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Abstract

Code review is the process of manual inspection on the re-
vision of the source code in order to find out whether the
revised source code eventually meets the revision require-
ments. However, manual code review is time-consuming, and
automating such the code review process will alleviate the
burden of code reviewers and speed up the software mainte-
nance process. To construct the model for automatic code re-
view, the characteristics of the revisions of source code (i.e.,
the difference between the two pieces of source code) should
be properly captured and modeled. Unfortunately, most of
the existing techniques can easily model the overall correla-
tion between two pieces of source code, but not for the “dif-
ference” between two pieces of source code. In this paper,
we propose a novel deep model named DACE for automatic
code review. Such a model is able to learn revision features
by contrasting the revised hunks from the original and re-
vised source code with respect to the code context containing
the hunks. Experimental results on six open source software
projects indicate by learning the revision features, DACE can
outperform the competing approaches in automatic code re-
view.

Introduction
Code review is important for software maintenance and evo-
lution. A general process of code review is shown in Fig-
ure 1. Whenever a revision of the source code is triggered,
a manual review or inspection the revision would be con-
ducted, upon request, to check whether the revised source
code eventually meets the revision requirements. The revi-
sions that fail to fulfill the requirements would be rejected to
be incorporated into the software system. In order to make a
correct judgment, the code reviewer needs to carefully read
the source code, analyzing the functionality and contrasting
the revised source code and the original source code, which
cost a huge amount of human efforts. To alleviate the burden
of code reviewers and speed up the software maintenance
process, techniques to automate the code review process are
required.

Automatic code review can be formalized as a machine
learning task where a model is constructed to take the revi-
sion on the source code (i.e., the original and revised source
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Figure 1: The process of code review.

code) as input and output a recommendation on whether the
revision should be rejected. To construct a well-performing
model, the revision of source code, i.e., the “difference” be-
tween the original and revised source code, should be prop-
erly modeled. Unfortunately, most of the existing software
mining approaches are equipped for modeling the “correla-
tion” rather than the “difference” between software artifacts.
For example, in software clone detection (Wei and Li 2017),
models are constructed to identify source code fragments
that may have same functionality; in bug localization (Huo,
Li, and Zhou 2016; Huo and Li 2017), models are construct-
ing to model the correlation between the bug report and the
source code that is potentially responsible for the reported
bug. All these approaches tend to focus on and emphasize the
“similar” aspects of the two software artifacts. However, in
the automatic code review, most of the revised source code
is almost the same as the original source code, and only a
tiny little portion is different. If adapting these approaches
to automatic code review, the “difference”, which is the key
for determining the review result, would be ignored by these
approaches. Thus, how to model the revision of source code
is the key challenge for automatic code review.

To model the revision of source code and avoid being mis-
led by the overwhelming among of unchanged code in the
revision, a straight-forward solution is only to consider the
hunks, i.e., the block of changed lines of code, and discard
all the unchanged code. However, such a solution may per-
form poorly due to the following two reasons. First, the hunk
is usually small and only contains a few consecutive lines. It
is usually insufficient to modeling the correct functionality
of the revised code. Second, the unchanged lines provide a
context in which the revision is taken place. Such contextual
information is sometimes crucial to determining the review
result. Figure 2 provides a concrete example the same re-
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vised hunk may lead to different review results if placed in
different context. Therefore, in order to model the revision,
the context should be considered appropriately.

Orig_1.java Approved

Rejected

A proper fix 
on the endless loop

and  wrong
condition statement.

Rev_1.java

Orig_2.java Rev_2.java

SAME CHANGE

A improper fix
since variable 
len is not a

proper bound,
OutOfBoundsException

may raise when
running the code.

