appearance of exceptions alone to
detect failures. However, expressions used in the assertions
need to be designed well so that they can detect bad cases
effectively. Our results corroborate past empirical findings
from data that test assertions are strongly correlated with test
suite effectiveness [18].

Commenting Test Code with Common Errors and Possible
Causes (H26).

A large number of our respondents (i.e., 200) agree or
strongly agree that commenting test code with common errors
and possible causes is a good idea (average Likert score =
3.98). A few disagree though. Following are some of the
comments:
U “...comments is usually a convenient way to document those

things...”
U “New people don’t know your code/history.”
U “The name often will say the scenario I am trying to test

out or there will be; this is especially true for complicated
test, where if I write a test today and go back a month later,
I think it is going to be difficult to understand what I am
trying to test.”

D “Comments that are outdated can do more harm than good.
If the comments are misleading then they can cause people
to waste time exploring dead ends.”

6) Others: Deterministic (H27).
Most practitioners we survey agree that a good test case

should be deterministic and produce the same output every
time it is run (average Likert score = 4.07). However, again a
few disagree. The following are some of their explanations:
U “If a test involves some aspect of randomness, it can be

very hard if not impossible to reproduce a failure”
U “If tests pass or fail due to random factors then they get

ignored and become useless.”
D “Sometimes it is good to see transient failures to detect a

race condition, for example.”
These test cases, often called as flaky tests, make it difficult

to rely on the ouput of test results. Empirical data shows that
a large number of test failures are caused by flaky tests and
past research gives several causes and fixing strategies for such
tests [19].

Side Effect Free (H28).
Almost all our respondents agree that test cases should be

side effect free. In this dimension, we receive the highest
agreement for this hypothesis with 213 respondents agreeing
or strongly agreeing with it. We present some of the comments
below:
U “If tests impact each other, it becomes extremely hard to

reproduce and interpret test failures.”
D “Test cases cannot guarantee the absence of side effects,

but it can be reduced.”

Tag Test Cases as Slow or Fast (H29).
Several common testing frameworks like JUnit provide

the functionality of adding tags to test cases. Most of our
respondents agree or strongly agree that the use of such
tags to indicate, for example, fast or slow tests, is helpful
(average Likert score = 3.93). There are many who are on the
fence though (i.e., 62 respondents). We only receive positive
comments and the following are some of them:
U “For practitioners’ convenience when debugging suite-wise

problems or regressions.”
U “It is very important to have fast tests and if you have slow

tests, maybe define tags or categories. It can be the fast
ones and slow ones are activated by a different switch.”

U “I usually use BDD develop my project. And it’s important
to me that it is running fast test when I am developing and
more detailed but slower test before I commit my code.”

IV. DISCUSSION

A. Implications

For Researchers: Our research suggests new directions for
empirical software engineering research. Developer perception
matters [20]–[23] but they may not always be correct [24].
Moreover, some of the hypotheses are slightly controversial
with two sizable camps for and against them. For example, hy-
pothesis H14 (each test case should have a small footprint, i.e.,
the amount of code it covers) only receives an average score
of 3.52 and is only supported by 51.85% of our respondents.
One way to nicely augment our study is to mine software
repositories and analyze history of projects to get a deeper
understanding of such slightly controversial hypotheses. For
example, one can correlate test case footprint with its effective-
ness to find bugs based on historical data. Another way, is to
perform controlled experiments or field studies, and investigate
the correlation between test case footprint and the time it
takes for debugging test case failures and/or maintaining test
cases. Clearly, it is not possible to perform all such studies
and describe them in one paper. Thus, we encourage others
to perform such future studies to provide further empirical
evidence to further support or refute our hypotheses.

Our results also highlight opportunities for automated soft-
ware engineering researchers to build tools that can help
practitioners create better test cases:

• One can envision a tool that can detect smells in test code
by looking for violations of some of the 29 hypotheses,
especially those that receive high average Likert scores.

• From the ratings and comments that we receive for
H17 and H18, many practitioners value well-modularized,
well-written and well-commented test code which follows
a consistent coding style. However, creating such test
cases is a challenging task. Automated tools can poten-
tially be built to suggest suitable test code refactoring
or renaming to improve the modularity, readability, and
understandability of test cases. Past tools work on reduc-
ing system tests into many unit tests [25], [26], however,
refactoring goes beyond that [27].

• From ratings and comments that we receive for H21, prac-
titioners value traceability links between test cases, source
code, and requirements. However, for many projects,
these links may not have been made explicit and kept
up-to-date. Past studies have looked into recovering trace-
ability links between source code and requirements by
employing information retrieval [28] and future tools
can extend these existing works by incorporating static
analysis to infer and maintain 3-way links between test
code, source code, and requirements.

