
Watch out for This Commit!
A Study of Influential Software Changes

Daoyuan Li
University of Luxembourg

daoyuan.li@uni.lu

Li Li
University of Luxembourg

li.li@uni.lu

Dongsun Kim
University of Luxembourg
dongsun.kim@uni.lu

Tegawendé F. Bissyandé
University of Luxembourg

tegawende.bissyande@uni.lu

David Lo
Singapore Management Univ

davidlo@smu.edu.sg

Yves Le Traon
University of Luxembourg
yves.letraon@uni.lu

ABSTRACT
One single code change can significantly influence a wide
range of software systems and their users. For example, 1)
adding a new feature can spread defects in several modules,
while 2) changing an API method can improve the perfor-
mance of all client programs. Developers often may not
clearly know whether their or others’ changes are influential
at commit time. Rather, it turns out to be influential after
affecting many aspects of a system later.

This paper investigates influential software changes and
proposes an approach to identify them early, i.e., imme-
diately when they are applied. We first conduct a post-
mortem analysis to discover existing influential changes by
using intuitions such as isolated changes and changes re-
ferred by other changes in 10 open source projects. Then
we re-categorize all identified changes through an open-card
sorting process. Subsequently, we conduct a survey with 89
developers to confirm our influential change categories. Fi-
nally, from our ground truth we extract features, including
metrics such as the complexity of changes, terms in commit
logs and file centrality in co-change graphs, to build ma-
chine learning classifiers. The experiment results show that
our prediction model achieves overall with random samples
86.8% precision, 74% recall and 80.4% F-measure respec-
tively.

1. INTRODUCTION
Current development practices heavily rely on version con-

trol systems to record and keep track of changes committed
in project repositories. While many of the changes may
be simply cosmetic or provide minor improvements, others
have a wide and long-term influence to the entire system
and related systems. Brudaru and Zeller [7] first illustrated
examples of changes with long term-influence: 1) changing
access privilege (i.e., private→ public), 2) changing ker-
nel lock mechanism, and 3) forgetting to check a null return.
If we can predict whether an incoming software change is
influential or not, either positively or negatively, just after
it is committed, it could significantly improve maintenance
tasks (e.g., easing debugging if a new test harness is added)
and provide insights for recommendation systems (e.g., code
reviewers can focus on fewer changes).

The influence of a software change can however be hard
to detect immediately since it often does not involve imme-
diate effects to other software elements. Instead, it can con-
stantly affect a large number of aspects in the software over

time. Indeed, a software change can be influential not only
inside and/or beyond the project repository (e.g., new de-
fects in code base and new API calls from other programs),
but also immediately and/or long after the changes have
been applied. The following are examples of such influential
changes:

Adding a new lock mechanism: mutex-lock features
were introduced in Linux 2.6 to improve the safe execution
of kernel critical code sections. However, after their intro-
duction, the defect density of Linux suddenly increased for
several years, largely contributed by erroneous usage of these
features. Thus, the influence of the change was not limited
to a specific set of modules. Rather, it was a system-wide
problem.

Changing build configurations: A small change in
configuration files may influence the entire program. In
Spring-framework, a developer missed file inclusion op-
tions when migrating to a new build system (∗.aj files were
missing in build.gradle). This makes an impact since
programs depending on the framework failed occasionally
to work. The reason of this failure (missed file) was hard to
pinpoint.

Improving performance for a specific environment:
FastMath.floor() method in Apache Commons Math had
a problem with Android applications since it has a static
code block that makes an application hang about five sec-
onds at the first call. Fixing this issue improves the perfor-
mance of all applications using the library.

Unfortunately, existing techniques are limited to reveal-
ing the short- term impact of a certain software change. The
short-term impact indicates an immediate effect such as test
case failure or coverage deviation. For example, dynamic
change analysis techniques [36,48] leverage coverage metrics
after running test cases. Differentiating coverage informa-
tion before/after making a change shows how the change
influences other program elements. Other approaches are
based on similarity distances [37, 41]. These firstly identify
clusters of program elements frequently changed together or
tightly coupled by analyzing revision histories. Then, they
attempt to figure out the best-matching clusters for a given
change. Developers can assume that program elements (e.g.,
files or methods) in the cluster may be affected by the given
change. Finally, change genealogy [14–16] approaches keep
track of dependencies between subsequent changes, and can
capture some long-term impact of changes. However, it is
limited to identifying source code entities and defect den-



sity. Overall, all the above techniques may not be success-
ful in predicting a wide and long-term influence of software
changes. This was unfortunately inevitable since those ex-
isting techniques focus only on explicit dependencies such as
method calls.

Study Research Questions. In this study we are inter-
ested in investigating the following research questions:

RQ1: What constitutes an influential software change? Are
there developer-approved definitions/descriptions of in-
fluential software changes?

RQ2: What metrics can be used to collect examples of influ-
ential software changes?

RQ3: Can we build a prediction model to identify influential
software changes immediately after they are applied?

To automatically figure out whether an incoming software
change is influential, we designed a prediction technique
based on machine learning classification. Since the tech-
nique requires labeled training instances, we first discovered
existing influential changes in several open source projects
in order to obtain baseline data. Specifically, we collected
48,272 code commits from 10 open source projects and did
post-mortem analysis to identify influential changes. This
analysis examined several aspects of influential changes such
as controversial changes and breaking behaviors. In addi-
tion, we manually analyzed whether those changes actually
have long-term influence to revision histories. As a result, we
could discover several influential changes from each subject.
We further label these changes to build category definition
for influential software changes through an open-card sorting
process. These categories are then validated by developers
with experience in code review.

Based on the influential changes we discovered in the above
study, we extracted feature vectors for machine-learning clas-
sification. These features include program structural met-
rics [20], terms in change logs [20], and co-change metrics [2].
Then, we built a prediction model by leveraging machine
learning algorithms such as Näıve Bayes [1,24] and Random
Forest [5]. To evaluate the effectiveness of this technique,
we conducted experiments that applied the technique to 10
projects. Experimental assessment results with a represen-
tative, randomly sampled, subset of our data show that our
prediction model achieves overall 86.8% precision, 74% re-
call, and 80.4% F-measure performance.

This paper makes the following contributions:

• Collection of influential software changes in popular
open source projects.
• Definition of influential software change categories ap-

proved by the software development community.
• Correlation analysis of several program metrics and

influential software changes.
• Accurate machine-learning prediction model for influ-

ential software changes.

The remainder of this paper is organized as follows. After
describing motivating examples in Section 2, we present our
study results of post-mortem analysis for discovering influ-
ential changes in Section 3. Section 4 provides our design
of a prediction model for influential changes together with
a list of features extracted from software changes. In addi-
tion, the section reports the evaluation result of experiments

in which we applied the prediction model to open source
projects. Section 5 discusses the limitations of our work.
After surveying the related work in Section 6, we conclude
with directions for future research in Section 7.

2. MOTIVATING EXAMPLES
In the development course of software project, develop-

ers regularly commit changes to project repositories. While
some of those changes may simply be cosmetic, a few others
may be somehow influential not only inside and/or beyond
the repositories but also immediately and/or long after they
are applied. An influential software change can be recog-
nized as such for various reasons, not all of which are known
while the change is being performed.

To motivate our study, we consider influential change ex-
amples identified from the Linux kernel project. Linux is
an appropriate subject as several changes in the kernel have
been influential. These changes are already highlighted in
the literature [32,34] as their long-term impact started to be
noticed. In this section, we present four different examples
of influential changes in Linux kernel and their impact.

2.1 Collateral Evolution
In the Linux kernel, since driver code, which makes up

over 70% of the source code, is heavily dependent on the
rest of the OS, any change in the interfaces exported by
the kernel and driver support libraries can trigger a large
number of adjustments in the dependent drivers [33].

Such adjustments, known as collateral evolution, can un-
fortunately be challenging to implement correctly. Starting
with Linux 2.5.4, the USB library function usb submit urb
(which implements message passing) takes a second argu-
ment for explicitly specifying the context (which was previ-
ously inferred in the function definition). The argument can
take one of three values: GFP KERNEL (no constraints),
GFP ATOMIC (blocking is not allowed), or GFP NOIO
(blocking is allowed but not I/O)). Developers using this
USB library must then parse their own code to understand
which context it should be as in the example of Figure 1.