DIFFERENT RESULT

…
public int get_index(int a){
int [][] s = this.s;
int len = s.length-1;

return i;
}

… context

for(i=0,i<=len,i++){
if(s[i]==a){ hunk

…
String UpperCase(String s){
int len = s.length;
char a = ' ';

continue;
}

…
context

for(i=0,i<=len,i++){
if(s[i]==a){ hunk

should be ‘ i<len ’

Figure 2: Context is indispensable. A same change may have
different review results in different contexts. The second re-
vision is improper because it may raise the OutOfBoundsEx-
ception error.

One question arises here: can we learn the revision by
contrasting the revised hunks from the original and revised
source code with the code context properly embedded?

In this paper, we propose a novel deep learning method
called DACE (Deep Automatic Code reviEw). This method
first leverages CNN and LSTM to enrich the feature repre-
sentation of each changed lines by exploiting their execu-
tion correlation with the context, and a particularly designed
pairwise autoencoder is employed to learn the revision fea-
tures from both the original hunks and revised hunks, based
on which the review result is determined. Experimental re-
sults on six open source software projects indicate by learn-
ing the revision features that DACE can outperform the com-
peting approaches in automatic code review.

The contributions of our work are:

• We put forward a new software mining challenge, which
aims to model the difference between the two source files
by learning the revision features.

• We propose a novel deep model which learns the revi-
sion features based on pairwise autoencoding and context-
enriched representation of source codes.

The rest of this paper is organized as follows. In Section
2, we present the proposed DACE model. In Section 3, we
report the experimental results. In Section 4, we discuss sev-
eral related works and finally, in Section 5, we conclude the
paper and issue some future works.

The DACE Model
We formalize the code review as a learning task, which
is a binary classification problem. Given a sample of data
(cOi , c

R
i , yi), i ∈ {1, 2, ...,m}, where cOi ∈ CO denotes the

Revised file

Review result
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Input 
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Figure 3: The general framework of DACE.

collection of Original code (referring to the source code be-
fore change) and cRi ∈ CR denotes the collection of Re-
vised code (referring to the source code after change), re-
spectively. yi ∈ Y = {0, 1} indicates whether the change
is approved when yi = 0 or rejected when yi = 1, and m
is the number of instances. The goal of DACE is to learn a
mapping from CO ×CR to Y , f : CO ×CR 7→ Y , to predict
whether an unseen code pair is rejected or not. The predic-
tion function f can be learned by minimizing the following
objective function:

min
f

∑
i

L(f(cOi , c
R
i ), yj) + λΩ(f), (1)

where L(·, ·) is the empirical loss and Ω(f) is a regulariza-
tion term imposing on the prediction function, and λ is the
trade-off parameter to be tuned.

We instantiate the aforementioned learning task by
proposing a novel deep neural network DACE which takes
the source code pairs as input and then learns a revision fea-
ture for a given (cOi , c

R
i ) pair, based on which the prediction

can be made with a subsequent linear output layer.
The general framework of DACE is illustrated in Figure

3. The DACE model contains four parts: input layer, con-
text enrichment layer, revision feature extraction layer, and
the output layer. In order to feed the raw textual data to the
neural network, (cOi , c

R
i ) are firstly embedded by the input

layer. Then the embedded data of source code pair is fed into
context enrichment layer which leverages CNN and LSTM
to enrich the feature representation of each changed lines by
exploiting their execution correlation with the context. After
that, in revision feature extraction layer, to capture the rela-
tionship of revision between (cOi , c

R
i ), we trained a pairwise

recursive autoencoder that could learn a fixed length com-
pact feature from two sequential data. Finally, after gener-
ating the revision feature representation, in the output layer,
DACE predicts a review score for each (cOi , c

R
i ) pair by a

fully connected layer. The detail of these parts will be dis-
cussed in the subsequent subsections.