For Practitioners: Novices are often unsure on characteristics
of good test cases and what factors they need to consider to
write such test cases. Our findings provide a list of characteris-
tics that matter to experienced practitioners. The average Likert
score of all the hypotheses are above 3.5 (somewhat/close to
“agree”) and 12 hypotheses are above 4.0 (between “agree”
and “strongly agree”). The top 5 hypotheses agreed by most

respondents are: H3, H17, H18, H24 and H28. We encourage
novices to consider these important factors when designing
test cases. For example, following H3, they should check for
both normal and exception flow, and following H28, test cases
should not have side effects. For H18, practitioners can follow
best practices as used by other practitioners, such as for writing
unit test cases, they can follow the “Arrange, Act, Assert
(AAA)” paradigm [29] that can aid in understandability.

Our survey respondents consist of experienced practition-
ers, and they disagree on a number of hypotheses. Our
results present different practitioner perspectives which often
highlight tradeoffs and special circumstances. For example,
based on practitioner ratings and comments for H23, we find
that testing “simplest things” may detect future problems or
“stupid” mistakes, but these “simplest things” may be large in
number and testing them (e.g., hashcode(), equals() methods)
may consume much time and resources. For H26, we find that
commenting test code with common errors and possible causes
may be helpful to aid understanding, but these comments may
also be a source of problems if they get outdated. For H1,
most respondents agree that a test case that tests one aspect
of a requirement is good since the test case would be easier
to understand; however, for test cases that require long time
to run, putting many things in one test may have its place.
Our findings bring up such tradeoffs and special considerations
which may not be obvious to even experienced practitioners
(and thus the difference in opinions).

B. Threats to Validity

External Validity: We interview 21 practitioners working on
various industrial and open source projects through which
we get numerous insights, yet it is a small sample. Also,
our interviewees either contributes to an Apache project or
work for Hengtian, which might introduce some bias. To
mitigate this threat, we survey 261 respondents from various
small and large organizations spread out in 27 countries
around the world. Still, our findings may not generalize to
all practitioners.

Internal Validity: To reduce bias during interviews, we keep
our questions open-ended and let practitioners talk most of the
time. It is possible that practitioners might have missed out
some points and given more time to think, practitioners might
give more suggestions. Interviewing developers via Skype or
email might introduce some bias, however, we have tried to
reduce the bias by following up with the interviewers if we
needed more information. In most of the cases, developers
thoroughly answered our questions. Also, it is possible that
some of our survey respondents do not understand our hypoth-
esis well. Although most of our hypotheses hold for various
levels of granularity such as unit testing, integration testing,
however, some of them might hold true only for a specific
testing level. To minimize this threat, we provide the option
“I don’t understand”. We also translate our survey to Chinese
to make it easier for respondents from China. Moreover, it is
possible that we might draw wrong conclusions. To reduce this

threat, we (all of the three authors separately) read interview
transcripts and comments we receive from survey respondents
several times. The creation of hypotheses from interviews
can introduce bias as they are based on perspectives of an
individual. However, each of the three authors vetted through
the hypotheses created by the other authors to to minimize the
bias. The hypotheses were also sent to our survey participants
to validate them.

V. RELATED WORK

Daka et al. conducted a survey on 225 developers to under-
stand unit testing practices such as motivation of developers,
their usage of automation tools, and their challenges [7].
Meszaros provided guidance on writing automated tests using
xUnit covering several aspects such as improving coverage,
using test smells to find issues and refactoring tests for greater
simplicity, roustness and execution speed [30]. Rompaey et al.
proposed a set of metrics using unit test concepts to detect
test smells that are analogous to code smells and suggested
the need for reliable test smells detection mechanism [31].
Greiler et al. studied indutrial projects to understand whether
test smells are caused by test fixtures, i.e., code that initializes
and configures the system under test so that automated tests
can be run [32]. Palomba et al. studies the relationship between
flaky tests and test smells, in particular, Resource Optimism,
Indirect Testing and Test Run Wa, on 18 software systems
and find that for 54% of the tests, a test code smell can
cause flakiness [33]. Kochhar et al. performed surveys on
open-source and industrial practitioners to understand the test
automation culture of mobile app developers [6]

Among the aforementioned studies, the closest one is Daka
et al.’s; different from their work which broadly looks into
testing practices, we focus deeply on characteristics of good
test cases and factors practitioners consider while writing
them, which we divide into several dimensions. Daka et al.’s
survey includes a question that asks respondents to rate the
importance of: code coverage, execution speed, robustness
against code changes, how realistic the test scenario is, how
easily faults can be localised/debugged if the test fails, and
how easily the test can be updated when the underlying
code changes. In this work, we consider many more factors.
Moreover, not only we ask practitioners to provide their
ratings, but also the rationales of their ratings; by so doing
we can highlight reasons behind certain actions, differences in
perspectives, tradeoffs and special circumstances.

VI. CONCLUSION AND FUTURE WORK

Testing is an indispensable part of software development
activities. In this study, we investigate practitioner perception
of characteristics of test cases and different factors practition-
ers consider while writing test cases. We interview and survey
practitioners from 27 countries to create and validate a list of
29 characteristics of good test cases in 6 dimensions (i.e., test
case contents, size and complexity, coverage, maintainability,
bug detection and others). In the future, we plan to further
investigate some of the slightly controversial hypotheses which

have both proponents and opponents. We also plan to develop
tools to identify smells in test code, automatically refactor test
code, and recover implicit 3-way traceability links between
requirements, source code and test cases.