This leads to bugs that keep occurring. A study by Pal-
lix et al. [34] has reported that, due to the complexity of
the conditions governing the choice of the new argument for
usb submit urb, 71 of the 158 calls to this function were ini-
tially transformed incorrectly to use GFP KERNEL instead
of GFP ATOMIC.

This change is interesting and constantly influential to a
large portion of the kernel, as its real impact could only be
predicted if the analysis took into account the semantics of
the change. However, the extent of influences made by the
change is difficult to detect immediately after the commit
time since existing techniques [36, 37, 41, 48] focus only on
the short-term impact.

2.2 Feature Replacement
In general, the number of entries in each fault category

(e.g., NULL or Lock) decreases over time in the Linux code
base [34]. In Linux 2.6, however, as illustrated in Figure 2,
there are some versions in which we can see a sudden rise
in the number of faults. This was the case of faults in the
Lock1 category in Linux 2.6.16 due to a replacement of func-
1To avoid Lock/LockIntr faults, release acquired locks, re-
store disable interrupts and do not double acquire locks [4,
34].



spin_lock_irqsave(&as->lock, flags);
if (!usbin_retire_desc(u, urb) &&

u->flags & FLG_RUNNING &&
!usbin_prepare_desc(u, urb) &&

- (suret = usb_submit_urb(urb)) == 0) {
+ (suret = usb_submit_urb(urb, GFP_ATOMIC)) == 0) {
u->flags |= mask;

} else {
u->flags &= ~(mask | FLG_RUNNING);
wake_up(&u->dma.wait);
printk(KERN_DEBUG "...", suret);

}
spin_unlock_irqrestore(&as->lock, flags);

Figure 1: Code patch for adaption to the new definition of
usb submit urb. In this case, when the API function is called,
locks are held, so the programmer must use GFP ATOMIC to
avoid blocking. Its influence was propagated to most drivers using
this library and mostly resulted in defects.

tionality implementation. In Linux 2.6.16, the functions mu-
tex lock and mutex unlock were introduced to replace mutex-
like occurrences of the semaphore functions down and up.
The study of Palix et al. again revealed that 9 of the 11 Lock
faults introduced in Linux 2.6.16 and 23 of the 25 Lock faults
introduced in Linux 2.6.17 were in the use of mutex lock.

If the replacement is identified earlier as an influential
change to most of kernel components (and other applica-
tions), it may prevent the defects from recurring everywhere
since the change is likely to be an API change [9,26]. The de-
veloper who committed the new feature did not realize the
influence and thus, there was no early heads-up for other
developers.

2004 2005 2006 2007 2008 2009 2010

0

200

400

600

800

#
 o

f 
fa

u
lt

s

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(a) Faults

2004 2005 2006 2007 2008 2009 2010

0.0

0.1

0.2

F
a
u

lt
s

p
er

 1
K

L
O

C

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(b) Fault density (Faults per 1KLOC)

2004 2005 2006 2007 2008 2009 2010

0

50

100

150

#
 o

f 
fa

u
lt

s

Elimination 

Introduction 

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(c) Introduction and elimination of faults

Figure 6. Faults in Linux 2.6.0 to 2.6.33

2004 2005 2006 2007 2008 2009 2010

0

20

40

60

#
 o

f 
fa

u
lt

s Lock

LockIntr

Float

Size

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(a) Increasing faults

2004 2005 2006 2007 2008 2009 2010

0

20

40

60

#
 o

f 
fa

u
lt

s

BlockLock
Var
IsNull
Range
Intr
Free

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(b) Decreasing faults

2004 2005 2006 2007 2008 2009 2010

0

100

200

300

400

#
 o

f 
fa

u
lt

s

NullRef

Null

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

(c) NullRef and Null faults

Figure 7. Faults through time

that have decreased in number in the same versions (Figure 7(b)).
NullRef and Null are further separated from the others. For many
fault kinds, the number of faults is essentially constant over the
considered period.

Three notable exceptions to the stability in the number of Linux
2.6 faults are Lock, Null, and Float, in Linux 2.6.16 and 2.6.17,

2004 2005 2006 2007 2008 2009 2010

0.0

0.5

1.0

1.5

%
 o

f 
fa

u
lt

y
 n

o
te

s

Average
BlockLock
Null
Var
IsNull
NullRef
Range
Lock
Intr
LockIntr
Free
Size

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 8. Fault rate per fault kind

Linux 2.6.29, and Linux 2.6.30, respectively (Figures 7(a) and 7(c)).
In Linux 2.6.16, the functions mutex lock and mutex unlock
were introduced to replace mutex-like occurrences of the semaphore
functions down and up. 9 of the 11 Lock faults introduced in Linux
2.6.16 and 23 of the 25 Lock faults introduced in Linux 2.6.17 were
in the use of mutex lock. In Linux 2.6.29, the btrfs file system
was introduced, as seen in Figure 2. 33 Null faults were added with
this code. 7 more Null faults were added in drivers/staging,
which more than tripled in size at this time. 29 other Null faults
were also added in this version. Finally, in Linux 2.6.30 there
was a substantial increase in the number of Comedi drivers [6]
in drivers/staging. All of the 21 Float faults introduced in this
version were in two Comedi files. These faults are still present in
Linux 2.6.33. Recall, however, that staging drivers are not included
in Linux distributions.

As shown in Figure 8, the fault rate, i.e., the ratio of observed
faults to the number of notes, for the considered fault kinds con-
firms the increase in reliability (Float is omitted, as described in
Section 2.2). As the number of notes increases roughly with the size
of the Linux kernel while the number of faults is relatively stable,
the fault rate tends to decline. The main increases, in Lock and
Null, are due to the introduction of mutex lock and the btrfs file
system, respectively, as mentioned previously.

5.2 Where are the faults?
The presence of a high rate of faults in a certain kind of code may
indicate that this kind of code overall needs more attention. Indeed,
Chou et al.’s work motivated studies of many kinds of driver faults,
going beyond the fault kinds they considered. Many properties of
the Linux kernel have, however, changed since 2001, and so we
reinvestigate what kind of code has the highest rate of faults, to
determine whether attention should now be placed elsewhere.

As shown in Figure 9, the largest number of faults is still in
drivers, which indeed makes up over half of the Linux kernel
source code. The second-largest number of faults is in arch, accom-
panied by fs and drivers/staging in recent versions. In contrast
to the case of Linux 2.4.1, however, as shown in Figure 10, drivers
no longer has the largest fault rate, and indeed since Linux 2.6.19
its fault rate has been right at the average. There was not a large
increase in the number of drivers notes at that time, so this de-
crease is indicative of the amount of attention drivers receive in the
peer reviewing process. Arch on the other hand has many faults and
relatively little code, and so it has the highest fault rate throughout
most of Linux 2.6. Around 30% of the arch faults are Null faults,
although there appears to be no pattern to their introduction. Over
90% of the arch faults are outside of the x86/i386 directories, with
many of these faults being in the ppc and powerpc code. The largest
numbers of faults in fs are in cifs, with over 40 faults in Linux
2.6.0 but a decreasing number after, in ocfs2, with 10-15 faults per
version starting in Linux 2.6.17, and in btrfs, with 36 in Linux
2.6.29 and 38 in Linux 2.6.30 and gradually fewer after that. All of
these are recently introduced file systems: cifs was introduced in

311

Figure 2: Evolution of faults in Linux 2.6 kernel versions for
Lock, LockIntr, Float and Size fault categories (see [34]). Faults
relevant to Lock suddenly increased after Version 2.6.16 while
other types of faults gradually decreased. In the version, a feature
for Lock was replaced and it was influential to many of kernel
functions.

2.3 Revolutionary Feature
An obvious influential change may consist in providing

an implementation of a completely new feature, e.g., in the
form of an API function. In the Linux kernel repository, Git
commit 9ac7849e introduced device resource management
API for device drivers. Known as the devm functions, the
API provides memory management primitives for replacing
kzalloc functions. This code change is a typical example of
influential change with a long-term impact. As depicted in
Figure 3, this change has first gone unnoticed before more
and more people started using devm instead of kzalloc. Had
the developers recognized this change as highly influential,
devm could have been adopted earlier and result in less bugs
and better performance in driver code.