4911



Multiple filters 
within statements

Source code file with 
changed hunk

BLSTM

BLSTM

BLSTM

BLSTM

⋮ ⋮ ⋮ ⋮

Statement 
feature

⋮ ⋮ ⋮ ⋮

Convolutional layer Pooling layer LSTM layer

Get interactions
between statements

H context-enriched 
changed hunk feature 
for further prediction

statement

statement

statement

statement

continue;

int len = s.length;

for(i=0,i<=len,i++){

if(s[i]==a){

H lines  
changed 

hunk

T lines

Figure 4: The structure of context enrichment layer. The convolutional and pooling layer aim to represent the semantics of a
statement based on the terms within a statement, and the subsequent LSTM layer is used to enrich the sequential information
for the changed hunk from relevant surrounding statements.

Data Processing

In the data preprocessing, we extract both the original code
and revised code from the review system as input. In this
paper, we assume all the change are i.i.d., so there is no in-
teraction between all the change, and if a file has multiple
changed hunks, we extract each hunk separately. There are
situations that the modification is only adding or deleting,
which causes half of the input pair to be empty set and is
unable to feed into the network. So in this paper, we only
consider the situation that the developer changed codes. In
this settings, the input of each instance in the dataset can
be formed as (cOi , c

R
i ), where cOi ∈ CO denotes the collec-

tion of original code and cRi ∈ CR denotes the collection
of revised code, respectively. It is worth noting that the cOi
usually only contains a few consecutive lines that different
with cRi while most of the lines in cOi are unchanged and is
exactly the same with that in cRi . The different part in cOi
is referring to as the original hunk. And the corresponding
different part in cRi is referring to as the changed hunk. Both
the original hunk and the changed hunk is a consecutive line
of code.

To obtain word embeddings, a pre-trained word2vec
(Mikolov et al. 2013) technique is used to embed every text
term in (cOi , c

R
i ) as vector representations (e.g., a 300 di-

mension vector), which has been shown effective in pro-
cessing textual data and widely used in text processing
tasks (Mikolov et al. 2013; Kim 2014). Since the meaning
of text term in software is not the same as that in natural
language, the weights of pre-trained word2vec will be tuned
later.

The key of the DACE model lies in the context enrichment
layer as well as the revision feature extraction layer, which
will be discussed in detail in the following subsections.

Context Enrichment Layer
Automatic code review faces the challenge of context
dilemma: not capturing the context would be too deficient
to predict but capturing the context all would overwhelm
the information of changed hunk. That is because the con-
text provides abundant correlated knowledge of the changed
hunk along with plenty of irrelevant information.

One question arises here: can we find a way to enrich the
changed hunk with useful information in context, rather than
use raw intact context or despite it? To process source code,
Huo et al. (Huo, Li, and Zhou 2016) designed a particular
CNN network for source code processing, which extracts
features based on multiple layers of convolutional neurons,
where the convolution operation for source code is particu-
larly designed to reflect the program structure and preserves
statement integrity. Moreover, Huo et al. (Huo and Li 2017)
claims that one crucial point to extract semantic features
from the source code is that, the statements in programming
language contain sequential nature, which means the previ-
ous statements may affect subsequent statements according
to the execution path and statements may have long-term
dependency via data stream transmission. To extract seman-
tic features of source code file, LSTM is designed to extract
semantic features reflecting sequential nature from source
code and handle long-term dependency between statements
and CNN is designed to capture the local and structure in-
formation within statements. Inspired by the aforementioned
methods, to solve the context dilemma, a richer feature rep-
resentation which captures the sequential semantics of the
surrounding code is necessary to be exploited, especially
for the fragmentary changed hunk which is usually ineffi-
cient to represent the program functionality. To enrich the
feature of statements, we extend CNN for source code pro-
cessing (Huo, Li, and Zhou 2016) by combining Long Short-
Term Memory (LSTM) (Sutskever, Vinyals, and Le 2014),
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a type of Recurrent Neural Network (RNN) that captures
the sequential relevance between statements, which has been
demonstrated effective for maintaining sequential property
in text processing, to exploit sequential features for fragmen-
tary changed hunk from the source code file. To avoid the
gradient vanishing and exploding problems for LSTM pro-
cessing data with too much time steps, and considering the
property of the JAVA programming language, we only take
the method block where the revision take place.