REFERENCES

[1] G. Tassey, “The economic impacts of inadequate infrastructure for software
testingthe economic impacts of inadequate infrastructure for software testing,” in
National Institute of Standards and Technology. Planning Report, 2002.

[2] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by
developers,” in ICSE, 2014, pp. 72–82.

[3] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite
effectiveness,” in ICSE, 2014, pp. 435–445.

[4] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are
mutants a valid substitute for real faults in software testing?” in FSE, 2014, pp.
654–665.

[5] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effectiveness:
Empirical study with real bugs in large systems,” in SANER, 2015, pp. 560–564.

[6] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo, “Understanding
the test automation culture of app developers,” in ICST, 2015, pp. 1–10.

[7] E. Daka and G. Fraser, “A survey on unit testing practices and problems,” in
ISSRE, 2014, pp. 201–211.

[8] Insigma Hengtian, http://www.hengtiansoft.com/.
[9] X. Xia, D. Lo, P. S. Kochhar, Z. Xing, X. Wang, and S. Li, “Experience report:

An industrial experience report on test outsourcing practices,” in ISSRE, 2015, pp.
370–380.

[10] X. Xia, D. Lo, J. Tang, and S. Li, “Customer satisfaction feedback in an IT
outsourcing company: a case study on the Insigma Hengtian company,” in EASE,
2015, pp. 34:1–34:5.

[11] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou, “Software internationalization and
localization: An industrial experience,” in ICECCS, 2013, pp. 222–231.

[12] R. Opdenakker, “Advantages and disadvantages of four interview techniques in
qualitative research,” Forum: Qualitative Social Research, (Last accessed on March
9, 2016), vol. 7, no. 4, 2006.

[13] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming
languages and code quality in github,” in FSE, 2014, pp. 155–165.

[14] A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer, “Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining,” Empirical Software Engineering, vol. 16,
no. 3, pp. 325–364, 2011.

[15] B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. A. Kraft,
“Automatically documenting unit test cases,” in ICST, 2016, pp. 341–352.

[16] R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK metrics for
object-oriented design complexity: Implications for software defects,” IEEE Trans.
Software Eng., vol. 29, no. 4, pp. 297–310, 2003.

[17] A. Vahabzadeh, A. Fard, and A. Mesbah, “An empirical study of bugs in test
code,” in ICSME, 2015, pp. 101–110.

[18] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with test suite
effectiveness,” in ESEC/FSE, 2015, pp. 214–224.

[19] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky
tests,” in FSE, 2014, pp. 643–653.

[20] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure it?
manage it? ignore it? software practitioners and technical debt,” in ESEC/FSE,
2015, pp. 50–60.

[21] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, “How do
professionals perceive legacy systems and software modernization?” in ICSE, 2014,
pp. 36–47.

[22] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging role of data
scientists on software development teams,” in ICSE, 2016.

[23] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and T. Zim-
mermann, “Quantifying developers’ adoption of security tools,” in FSE, 2015, pp.
260–271.

[24] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in empirical software
engineering,” in ICSE, 2016.

[25] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential unit
test cases from system test cases,” in FSE, 2006, pp. 253–264.

[26] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test factoring for
java,” in ASE, 2005, pp. 114–123.

[27] “Catalog of Refactorings,” http://refactoring.com/catalog/index.html, (Last
Accessed on April 8, 2018). [Online]. Available: http://refactoring.com/
catalog/index.html

[28] J. Cleland-Huang and J. Guo, “Towards more intelligent trace retrieval algorithms,”
in RAISE, 2014, pp. 1–6.

[29] “Unit Test Basics,” https://msdn.microsoft.com/en-us/library/hh694602.aspx, (Last
Accessed on April 8, 2018). [Online]. Available: https://msdn.microsoft.com/
en-us/library/hh694602.aspx

[30] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR,
2006.

[31] B. V. Rompaey, B. D. Bois, S. Demeyer, and M. Rieger, “On the detection of
test smells: A metrics-based approach for general fixture and eager test,” IEEE
Transactions on Software Engineering, vol. 33, no. 12, pp. 800–817, 2007.

[32] M. Greiler, A. van Deursen, and M.-A. Storey, “Automated detection of test fixture
strategies and smells,” in ICST, 2013, pp. 322–331.

[33] F. Palomba and A. Zaidman, “Does refactoring of test smells induce fixing flaky
tests?” in ICSME, 2017, pp. 1–12.

http://www.hengtiansoft.com/
http://refactoring.com/catalog/index.html
http://refactoring.com/catalog/index.html
https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://msdn.microsoft.com/en-us/library/hh694602.aspx

	Introduction
	Research Methodology
	Open Ended Interviews
	Participants
	Protocol
	Data Analysis

	Validation Survey
	Respondents
	Protocol
	Data Analysis

	Test Case Characteristics
	RQ1: Ratings of the 29 Hypotheses
	RQ2: Reasons
	Contents
	Size and Complexity
	Coverage
	Maintainability
	Bug Detection
	Others

	Discussion
	Implications
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