2.4 Fixes of Controversial/Popular Issues
Some issues in software projects can be abnormally dis-

cussed or commented longer than others. Code changes that
fix them will be influential for the project. The character-

Figure 3: Usage of memory allocation primitives in Linux kernel
(See [23]). kzalloc is the traditional API for memory allocation,
before managed memory (devm) was introduced in Linux.

istics of a controversial/popular issue is that its resolution
is of interest for a large number of developers, and it takes
more time to resolve them than the average time-to-fix delay.
Thus, we consider that an issue report which is commented
on average more than other issues and is fixed very long af-
ter it is opened, is about a controversial/popular issue. In
Linux, Git commit bfd36103 resolved Bug #16691 which
remained unresolved in the bug tracking system for 9 months
and was commented about 150 times.

3. POST-MORTEM ANALYSIS FOR ICS

In this study, we focus on systematically discovering influ-
ential changes. Although the motivating examples described
in Section 2 show some intuitions on influential changes, it is
necessary to reveal a larger view to figure out the characteris-
tics of these changes. Therefore, we collected 48,272 changes
from 10 popular open-source projects and conducted an ob-
servational study.

Since there are too many changes in software repositories
and it is not possible for us to inspect all, we get a set of
changes that are likely to have a higher density of influential
changes. We are able to get this set by leveraging several
intuitions obtained from examples described in Section 2.

The study design basically addressed three different cri-
teria to discover influential changes: 1) popular changes in
the sense that they have been somehow noticed by other de-
velopers and users, 2) anomalies in change behaviors, and
3) changes that are related to controversial/popular issues.
These criteria are designed to conduct post-mortem analysis
and represent how people can recognize influential changes
in hindsight.

For changes in these categories, we manually examine
them using the following procedure:

• First of all, authors of this article ask themselves in-
dividually whether a change is really influential. They
manually verify that the assumptions behind the spe-
cific criteria used to identify a change are supported.
• Then we cross-check the answers to reach an consensus

among the authors.
• Afterwards, we double check that these changes are

really influential in the eyes of developers by doing
card sorting and surveying professional developers.

3.1 Data Collection
The experiment subjects in this study are shown in Ta-

ble 1. The 10 popular projects were considered since they



Table 1: Observational study subjects - Data reflect the state of repositories as of 26 January 2015

Project Name Description # Files # Commits # Developers # Issues # Resolved Issues

Commons-codec General encoding/decoding algorithms 635 1,424 24 195 177
Commons-collections Extension of the Java Collections Framework 2,983 2,722 47 542 512

Commons-compress Library for working with file compression 619 1,716 24 308 272
Commons-csv Extension of the Java Collections Framework 141 956 18 147 119
Commons-io Collection of utilities for CSV file reading/writing 631 1,718 33 454 365

Commons-lang Extra-functionality for java.lang 1,294 4,103 46 1,073 933
Commons-math Mathematics & Statistics components 4,582 5,496 37 1,194 1,085

Spring-framework Application framework for the Java platform 19,721 9,748 153 3,500 2,632
Storm Distributed real-time computation system 2,038 3,534 189 637 321

Wildfly aka JBoss Application Server 31,699 16,855 307 3,710 2,993

Total 64,388 48,272 878 11,760 9,409

have sufficient number of changes in their revision histo-
ries. In addition, these projects stably maintained their is-
sue tracking systems so that we could keep track of how
developers discussed to make software changes.

For each subject, we collected all available change data
(patches and relevant files information) as well as commit
metadata (change date and author details) from the source
code repository. Additionally, issue reports from the corre-
sponding issue tracking system were collected together. We
further mined issue linking information from commit mes-
sages and issue reports wherever possible: e.g., many com-
mit messages explicitly refer to the unique ID of the issue
they are addressing, whether a bug or a feature request.

3.2 Systematic Analysis
To systematically discover potential influential changes

among the changes collected from the subject projects, we
propose to build on common intuitions about how a single
change can be influential in the development of a software
project.

3.2.1 Changes that address controversial/popular is-
sues

In software projects, developers use issue tracking systems
to track and fix bugs and for planning future improvements.
When an issue is reported, developers and/or users may pro-
vide insights of how the issue can be investigated. Attempts
to resolve the issue are also often recorded in the issue track-
ing system.

Since an issue tracking system appears as an important
place to discuss about software quality, we believe it is nat-
ural to assume that heated discussions about a certain issue
may suggest the importance of this specific issue. Further-
more, when an issue is finally resolved after an exceptionally
lengthy discussion, all early fix attempts and the final com-
mit that resolves the issue should be considered to be influ-
ential. Indeed all these software changes have contributed
to close the discussion, unlock whatever has been blocking
attention from other issues, and satisfy the majority of stake-
holders.

To identify controversial/popular issues in projects, we
first searched for issues with an overwhelmingly larger num-
ber of comments than others within the same project. In
this study, we regarded an issue as a controversial/popular
issue if the number of its comments is larger than the 99th
percentile of issue comment numbers. Applying this simple
criteria, we could identify a set of issues that are contro-
versial/popular. Afterwards, we collected all commits that
were associated to each of the controversial/popular issues
and tag them as potentially influential.

An example was found in Apache Math. An issue2 with
62 comments was detected by this analysis. This issue is
about a simple glitch of an API method; the API hangs 4–5
seconds at the first call on a specific Android device. The
corresponding changes3 fixed the glitch and closed the issue.

To confirm that a change related to an identified contro-
versial/popular issue (based on the number of comments) is
truly influential, we verify that 1) the discussion indeed was
about a controversy and 2) the change is a key turning point
in the discussion. Table 2 compiles the statistics of changes
linked to inferred controversial/popular issues as well as the
the number of influential changes manually confirmed among
those changes.

Table 2: Statistics of identified influential changes related to
controversial/popular issues.

Project Name # changes linked to controversial/popular issues # influential changes

Commons-codec 26 3
Commons-collections 12 8
Commons-compress 7 4
Commons-csv 5 5
Commons-io 10 0
Commons-lang 29 15
Commons-math 38 8
Spring-framework 53 42
Storm 40 3
Wildfly 20 18

Total 240 106

3.2.2 Anomalies in Change Behaviors
During software development, source code modifications

are generally made in a consecutive way following a some-
how regular rhythm. Break in change behaviors may thus
signify abnormality and suggest that a specific commit is rel-
atively more important than others. For instance consider
the following scenario: a certain file within a repository after
a period of regular edits remains unchanged for a period of
time, then is suddenly updated by a single change commit,
and afterwards remains again unchanged for a long time.
Such a sudden and abnormal change suggests an urgency
to address an issue, e.g., a major bug fix. In our observa-
tional study we consider both break in behaviors in the edit
rhythm of each files and the edit rhythm of developers. An
anomaly in change behavior may be an out-of-norm change
that developers do not notice, or a change to stable behavior
that many developer/parts of code rely on.

In this study, for each file in the project we considered all
commits that modify the file. For each of those commits, we
computed the time differences from the previous commit and
to the next commit. Then, we mapped these two time lags to
a two dimensional space and used Elliptic Envelope outlier
detection [38] to identify “isolated commits”. In Figure 4,
we can visualize the outliers discovered for the changes on

2https://issues.apache.org/jira/browse/MATH-650
3Commits 52649fda4c9643afcc4f8cbf9f8527893fd129ba
and 0e9a5f40f4602946a2d5b0efdc75817854486cd7



0 10 20 30 40 50

Silence time (days) from the previous change

0

10

20

30

40

50
S
ile

n
ce

 t
im

e
 (

d
a
y
s)

 t
o
 t

h
e
 n

e
x
t 

ch
a
n
g
e

Discovered as influential

Inliers

Extreme values

Outliers

Figure 4: Outlier detection to discover isolated commits for
build.gradle file in Spring framework.

the build.gradle file from the Spring project subject. The
highlighted outlier represents a commit4 for including As-
pectJ files in the Spring-sources jar file. This small commit
is influential as it fixes the build of Spring-framework.

Individual project contributors also often exhibit abnor-
mal behaviors which may suggest influential code changes.
For instance, one core developer constantly contributes to a
specific project. If such a developer submits isolated com-
mits (i.e., commits that are a long time away from the au-
thor’s previous commit as well as his/her next commit), this
might be recognized as an emergency case where immediate
attention is needed.