The structure of the programming language feature ex-
traction network is illustrated in Figure 4. The first convolu-
tional layer aims to extract semantic features within state-
ments to protect the integrity of programming language,
which employs multiple filters sliding within the statement
and converts statements into new feature vectors. In order
to extract high-level features with different granularity, the
filters in the convolutional layer have different sizes. A max
pooling operation is applied within the statement to extract
the most informative information of each feature map. After
convolutional and pooling process, the network generates T
feature maps (H feature maps of changed hunk included) of
x ∈ Rk, where T is the length of the JAVA method, H is
the length of the changed hunk inside the method, and k is
the dimension for each statement’s feature generated by the
pooling layer.

After processed by convolutional and pooling operations,
the T feature maps are then fed into the LSTM layer. LSTM
is a recurrent neural network (RNN) that takes terms in a
sequence one by one, i.e., at time t, it takes the t-th term as
input. In our model, xt ∈ Rk in the input vectors in time step
t, represents the feature maps of t-th statements generated
by CNN. Therefore, the input vectors maintain the inherent
sequential nature, which can be fed into LSTM that is speci-
fied for sequential inputs. LSTM overcomes the difficulty in
learning long-term dynamics by incorporating memory cells
c that allow the network to learn when to forget previously
hidden states and when to update hidden states given new
information, which is able to exploit sequential nature from
source code to enrich the high-level semantic features.

By take the changed hunk’s representation of length H ,
which contains the sequential and helpful information out
flown from memory cells, we can obtain a richer sequential
feature representation which captures the sequential seman-
tics of the surrounding code.

Revision Feature Extraction Layer
In this subsection, we introduce the structure of the revision
feature extraction layer, where a novel network structure,
pairwise autoencoder (PAE) is designed. In short, PAE con-
struct an encoder to pact the revision feature of (cOi , c

R
i ) into

a compact feature representations by exploiting their fused
context vector which is able to facilitate the determination
on whether a revision of source code should be rejected or
approved.

Back during the process of human code review, review-
ers compare the original code to the revised code, and sum
up with an abstract term denoting the revision in their mind,
and further determine this revision is proper or improper.

This process inspires us to extract a feature that denotes the
meaning of revision given a pair of source code. To do this,
one of the simplest ways is to concatenate all of the state-
ments in original code and revised code together to represent
revision. But this kind of splice method will suffer from the
loss of wasting the structure of sequential statements and ig-
noring the order of code version. However, the structure of
statements is important because that is how different state-
ments interact with each other to accomplish specific func-
tionality. Moreover, the order of code version is essential for
reviewer, e.g., a revision code1→ code2 usually has a re-
sult that different from the revision code2→ code1. That
is to say, the feature of revision should summarize the mean-
ing of change with both structure of statements within hunk
and the change direction between hunks.

One question arises here, can we learn a revision feature
that indirectly learns the change process from a pair of se-
quential data? To address this problem, we design a novel
network structure pairwise autoencoder (PAE), an exten-
sion of Seq2Seq autoencoder, but with pairwise sequences
as input. An illustration of two structure is shown in Fig-
ure 5. Classical autoencoder learns efficient data codings
from sequential data in an unsupervised manner and has
been demonstrated effective. Different from classical au-
toencoder, PAE receives pairwise input, and a particular fu-
sion operation is designed to fuse two hidden states into a
fixed length vector.

1 2 T

2 T21

1 2 T1

1’ 2’ T’

c

2’ T2’1’

1’ 2’ T1’

c

Classical
Seq2Seq Autoencoder Proposed Pairwise Autoencoder (PAE)

Encoder
Encoder

Decoder Decoder

Fusion

Figure 5: An illustration of the Seq2Seq Autoencoder and
the proposed PAE.

The encoder of PAE encodes the pairwise features gen-
erated from the last layer into a hidden feature that can be
decoded back to the feature pair by minimizing the recon-
structed loss. When the reconstructed loss closing to zero or
small enough within tolerance, the hidden feature becomes
an efficient feature of revision. That is because using this
hidden state the decoder can reconstruct the input pair. The
hidden state knows the version of two hunks and is able to
capture the structure in both hunks since every statement can
be reconstructed in the right order. Figure 6 below illustrates
the model. The traditional autoencoder reads the input se-
quence Sseq = {s1, s2, ..., sT } sequentially, where si ∈ Rk.
The hidden state of the RNN updates at every time step
based on the current input and hidden state inherited from
the previous step. The last hidden state which refers to con-
text vector c which are used for decoding. In our model, the
encoder reads two sequential vectors respectively and gets a
pair of context vectors (contextO, contextN ), which refers
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Figure 6: The structure of PAE. A pairwise sequential data
been encoded into a pair of context vector by two RNN
based encoder, then through a maxpool fusion operator they
are fused into one overall context vector which could been
decoded back to a pair through two RNN decoder. The en-
coders pact the revised code into a compact feature represen-
tations based on which the transformation can be learned.

to the context vector of input (cO, cN ), respectively. Then a
fusion operation is applied on (contextO, contextN ) to get
a joint compact overall context vector context. Note that
the fuse operation can be implemented as a different kind of
mechanism, e.g., max pooling, linear transformation, mul-
tiple layers of fully connected work, etc. In this paper, we
use max pooling to extract the most informative feature and
get the overall context vector. The decoder is a recurrent
network which reconstructs context back into the original
pairwise sequence. To exemplify this, the decoder starts by
reading the context vector context at t = 1. It then decodes
the information through two RNN structure and outputs two
sequences of reconstruction features ŜO

seq and ŜN
seq .

At a high level, the RNN encoder reads an input pair
sequence separately and summarizes all information into a
fixed length vector. This vector contains the knowledge of
both the revision and the semantic meaning of source code
since the decoder can read the vector and reconstructs the
original sequence pair. By minimizing the reconstruction
loss, the internal structure bounded the hidden state with the
condition that to extract the revision information of the input
pair, so that it is able to narrow the search space of parame-
ters. The overall context vector is feed into a fully connected
layer for prediction.

Specifically, the parameters of PAE can be denoted as
ΘPAE , and the parameters of the convolutional neural net-
works layer and the LSTM can be denoted as ΘCNN and
ΘLSTM , respectively, and the parameters of fully-connected
networks layer is W . Let Θ = {ΘCNN ,ΘLSTM ,ΘPAE},
therefore, the loss function implied in DACE is:

L(Θ,W ) = Lcl(Θ,W ) + λLre(Θ), (2)

in which

Lcl(Θ,W ) = −
m∑
i=1

(cayi log p̂i + cr(1− yi) log(1− p̂i)),

(3)

Lre(Θ) =

m∑
i=1

(
1

TO
i

TO
i∑

j=1

||sOij − ŝOij ||22 +
1

TR
i

TR
i∑

k=1

||sRik− ŝRik||
2
2). (4)

where Lcl is a cross-entropy classification loss, and Lre

is the restrict term denotes reconstruction loss in PAE and λ
is the trade-off parameter balancing these two terms. And ca
denotes the cost of incorrectly predicting a rejected change
as approved and cr denote the cost of incorrectly predicting
an approved change as rejected, and these two terms provide
an opportunity to handle imbalanced costs or imbalanced la-
bel distribution.

Another interpretation of loss function in DACE is that,
when the reconstructed loss is close enough to zero (smaller
than a constant), the PAE can capture the revision feature
accurately relatively. Under this condition, the hidden state
context are further used to learn a classifier in the output
layer. The overall optimization can be formed as:

min
Θ,W

Lcl(Θ,W ),

s.t. Lre(Θ) ≤ C.
(5)

where Lcl and Lre are defined in Equation 3 and Equation
4, and C is a constant. Interestingly, the form of Equation
5 and the form of Equation 2 are equivalent with a simple
deduce of Lagrange multipliers.