In this study, we also systematically classified isolated
commits based on developer behaviors as potentially in-
fluential. For example, from commits by developer Stefan
Bodewig in Commons-COMPRESS, we found an isolated com-
mit5 where he proposed a major bug fix for the implemen-
tation of the ZipArchiveEntry API. Before this influential
software change, any attempt to create a zip file with a large
number of entries was producing a corrupted file.

To confirm that an isolated change is influential we verify
that 1) its importance is clearly stated in the change log
and 2) the implication of the change for dependent modules
and client applications is apparent. Table 3 provides the
statistics on detected isolated commits and the results of
our manual analysis on those commits to confirm influential
changes.

Table 3: Statistics of identified isolated commits and the asso-
ciated manually confirmed influential changes.

Project Name # isolated commits # influential changes

Commons-codec 7 3
Commons-collections 28 9
Commons-compress 17 5
Commons-csv 13 4
Commons-io 18 5
Commons-lang 22 7
Commons-math 29 5
Spring-framework 56 8
Storm 48 7
Wildfly 213 1

Total 451 54

3.2.3 Changes referred to in other changes
We considered that popular changes are potentially influ-

ential. These are changes that other developers have some-
how noticed (e.g., incomplete fix, API change that causes

4Commit a681e574c3f732d3ac945a1dda4a640ce5514742
5Commit fadbb4cc0e9ca11c371c87ce042fd596b13eb092

Table 4: Statistics of identified referenced commits and influen-
tial commits.

Project Name # referenced commits # influential changes

Commons-codec 8 3
Commons-collections 3 1
Commons-compress 3 0
Commons-csv 3 2
Commons-io 5 1
Commons-lang 21 2
Commons-math 43 3
Spring-framework 1 1
Storm 1 0
Wildfly 11 9

Total 99 22

collateral evolution). Indeed, when developers submit soft-
ware changes to a project, they usually submit also a commit
message introducing what their patch does. Occasionally,
developers refer to others’ contributions in these messages.
This kind of behaviors suggests that the referred contribu-
tion is influential, at least to a certain extent. For exam-
ple, in the Commons-CSV project, commit6 93089b26 is
referred by another commit7. This commit implemented the
capability to detect start of line, which is surely an influen-
tial change for the implementation of CSV format reading.

Because some of the projects have switched from using
Subversion to using Git, we first managed to create a map-
ping between the Subversion revision numbers (which re-
main as such in the commit messages) and the newly at-
tributed Git Hash code. To confirm that a change referenced
by other changes is influential we verify that 1) it is indeed
referenced by others because it was inducing their changes,
and 2) the implication of the change for dependent modules
and client applications are apparent. Table 4 provides the
statistics of influential changes derived with this metric.

3.3 Qualitative Assessment Results
We then set to assess the quality of the metrics used in

our observational study. We manually checked all potential
influential changes yielded by the systematic analysis. We
further randomly pick change commits from each project
and manually check the percentage of changes that are in-
fluential. The comparison between the two types of datasets
aimed at validating our choices of post-mortem metrics to
easily collect influential changes. Table 5 provides results
of the qualitative assessment. For each project, the ran-
dom dataset size is fixed to 20 commits, leading to a manual
checking of 200 changes. Our systematic analysis findings
produce change datasets with highest rates of “truly” influ-
ential changes (an order of magnitude more than what can
be identified in random samples).

Conclusion:The difference in influential rate values with
random shows that our post-mortem metrics (isolated changes,
popular commits, changes unlocking issues) are indeed good
indicators for collecting some influential software changes.

3.4 Developer Validation
To further validate the influential software changes dataset

that we have collected with our intuition-based post-mortem
metrics, we perform a large- scale developer study. Instead
of asking developers to confirm each identified commit, we
must summarize the commits into categories. To that end,
we resorted to open-card sorting [29], a well known, reliable

6Commit 93089b260cd2030d69b3f7113ed643b9af1adcaa
7Commit 05b5c8ef488d5d230d665b9d488ca572bec5dc0c



New 
key 

feat
ure

Domi
no C

hang
es

API 
Usab

ilit
y Im

prov
emen

t

Majo
r st

ruct
ural

 cha
nge

Fix 
conf

igur
atio

n bu
gs

Impo
rtan

t te
st c

ase 
addi

tion

Fix 
non-

func
tion

al b
ugs

Fix 
hard

 to 
repr

oduc
e/lo

cate
 bug

s

Fix 
bloc

king
 bug

s

Fix 
perv

asiv
e bu

gs

Fix 
key 

feat
ure 

bugs

Corr
ecti

ng c
ontr

over
sial

 cha
nges

(Very influential) 1

(Influential) 2

(Potentially influential) 3

(Not influential) 4

(Unimportant) 5

Adaptive/Perfective Changes Cross Area Changes Preventive Changes Corrective Changes

Figure 5: Survey results on different categories of Influential Changes.

Table 5: Qualitative assessment results. We compared the per-
centage of changes that were actually manually confirmed to be
influential from the datasets yielded by our systematic analysis
and a random selection in projects. Note that we count unique
commits in this table, since some commits fall into more than one
categories.

Project Name
Systematic Analysis Findings Random Selection
Total Influential Rate Influential Rate

Commons-codec 40 8 20.0% 0 0.0%
Commons-collections 42 17 40.5% 0 0.0%
Commons-compress 27 9 33.3% 1 5.0%
Commons-csv 21 11 52.4% 1 5.0%
Commons-io 33 6 18.2% 0 0.0%
Commons-lang 72 24 33.3% 0 0.0%
Commons-math 108 14 13.0% 0 0.0%
Spring-framework 110 51 46.4% 1 5.0%
Storm 89 10 11.2% 1 5.0%
Wildfly 243 27 11.1% 1 5.0%

Total 785 177 22.5% 5 2.5%

and user-centered method for building a taxonomy of a sys-
tem [44]. Card sorting helps explore patterns on how users
would expect to find content or functionality. In our case,
we use this technique to label influential software changes
within categories that are easily differentiable for develop-
ers.

We consider open-card sorting where participants are given
cards showing description of identified influential software
changes8 without any pre-established groupings. They are
then asked to sort cards into groups that they feel are ac-
ceptable and then describe each group. We performed this
experiment in several iterations: first two authors of this
paper provided individually their group descriptions, then
they met to perform another open-card sorting with cards
containing their group descriptions. Finally, a third author,
with more experience in open-card sorting, joined for a final
group open-card sorting process which yielded 12 categories
of influential software changes.

The influential software changes described in the 12 cat-
egories span over four software maintenance categories ini-
tially defined by Lientz et al. [25] and updated in ISO/IEC
14764. Most influential software changes belong to the cor-
rective changes category. Others are either preventive changes,
adaptive changes or perfective changes. Finally, changes in
one of our influential change categories can fall into more
than one maintenance categories. We refer to them as cross
area changes.

Developer assessment. We then conduct a developer
survey to assess the relevance of the 12 categories of influ-

8We consider all 177 influential software changes from the
post-mortem analysis.

ential changes that we describe. The survey participants
have been selected from data collected in the GHTorrent
project [13] which contains history archives on user activi-
ties and repository changes in GitHub. We consider active
developers (i.e., those who have contributed in the latest
changes recorded in GHTorrent) and focus on those who
have submitted comments on other’s commit. We consider
this to be an indication of experience with code review. The
study9 was sent to over 1952 developer email addresses. Af-
ter one week waiting period, only 800 email owners opened
the mail and 144 of them visited the survey link. Finally
89 developers volunteered to participate in the survey. 66
(i.e., 74%) of these developers hold a position in a software
company or work in freelance. Nine respondents (10%) are
undergraduate students and eight (9%) are researchers. The
remaining six developers did not indicate their current sit-
uation. In total, 78% of the participants confirmed having
been involved in code review activities. 26 (29%) developers
have between one and five years experience in software de-
velopment. 29 (33%) developers have between five and ten
years of experience. The remaining 34 (38%) have over ten
years of experience.

In the survey questionnaire, developers were provided with
the name of a category of influential software changes, its de-
scription and an illustrative example from our dataset. The
participant was then requested to assess the relevance of
this category of changes as influential software using a Likert
scale between 1:very influential and 5:unimportant.
Figure 5 summarizes the survey results. For more detailed
description of the categories, we refer the reader to the
project web site (see Section “Availability”).