This objective function can be effectively optimized using
SGD (Stochastic gradient descent) (Bottou 1998).

Experiments
To evaluate the effectiveness of DACE, we conduct exper-
iments on open source software projects and compare the
results with several baselines.

Experiment Settings
The code review data used in the experiments is crawled
from Apache projects1, which is a widely used code re-
view source (Rigby and Bird 2013; Rigby and German 2006;
Rigby, German, and Storey 2008). In many practical cases, a
review request may contain multiple files and hunks, and we
assume these hunks are independent of each other. For each
changed hunk, if it has the highlighted lines that marked
by reviewers denoting they have issues, we regard the hunk
as rejected. It is worth noting that our model is language-
independent. Although we conducted our experiments on
JAVA projects, it can be directly applied to the automatic
code review tasks with other programming languages (e.g.,
C++, Python). We divided our dataset into six repositories,
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Table 1: Statistics of our data sets.
Repository #hunks #rejected reject rate

accumulo 5,620 152 3%
ambari 6,810 138 2%
aurora 6,762 168 2%

cloudstack 6,171 128 2%
drill-git 3,575 43 1%

hbase-git 6,702 140 2%

as shown in Table 1, i.e., cloudstack, ambari,aurora, drill-
git, accumulo and hbase-git. For each repository, we have at
least 3,500 hunks.

Because it has the class imbalance problem, the total num-
ber of rejects is far less than the total number of approves,
so the most common metrics like accuracy and error can
be deceiving in certain situations and are highly sensitive to
changes in data. For each data set, 10-fold cross validation
is repeated ten times, and we use F1 and AUC (Area Un-
der ROC Curve) to measure the effectiveness of the DACE
model, which have been widely applied for evaluating im-
balanced data. We report the average value of all compared
methods in order to reduce the evaluation bias. We also ap-
ply statistic test to evaluate the significance of DACE, the
pairwise t-test at 95% confidence level is conducted.

Since there are no previous studies that applied machine
learning methods for automatic code review tasks, we firstly
compare our proposed model DACE with several traditional
models on software engineering. One of the most common
methods is to employ the Vector Space Model (VSM) to rep-
resent the source code and then train a classifier to predict if
a change is approved or not. Applying VSM in software en-
gineering tasks have been widely studied (Gay et al. 2009;
Liu et al. 2007; Zhou, Zhang, and Lo 2012). In addition, we
compare DACE with the latest deep learning based models
Deeper (Yang et al. 2015) on software engineering, which
applies Deep Believe Network for semantic feature extrac-
tion. Moreover, to explore the effect of each layer of our
model, several variants of DACE have also been compared.
Specifically, the compared methods are as follows:
• TFIDF-LR (Schütze, Manning, and Raghavan 2008; Gay

et al. 2009), which uses TFIDF technique to represent the
original and the revised source code. After a concatenat-
ing operation, a basic classifier Logistic Regression (LR)
is used for prediction.

• TFIDF-SVM, which uses TFIDF technique to represent-
ing which is the same as above. After representing, a basic
classifier Support Vector Machine (SVM) is used for pre-
diction.

• Deeper (Yang et al. 2015), which is one of state-of-the-art
deep learning model on software engineering, which uses
some basic features (e.g., how many lines of code added,
lines of code deleted, etc.) to extract expressive features
using Deep Belief Network (DBN) for changes and then
apply Logistic Regression for classification.

1Apache Code Review Board, https://reviews.apache.org/r/

• Deeper-SVM, which is a slight variant of state-of-the-art
model Deeper. Deeper-SVM uses the same DBN model
for feature extraction but apply Support Vector Machine
for classification.

• LSCNN, a variant of DACE that without PAE. It is similar
to the state-of-the-art method LSCNN (Huo and Li 2017)
using Multilayer Perceptron (MLP) for prediction.

• PAE, a variant of DACE that without considering sequen-
tial and long-term dependency information between state-
ments in context extraction layer and only use PAE to ex-
tract features from CNN.
For TFIDF-LR and TFIDF-SVM, we build a vocabu-

lary that considers the top 300 frequency term and using
class-balanced weight for classifiers, and in TFIDF-SVM
the penalty parameter C are chosen by cross-validation. For
Deeper and Deeper-SVM, we follow the same experiment
settings in (Yang et al. 2015). We employ the most com-
monly used ReLU σ(x) = max(x, 0) as active function and
the filter windows size is set as 2, 3, 4, with 100 feature maps
each in CNN. The number of neuron dimension in LSTM is
set as 300. The encoders and decoders in PAE are GRUs
with the cell size of 256. And the MLP for final prediction is
two layers of a fully connected network of size 256 and 100.
The cost weights ca and cr are set inversely proportional to
class instance numbers.

Experiment Results
For each data set, 10-fold cross validation is repeated ten
times and the average performance of all compared meth-
ods with respect to F1 and AUC are tabulated in Table 2 and
Table 3, where the best performance on each data set is bold-
faced. Mann-Whitney U-test is conducted at 95% confidence
level to evaluate the significance. If DACE significantly out-
performs a compared method, the inferior performance of
the compared method would be marked with “◦ ”.

Table 2: The performance comparison in terms of F1.
Repository TFIDF

-LR
TFIDF
-SVM Deeper Deeper

-SVM LSCNN PAE DACE

accumulo 0.227◦ 0.239◦ 0.202◦ 0.199◦ 0.417◦ 0.373◦ 0.493
ambari 0.240◦ 0.278◦ 0.306◦ 0.238◦ 0.444◦ 0.473◦ 0.509
aurora 0.204◦ 0.220◦ 0.349◦ 0.299◦ 0.336◦ 0.571 0.403

cloudstack 0.250◦ 0.275◦ 0.352◦ 0.265◦ 0.360◦ 0.415◦ 0.516
drill-git 0.212◦ 0.236◦ 0.229◦ 0.212◦ 0.318◦ 0.382◦ 0.573

hbase-git 0.232◦ 0.256◦ 0.193◦ 0.154◦ 0.348◦ 0.411 0.396

Average 0.228◦ 0.251◦ 0.272◦ 0.228◦ 0.370◦ 0.438◦ 0.482

Table 3: The performance comparison of in terms of AUC.
Repository TFIDF

-LR
TFIDF
-SVM Deeper Deeper

-SVM LSCNN PAE DACE

accumulo 0.666◦ 0.703◦ 0.688◦ 0.705◦ 0.787 0.814 0.786
ambari 0.708◦ 0.848◦ 0.680◦ 0.572◦ 0.824◦ 0.861◦ 0.905
aurora 0.582◦ 0.645◦ 0.682◦ 0.564◦ 0.750◦ 0.819 0.793

cloudstack 0.745◦ 0.827◦ 0.795◦ 0.646◦ 0.761◦ 0.820◦ 0.852
drill-git 0.658◦ 0.725◦ 0.593◦ 0.540◦ 0.788◦ 0.806◦ 0.820

hbase-git 0.679◦ 0.759◦ 0.590◦ 0.524◦ 0.751◦ 0.764◦ 0.813
Average 0.673◦ 0.751◦ 0.671◦ 0.592◦ 0.777◦ 0.814◦ 0.828

From the results, we can find that DACE achieves the best
average performance in both terms of F1 and AUC. The F1
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of DACE improves traditional baseline models (TFIDF-LR,
TFIDF-SVM) because DACE spends more time and space to
extract features during the training process. Compared with
the best deep model Deeper and its variant Deeper-SVM,
DACE still has a better performance.

Area under the receiver operating characteristic curve
(AUC) is a standard approach to imbalanced classification.
AUC measures the comprehensive performance of differ-
ent predictors and DACE still performs the best on average.
Comparing with the VSM based model as well as the best
deep learning model Deeper and its variant Deeper-SVM,
DACE still improves the performance.