The survey results suggest that:

• According to software developers with code review ex-
perience, all 12 categories are about important changes:
7 categories have an average agreement of 2 (i.e., In-
fluential), the remaining 5 categories have an average
of 3 (i.e., potentially influential). Some (e.g., “domino
changes”and“changes fixing pervasive bugs”) are clearly
found as more influential than others (e.g., “important
test case addition”).
• Some changes, such as “fixes for hard to reproduce or

locate bugs”, are not as influential as one might think.
• Developers also suggested two other categories of in-

fluential changes: Documentation changes and Design-

9Survey form at https://goo.gl/V2g8OE



phase changes. The latter however are challenging to
capture in source code repository artefacts, while the
former are not relevant to our study which focuses on
source code changes.

With this study we can increase our confidence in the
dataset of influential software changes that we have col-
lected. We thus consider leveraging on the code character-
istics of these identified samples to identify more influential
changes.

4. LEARNING TO PREDICT ICS

Beyond the observational study reported in Section 3, we
propose an approach to identify influential changes on-the-
fly. The objective is to predict, when a change is being
submitted, whether it should be considered with care as it
could be influential. To that end, the approach leverages
Machine Learning (ML) techniques. In our study, the learn-
ing process is performed based on the dataset yielded by
the systematic post-mortem analysis and whose labels were
manually confirmed. In this section we describe the features
that we use to build classifiers as well as the quantitative
assessment that was performed.

4.1 Machine Learning Features for ICs
A change submitted to a project repository contains in-

formation on what the change does (in commit messages),
files touched by the change, quantity of edits performed by
the change and so on. Based on the experience gathered
during manual analysis of influential changes in Section 3,
we extract a number of features to feed the ML algorithms.

4.1.1 Structural features
First we consider common metrics that provide hints on

structural characteristics of a change. These metrics in-
clude (1) the number of files simultaneously changed in a
single commit, (2) the number of lines added to the pro-
gram repository by the commit and (3) the number of lines
removed from the code base.

4.1.2 Natural language terms in commit messages
During the observational study, we noted that commit

messages already contain good hints on the importance of
the change that they propose. We use the Bag-of- words [24]
model to compute the frequency of occurrence of words and
use it as a feature. In addition, we noted that develop-
ers may be emotional in the description of the change that
they propose. Thus, we also compute the subjectivity and
polarility of commit messages based on sentiment analy-
sis [18, 27,30,45] techniques.

4.1.3 Co-change impact
Finally, we consider that the frequency to which a pair of

files are changed together can be an indication of whether
a given change commit affecting both files (or not) is in-
fluential. In our experiments, for each commit, we build a
co-change graph of the entire project taking into account
the history of changes until the time of that commit. Then,
considering files that are actually touched by the change
commit, we extract common network metrics.

PageRank [6] is a link analysis algorithm for “measur-
ing” the importance of an element, namely a page, in a hy-
perlinked set of documents such as the World Wide Web.

Considering a co-change graph as a linked set, we extract
PageRank values for all files. When a commit change is ap-
plied, the co-change graph is modified and PageRank values
are changed. We build a feature vector taking into account
these changes on the minimum and maximum PageRank
values.

Centrality metrics are commonly used in social network
analysis to determine influential people, or in Internet net-
works to identify key nodes. In our experiments, we focus on
computing betweeness centrality [11] and closeness central-
ity [39] metrics for all files associated to a commit change.
We build features by computing the deltas in the sum of
centrality metrics between the metrics computed for files in-
volved in previous commits and for files involved in current
commit.

4.2 Influential Change Classification
In this section we present the parameters of our Machine

Learning classification experiments for predicting influen-
tial changes. In these experiments, we assess the quality of
our features for accurately classifying influential changes.
We perform tests with two popular classifiers, the Näıve
Bayes [1, 24] and Random Forest [5].

In the process of our validation tests, we are interested
in assessing: 1) Whether connectivity on co-change graphs
correlates with a probability for a relevant change to be an
IC; 2) If natural language information in commit messages
are indicative of ICs; 3) If structural information of changes
are indicative of ICs; 4) Whether combinations of features is
best for predicting ICs; 5) If our approach can discover ICs
beyond the types of changes discovered with post-mortem
analysis.

4.2.1 Experiment Setup
To compute the feature vectors for training the classifiers,

we used a high-performance computing system [46] to run
parallel tasks for building co-change graphs for the various
project subjects. After extracting the feature metrics, we
preprocess the data and ran ten-fold cross validation tests
to measure the performance of the classification.

Preprocessing. Influential software changes likely con-
stitute a small subset of all changes committed in the project
repositories. Our manual analysis yielded very few influen-
tial changes leading to a problem of imbalanced datasets
in the training data. Since we try to identify influential
changes, which constitute the minority classes and learning
algorithms are not adapted to imbalanced datasets, we use
oversampling techniques to adjust the class distribution. In
our experiments, we leverage the Synthetic Minority Over-
sampling Techniques (SMOTE) [10].

Evaluation Measures. To quantitatively evaluate the
performance of our approach for predicting influential changes,
we used standard metrics in ML, namely Precision, Recall
and F-measure [1, 20, 28]. Precision quantifies the effec-
tiveness of our machine learning-based approach to point to
changes that are actually influential. Recall on the other
hand explores the capability of our approach to identify most
of the influential changes in the commits set. Finally, we
compute the F-measure, the harmonic mean between Re-
call and Precision. We consider that both Precision and
Recall are equally important and thus, they are equally
weighted in the computation of F-measure.



Table 6: Performance comparison using Näıve Bayes and Random Forest classifiers.
Algorithm Commons-codec Commons-collections Commons-compress Commons-csv Commons-io Commons-lang Commons-math Storm Average

F-Measure NB 95.1 92.9 91.5 84.2 98.5 89.2 94.3 86.1 91.5
(Influential Class) RF 97.4 96.4 98.2 77.8 97.0 95.0 99.1 97.8 94.8

F-Measure NB 93.5 87.5 83.9 92.7 98.1 79.5 92.6 86.5 89.3
(Non Influential Class) RF 97.0 93.9 97.1 90.5 96.3 92.9 98.9 97.5 95.5

4.2.2 Assessment Results
In the following paragraphs, we detail the prediction re-

sults for influential changes using ten-fold cross validation on
labelled data. In addition, this section describes the result
of influential change prediction in the wild.

Cross validation is a common model validation in statis-
tics to assess how the results of a statistical analysis will
generalize to an independent data set. In machine learning
experiments, it is common practice to rely on k-fold cross
validation where the test is performed k times, each time
testing on a kth portion of the data. We perform ten-fold
cross validation on the labelled dataset built in Section 3.

In the first round of experiments, we built feature vec-
tors with all features considered in our study. We then built
classifiers using Näıve Bayes and Random Forest. Table 6
depicts the F-measure performance in ten-fold cross valida-
tion for the two algorithms. Although Random Forest per-
forms on average better than Näıve Bayes, this difference is
relatively small.

Table 7 details the validation results with Random Forest
for different combinations of feature groups for the exper-
iments. We considered separately features relevant to co-
change metrics, the natural language commit message, and
the structural information of changes. We also combined
those type of features to assess the potential performance
improvement or deterioration.

Co-change metrics, which are the most tedious to extract
(hence missing from two projects in Table 7 due to too large
graphs) histories, allow to yield an average performance of
87.7% precision, 87.5% recall, and 87.6% F-measure.

Natural language terms in commit messages also allow
to yield an average performance of 94.9% precision, 94.4%
recall, and 94.4% F-measure for the influential change class
on average.

Our experiments also revealed that structural features of
changes yield the worst performance rates, although those
performances reached 80.5% F-measure on average. For
some projects, however, these metrics lead to a performance
slightly above 50% (random baseline performance).

The performance results shown in Table 7 also highlight
the fact that, on average, combining different features con-
tributes to improve the performance of influential change
prediction. Combining co-change and natural language terms
in commit messages achieves on average a precision, recall
and F-measure performance of 95.6%, 94.5% and 94.5% re-
spectively. Similarly, combining co-change and structural
features shows the F-measures at 90.1% on average. Combi-
nations of natural language and structural information show
95.6% F-measure. Finally, combining all features leads to an
average performance of 96.1% precision, 94.9% recall, and
95.2% F-measure. However, no feature combination achieves
the best performance in every project, possibly suggesting
these features are specific to projects.

4.2.3 Generalization of Influential Change Features
In previous experiments, we have tested the machine learn-

ing classifier with influential change data labelled based on

Table 7: Ten fold cross validation on influential changes us-
ing Random Forest with different metrics combinations. CC: co-
change features. NL: natural language terms on commit mes-
sages. SI: structural features.

Project Name Metrics
Influential Class Non-Influential Class

Precision Recall F-Measure Precision Recall F-Measure

Commons-codec CC 97.5 97.5 97.5 96.9 96.9 96.9
NL 100.0 92.5 96.1 91.4 100.0 95.5
SI 81.0 85.0 82.9 80.0 75.0 77.4
CC NL 100.0 95.0 97.4 94.1 100.0 97.0
CC SI 95.0 95.0 95.0 93.8 93.8 93.8
NL SI 100.0 95.0 97.4 94.1 100.0 97.0
ALL 100.0 95.0 97.4 94.1 100.0 97.0

Commons- CC 90.5 92.7 91.6 87.5 84.0 85.7
collections NL 94.9 90.2 92.5 85.2 92.0 88.5

SI 80.4 90.2 85.1 80.0 64.0 71.1
CC NL 97.3 87.8 92.3 82.8 96.0 88.9
CC SI 86.7 95.1 90.7 90.5 76.0 82.6
NL SI 95.1 95.1 95.1 92.0 92.0 92.0
ALL 95.2 97.6 96.4 95.8 92.0 93.9

Commons- CC 92.9 96.3 94.5 94.1 88.9 91.4
compress NL 100.0 96.3 98.1 94.7 100.0 97.3

SI 89.7 96.3 92.9 93.8 83.3 88.2
CC NL 100.0 96.3 98.1 94.7 100.0 97.3
CC SI 87.1 100.0 93.1 100.0 77.8 87.5
NL SI 100.0 100.0 100.0 100.0 100.0 100.0
ALL 96.4 100.0 98.2 100.0 94.4 97.1

Commons-csv CC 40.0 36.4 38.1 65.0 68.4 66.7
NL 100.0 63.6 77.8 82.6 100.0 90.5
SI 100.0 81.8 90.0 90.5 100.0 95.0
CC NL 100.0 54.5 70.6 79.2 100.0 88.4
CC SI 66.7 54.5 60.0 76.2 84.2 80.0
NL SI 100.0 72.7 84.2 86.4 100.0 92.7
ALL 100.0 63.6 77.8 82.6 100.0 90.5

Commons-io CC 93.9 93.9 93.9 92.6 92.6 92.6
NL 100.0 97.0 98.5 96.4 100.0 98.2
SI 82.5 100.0 90.4 100.0 74.1 85.1
CC NL 100.0 97.0 98.5 96.4 100.0 98.2
CC SI 94.1 97.0 95.5 96.2 92.6 94.3
NL SI 100.0 97.0 98.5 96.4 100.0 98.2
ALL 97.0 97.0 97.0 96.3 96.3 96.3

Commons-lang CC 86.5 88.9 87.7 82.6 79.2 80.9
NL 94.4 93.1 93.7 89.8 91.7 90.7
SI 72.2 79.2 75.5 63.4 54.2 58.4
CC NL 95.8 95.8 95.8 93.8 93.8 93.8
CC SI 91.9 94.4 93.2 91.3 87.5 89.4
NL SI 98.5 93.1 95.7 90.4 97.9 94.0
ALL 97.1 93.1 95.0 90.2 95.8 92.9

Commons-math CC 95.4 96.3 95.9 95.7 94.7 95.2
NL 100.0 100.0 100.0 100.0 100.0 100.0
SI 76.3 80.6 78.4 76.1 71.3 73.6
CC NL 100.0 100.0 100.0 100.0 100.0 100.0
CC SI 96.4 98.1 97.2 97.8 95.7 96.8
NL SI 100.0 98.1 99.1 97.9 100.0 98.9
ALL 100.0 98.1 99.1 97.9 100.0 98.9

Spring- NL 96.2 90.9 93.5 84.6 93.2 88.7
framework SI 75.8 88.2 81.5 68.3 47.5 56.0

NL SI 96.0 86.4 90.9 78.6 93.2 85.3

Storm CC 97.7 95.5 96.6 95.1 97.5 96.2
NL 97.8 98.9 98.3 98.7 97.5 98.1
SI 90.0 80.9 85.2 80.7 89.9 85.0
CC NL 97.8 97.8 97.8 97.5 97.5 97.5
CC SI 97.7 95.5 96.6 95.1 97.5 96.2
NL SI 98.9 98.9 98.9 98.7 98.7 98.7
ALL 97.8 97.8 97.8 97.5 97.5 97.5

Wildfly NL 93.7 98.4 96.0 98.0 92.6 95.2
SI 78.7 82.3 80.5 79.0 75.0 77.0
NL SI 96.0 99.2 97.6 99.0 95.4 97.2

three specific criteria (changes that fix controversial/popu-
lar issues, isolated changes and changes referenced by other
changes). These categories are however strictly related to
our initial intuitions for collecting influential changes in a
post-mortem analysis study. There are likely many influ-
ential changes that do not fit into those categories. Our
objective is thus to evaluate whether the features that we
use for classification of influential changes are still relevant
in the wild.

We randomly sample a significant set of changes within
our dataset of 10 projects commits. Out of the 48,272 com-
mits from the dataset, we randomly consider 381 commits
(i.e., the exact number provided by the Sample Size Cal-



culator10 using 95% for the confidence level and 5 for the
confidence interval).

Again we manually label the data based on the cate-
gories of influential changes approved by developers (cf. Sec-
tion 3.4). We cross check our labels among authors and per-
form ten-fold cross validation using the same features pre-
sented in Section 4.2.1 for influential change classification.
The results are presented in Table 8.

Table 8: Ten-fold cross validation on randomly sampled and
then manually labelled data. We show results considering all
features (NL and SI features in the case of Spring-framework
and Wildfly because of missing CC features).

Project Name
Influential Class Non-Influential Class

Precision Recall F-Measure Precision Recall F-Measure

Commons-codec 100.0 88.9 94.1 87.5 100.0 93.3
Commons-collections 100.0 88.9 94.1 83.3 100.0 90.9
Commons-compress 0.0 0.0 0.0 66.7 100.0 80.0
Commons-io 86.7 86.7 86.7 75.0 75.0 75.0
Commons-lang 97.3 90.0 93.5 85.2 95.8 90.2
Commons-math 100.0 31.6 48.0 71.1 100.0 83.1
Spring-framework 97.5 96.9 97.2 91.7 93.2 92.4
Storm 100.0 88.2 93.8 88.2 100.0 93.8
Wildfly 100.0 96.4 98.2 95.8 100.0 97.8

The precision of ten-fold cross validation for influential
changes is on average 86.8% while the average recall is 74%.
These results suggest that overall, the features provided in
our study are effective even in the wild. For some projects,
the performance is especially poor, mainly because 1) their
training data is limited (Commons-CSV has only one labeled
influential change, making it infeasible to even oversample,
thus no results are available in the table), 2) currently, we
do not take into account some features of influential changes
related to documentation. Developers have already brought
up this aspect in the survey.

4.2.4 Evaluation Summary
From our evaluation results we have found that: 1) Co-

change metrics allow to successfully predict influential changes
with an average 87.6% F-measure; 2) Features based on
terms in commit messages can predict influential changes
with high precision (average of 94.9%) and recall (average
of 94.4%); 3) Structural features can be leveraged to success-
fully predict influential changes with an average F-measure
performance of 80.5%; 4) Overall, combining features of-
ten achieves a better prediction performance than individual
feature groups. For example, combining all features showed
96.1% precision, 94.9% recall, and 95.2% F-measure on av-
erage; 5) With the features we collected, our prediction ap-
proach has an acceptable performance in the wild, i.e., with
different types of influential changes (beyond the ones we
relied upon to infer the features).

5. THREATS TO VALIDITY
Our study raises several threats to validity. This section

outlines the most salient ones.
Internal validity. The authors have manually labelled

themselves the influential changes as it was prohibitively
costly to request labelling by a large number of develop-
ers. We have mitigated this issue by clearly defining criteria
for selecting influential changes, and by performing cross-
checking. Another threat relates to the number of developers
who participated to the code developer study for approving
the categories of influential changes. We have attempted to
mitigate this threat by launching advertisement campaigns

10http://www.surveysystem.com/sscalc.htm

targeting thousands of developers. We have further focused
on quality and representative developers by targeting those
with some code review experience.

External validity. Although we considered a large dataset
of commit changes, this data may not represent the universe
of real-world programs. Indeed, the study focused on open-
source software projects written in Java. The metrics and
features used for predicting influential changes in this con-
text may not be representative for other contexts.

Construct validity. Finally, we selected features based
on our intuitions on influential changes. Our study may have
thus overlooked more discriminative features. To mitigate
this threat, first we have considered several features, many
of which are commonly known in the literature, second we
have repeated the experiments based on data labelled fol-
lowing new category labels of influential changes approved
by developers.

6. RELATED WORK
This section discusses four groups of related work; 1) soft-

ware evolution, 2) change impact analysis, 3) defect pre-
diction, and 4) developer expertise. These topics address
several relevant aspects of our study.

6.1 Software Evolution
Changing any file in a software system implies that the

system evolves in a certain direction. Many studies dealt
with software evolution in different ways. D’Ambros et al. [8]
presented the evolution radar that visualizes file and module-
level coupling information. Although this tool does not di-
rectly predict or analyze the change impact, it can show an
overview of coupling relationships between files and mod-
ules. Chronos [40] provides a narrowed view of history slic-
ing for a specific file. The tool analyzes a line-level history
of a file. This reduces the time required to resolve program
evolution tasks. Girba et al. [12] proposed a metric called
code ownership to illustrate how developers drive software
evolution. We used the metric to examine the influence of a
change.

6.2 Change Impact Analysis
Many previous studies revealed a potential impact of soft-

ware changes. There is a set of techniques that use dynamic
analysis to identify change impacts. Ren et al. [36] pro-
posed Chianti. This tool first runs test cases on two sub-
sequent program revisions (after/before a change) to figure
out atomic changes that describe behavioral differences. The
authors provided a plug-in for Eclipse, which help develop-
ers browse a change impact set of a certain atomic change.
FaultTracer [48] identifies a change impact set by differen-
tiating the results of test case executions on two different
revisions. This tool uses the extended call graphs to select
test cases affected by a change.

Brudaru and Zeller [7] pointed out that the long-term
impact of changes must be identified. To deal with the
long-term impact, the authors proposed a change genealogy
graph, which keeps track of dependencies between subse-
quent changes. Change genealogy captures addition/change/
deletion of methods in a program. It can measure long-term
impact on quality, maintainability, and stability [16]. In
addition, it can reveal cause-effect chains [15] and predict
defects [14].



Although dynamic analysis and change genealogy can pin-
point a specific element affected by a change in source code,
its scope is limited to executed statements by test cases.
This can miss many affected elements in source code as well
as non-source code files such as build scripts and configura-
tion settings. Revision histories can be used for figuring out
files changed frequently together. Zimmermann et al. [49]
first studied co-change analysis in which the authors revealed
that some files are commonly changed together. Ying et
al. [47] proposed an approach to predicting files to change
together based on revision histories.

There have been cluster-based techniques for change im-
pact analysis. Robillard and Dagenais [37] proposed an ap-
proach to building change clusters based on revision histo-
ries. Clusters are retrieved by analyzing program elements
commonly changed together in change sets. Then, the ap-
proach attempts to find matching clusters for a given change.
The matching clusters are regarded as the change impact of
the given change. Sherriff and Williams [41] presented a
technique for change impact analysis using singular value
decomposition (SVD). This technique basically figures out
clusters of program elements frequently changed together.
When clustering changes, the technique performs SVD. The
clusters can be used for identifying the change impact of an
incoming change.

6.3 Defect Prediction
Changing a program may often introduce faults [21, 43].

Thus, fault prediction at an early stage can lead develop-
ers to achieving a better software quality. Kim et al. [22]
proposed a cache-based model to predict whether an incom-
ing change may introduce or not. They used BugCache and
FixCache that record entities and files likely to introduce a
bug and fix the bug if they are changed. The results of their
empirical study showed that the caches 46-95% accuracy in
seven open source projects.

Machine learning classification can be used for defect pre-
diction as well. Kim et al. [20] presented an approach to clas-
sifying software changes into buggy or clean ones. They used
several features such as number of lines of added/deleted
code, terms in change logs, and cyclomatic complexity. The
authors conducted an empirical evaluation on 12 open source
projects. The result shows 78% prediction accuracy on av-
erage. In addition, Shivaji et al. [42] proposed a feature
selection technique to improve the prediction performance
of defect prediction. Features are not limited to metrics of
source code; Jiang et al. [19] built a prediction model based
on individual developers. Defect prediction techniques are
often faced with imbalanced datasets. Bird et al. [3] pointed
out that unfair and imbalanced datasets can lead to bias in
defect prediction.

6.4 Developer Expertise
It is necessary to discuss developer expertise since in-

fluential changes implies that the developer who made the
changes can be influential to other developers.

As the size of open-source software projects is getting
larger, developer networks are naturally constructed and
every activity in the network may affect other developers
substantially. Hong et al. [17] reported a result of observ-
ing a developer social network. The authors investigated
Mozilla’s bug tracking site to construct a developer social
network (DSN). In addition, they collected general social

networks (GSNs) from ordinary social communities such as
Facebook and Amazon. This paper provides the comparison
between DSN and GSNs. Findings described in this paper
include 1) DSN does not follow power law degree distribu-
tion while GSNs do, 2) the size of communities in DSNs
is smaller than that of GSNs. This paper also reports the
result of evolution analysis on DSNs. DSNs tend to grow
overtime but not much as GSNs do.

Onoue et al. [31] studied and enumerates developer activ-
ity data in Github.com. It classifies good developers, tries
to understand developers, and differentiates types of devel-
opers. However, the paper does not provide any further
implication. In addition, there is no result for role analysis
and social structure.

Pham et al. [35] reported the results of a user study which
has been conducted to reveal testing culture in OSS. The
authors have interviewed 33 developers of GitHub first and
figured out the transparency of testing behaviors. Then,
an online questionnaire has been sent to 569 developers of
GitHub to find out testing strategies.

7. CONCLUSION AND FUTURE WORK
In software revision histories, we can find many cases in

which a few lines of software changes can positively or neg-
atively influence the whole project while most changes have
only a local impact. In addition, those influential changes
can constantly affect the quality of software for a long time.
Thus, it is necessary to identify the influential changes at an
early stage to prevent project-wide quality degradation or
immediately take advantage of new software new features.

In this paper, we reported results of a post-mortem anal-
ysis on 48,272 software changes that are systematically col-
lected from 10 open source projects and labelled based on
key quantifiable criteria. We then used open-card sorting
to propose categories of influential changes. After devel-
oper have validated these categories, we consider examples
of influential changes and extract features such as complex-
ity and terms in change logs in order to build a prediction
model. We showed that the classification features are effi-
cient beyond the scope of our initial labeled data on influ-
ential changes. Our future work will focus on the following
topics:

• Influential changes may affect the popularity of projects.
We will investigate the correlation between influential
changes and popularity metrics such as the number of
new developers and new fork events.
• In our study, we used only metrics for source code.

However, features of developers can have correlations
with influential changes. We will study whether influ-
ential changes can make developer influential and vice
versa.
• Once influential changes are identified, it is worth find-

ing out who can benefit from the changes. Quantifying
the impact of the influential changes to developers and
users can significantly encourage further studies.

Availability
We make available all our observational study results, ex-
tracted feature vectors and developer survey results in this
work. See https://github.com/serval-snt-uni-lu/
influential-changes.



8. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. MIT

Press, 2004.

[2] D. Beyer and A. Noack. Clustering software artifacts
based on frequent common changes. In Proceedings of
the 13th International Workshop on Program
Comprehension, IWPC ’05, pages 259–268, 2005.

[3] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
Balanced?: Bias in Bug-fix Datasets. In Proceedings of
the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 121–130, New
York, NY, USA, 2009. ACM.

[4] T. Bissyandé, L. Revéillère, J. Lawall, and G. Muller.
Diagnosys: automatic generation of a debugging
interface to the linux kernel. In Automated Software
Engineering (ASE), 2012 Proceedings of the 27th
IEEE/ACM International Conference on, pages
60–69, Sept 2012.

[5] L. Breiman. Random Forests. Machine Learning,
45(1):5–32, 2001.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh International Conference on World Wide Web
7, WWW7, pages 107–117, Brisbane, Australia, 1998.

[7] I. I. Brudaru and A. Zeller. What is the long-term
impact of changes? In Proceedings of the 2008
International Workshop on Recommendation Systems
for Software Engineering, RSSE ’08, pages 30–32, New
York, NY, USA, 2008. ACM.

[8] M. D’Ambros, M. Lanza, and M. Lungu. The
evolution radar: visualizing integrated logical coupling
information. In Proceedings of the 2006 international
workshop on Mining software repositories, MSR ’06,
pages 26–32, Shanghai, China, 2006. ACM. ACM ID:
1137992.

[9] D. Dig and R. Johnson. How do APIs evolve? A story
of refactoring. Journal of Software Maintenance and
Evolution: Research and Practice, 18(2):83–107, Mar.
2006.

[10] N. V. C. et. al. Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321–357, 2002.

[11] L. C. Freeman. A Set of Measures of Centrality Based
on Betweenness. Sociometry, 40(1):35–41, Mar. 1977.

[12] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse.
How developers drive software evolution. In Eighth
International Workshop on Principles of Software
Evolution, pages 113–122, Sept. 2005.

[13] G. Gousios. The ghtorrent dataset and tool suite. In
Proceedings of the 10th Working Conference on
Mining Software Repositories, MSR ’13, pages
233–236, Piscataway, NJ, USA, 2013. IEEE Press.

[14] K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting
defects using change genealogies. In 2013 IEEE 24th
International Symposium on Software Reliability
Engineering (ISSRE), pages 118–127, Nov. 2013.

[15] K. Herzig and A. Zeller. Mining cause-effect-chains
from version histories. In 2011 IEEE 22nd
International Symposium on Software Reliability
Engineering (ISSRE), pages 60–69, Nov. 2011.

[16] K. S. Herzig. Capturing the long-term impact of
changes. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering -
Volume 2, ICSE ’10, pages 393–396, New York, NY,
USA, 2010. ACM.

[17] Q. Hong, S. Kim, S. Cheung, and C. Bird.
Understanding a developer social network and its
evolution. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM), pages
323–332, Sept. 2011.

[18] M. Hu and B. Liu. Opinion feature extraction using
class sequential rules. In Proceedings of AAAI 2006
Spring Sympoia on Computational Approaches to
Analyzing Weblogs (AAAI-CAAW 2006), 2006.

[19] T. Jiang, L. Tan, and S. Kim. Personalized defect
prediction. In 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering
(ASE), pages 279–289, Nov. 2013.

[20] S. Kim, E. Whitehead, and Y. Zhang. Classifying
software changes: Clean or buggy? IEEE Transactions
on Software Engineering, 34(2):181–196, Mar. 2008.

[21] S. Kim, T. Zimmermann, K. Pan, and E. Whitehead.
Automatic Identification of Bug-Introducing Changes.
In 21st IEEE/ACM International Conference on
Automated Software Engineering, 2006. ASE ’06,
pages 81–90, Sept. 2006.

[22] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and
A. Zeller. Predicting faults from cached history. In
Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 489–498,
Washington, DC, USA, 2007. IEEE Computer Society.

[23] J. Lawall. Automating source code evolutions using
coccinelle, 2013. Kernel Recipes –
https://kernel-recipes.org/en/2013/.

[24] D. D. Lewis. Naive (Bayes) at forty: The
independence assumption in information retrieval. In
C. Nédellec and C. Rouveirol, editors, Proceedings of
10th European Conference on Machine Learning,
number 1398, pages 4–15. Springer Verlag, Heidelberg,
DE, 1998.

[25] B. P. Lientz, E. B. Swanson, and G. E. Tompkins.
Characteristics of application software maintenance.
Commun. ACM, 21(6):466–471, June 1978.

[26] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
M. Di Penta, R. Oliveto, and D. Poshyvanyk. API
Change and Fault Proneness: A Threat to the Success
of Android Apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 477–487, New York, NY,
USA, 2013.

[27] B. Liu. Sentiment analysis and subjectivity. In
N. Indurkhya and F. J. Damerau, editors, Handbook of
Natural Language Processing, Second Edition. CRC
Press, Taylor and Francis Group, Boca Raton, FL,
2010. ISBN 978-1420085921.

[28] D. Montgomery, G. Runger, and N. Hubele.
Engineering Statistics. Wiley, 2001.

[29] J. Nielsen. Card sorting to discover the users’ model of
the information space, May 1995. NN/g – http:
//www.nngroup.com/articles/usability\
-testing-1995-sun-microsystems-website/.



[30] B. Ohana. Opinion mining with the SentWordNet
lexical resource. Dissertations, Mar. 2009.

[31] S. Onoue, H. Hata, and K.-I. Matsumoto. A study of
the characteristics of developers’ activities in GitHub.
In Software Engineering Conference (APSEC, 2013
20th Asia-Pacific, pages 7–12, Dec. 2013.

[32] Y. Padioleau, J. L. Lawall, R. R. Hansen, and
G. Muller. Documenting and automating collateral
evolutions in Linux device drivers. In EuroSys’08:
Proceedings of the 2008 ACM SIGOPS/EuroSys
European Conference on Computer Systems, pages
247–260, Glasgow, Scotland, 2008.

[33] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in linux device
drivers. In EuroSys’06: Proceedings of the 2006 ACM
SIGOPS/EuroSys European Conference on Computer
Systems, pages 59–71, Leuven, Belgium, 2006.

[34] N. Palix, S. Saha, G. Thomas, C. Calvès, J. L. Lawall,
and G. Muller. Faults in Linux: Ten years later. In
ASPLOS’11: Proceedings of the 2011 International
Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach,
CA, USA, 2011.

[35] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of
testing culture on a social coding site. In Proceedings
of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 112–121, Piscataway,
NJ, USA, 2013. IEEE Press.

[36] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of java
programs. In Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’04, pages 432–448, New York, NY, USA,
2004. ACM.

[37] M. Robillard and B. Dagenais. Retrieving task-related
clusters from change history. In 15th Working
Conference on Reverse Engineering, 2008. WCRE ’08,
pages 17–26, 2008.

[38] P. J. Rousseeuw and K. V. Driessen. A fast algorithm
for the minimum covariance determinant estimator.
Technometrics, 41(3):212–223, 1999.

[39] G. Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581–603, 1966.

[40] F. Servant and J. A. Jones. History slicing: Assisting
code-evolution tasks. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, FSE ’12, pages
43:1–43:11, New York, NY, USA, 2012. ACM.

[41] M. Sherriff and L. Williams. Empirical software
change impact analysis using singular value
decomposition. In 1st International Conference on
Software Testing, Verification, and Validation, pages
268–277, Apr. 2008.

[42] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim.
Reducing features to improve bug prediction. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 600–604, Washington, DC, USA, 2009.
IEEE Computer Society.

[43] J. Śliwerski, T. Zimmermann, and A. Zeller. HATARI:
Raising Risk Awareness. In Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 107–110, New York, NY, USA,
2005. ACM.

[44] D. Spencer. Card sorting: a definitive guide, April
2004. http://boxesandarrows.com/card-
sorting-a-definitive-guide/.

[45] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and
A. Kappas. Sentiment strength detection in short
informal text. Journal of the American Society for
Information Science and Technology,
61(12):2544–2558, Dec. 2010.

[46] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos.
Management of an academic hpc cluster: The ul
experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014),
Bologna, Italy, July 2014. IEEE.

[47] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll.
Predicting source code changes by mining change
history. IEEE Transactions on Software Engineering,
30(9):574–586, Sept. 2004.

[48] L. Zhang, M. Kim, and S. Khurshid. FaultTracer: A
change impact and regression fault analysis tool for
evolving java programs. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages
40:1–40:4, New York, NY, USA, 2012. ACM.

[49] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages
563–572, Washington, DC, USA, 2004. IEEE
Computer Society.