Additionally, although the state-of-the-art method for pro-
gramming language LSCNN (Huo and Li 2017) also utilizes
CNN and LSTM in source code processing, in code review
task, we find LSCNN does not perform well in compari-
son to DACE. One of the differences between LSCNN and
DACE is that DACE utilizes PAE in the revision feature ex-
traction layer, and the internal structure of PAE helps DACE
to captures the information of revision by narrowing search-
ing space, thus leading to a better feature representation.

Moreover, although PAE is particularly designed for code
review, it still not perform better than DACE. This is prob-
ably because it falls into the context dilemma. For some
datasets, with the absence of context the information of
changed hunk is too deficient to review. The example in
Figure 2 may confuse the model by the same input lead-
ing to opposite output. That is because the context provides
abundant correlated information of the changed hunk. Ex-
periments show that the convenient of ignoring the context,
e.g., less computation and simpler hypothesis space, is not
enough to make up for the absence of context for many
datasets.

In summary, the revision feature of original-revised
source code pair would be learned by DACE which applies
PAE to model revision. And experiments also show the effi-
ciency of exploiting the sequential nature as well as enrich-
ing the context of the changed hunk.

Related Work
Previous empirical studies have shown that code review
practice involves a significant amount of human effort since
reviewers need to understand, identify, analysis and discuss
until they make the decision. Thus, many tasks and ap-
proaches that aim to improve the effectiveness of code re-
view have been presented. Thongtanunam et al. (Thongta-
nunam et al. 2015) revealed that 4%-30% of reviews have
code reviewer assignment problem. Thus, they proposed a
code reviewer recommendation approach REVFINDER to
solve the problem by leveraging the file location informa-
tion.

Zanjani et al. (Zanjani, Kagdi, and Bird 2016) also studied
on code reviewer recommendation problem and they pro-
posed an approach cHRev by leveraging the specific infor-
mation in previously completed reviews (i.e., quantification
of review comments and their recency). Their results showed
that cHRev outperforms prior approaches. Different from
the above works, Ebert et al. (Ebert et al. 2017) proposed an
approach to identify the factors that confuse reviewers and

understand how confusion impacts the efficiency and effec-
tiveness of code reviewers. They first manually classify 800
comments and then they trained classifiers based on the la-
beled data and found that confusion identification in inline
comments is more a difficult task than in general ones.

Recently, deep learning (Goodfellow, Bengio, and
Courville 2016), which is a recent breakthrough in ma-
chine learning domain, has been applied in many areas. Soft-
ware engineering is not an exception. Yang et al. applied
Deep Belief Network (DBN) to learn higher-level features
from a set of basic features extracted from commits (e.g.,
lines of code added, lines of code deleted, etc.) to predict
buggy commits (Yang et al. 2015). Guo et al. use word
embedding and one/two layers Recurrent Neural Network
(RNN) to link software subsystem requirements (SSRS) to
their corresponding software subsystem design descriptions
(SSDD) (Guo, Cheng, and Cleland-Huang 2017). Xu et al.
applied word embedding and convolutional neural network
(CNN) to predict semantic links between knowledge units
in Stack Overflow (i.e., questions and answers) to help de-
velopers better navigate and search the popular knowledge
base (Xu et al. 2016). Lee et al. applied word embedding and
CNN to identify developers that should be assigned to fix a
bug report (Lee et al. 2017). Mou et al. (Mou et al. 2016), ap-
plied tree based CNN on abstract syntax tree to detect code
snippets of certain patterns. Lam et al. (Lam et al. 2015)
combined deep model autoencoder with a information re-
trieval based model, which shows good results for identify-
ing buggy source code. Huo et al. (Huo, Li, and Zhou 2016;
Huo and Li 2017) applied learned unified semantic feature
based on bug reports in natural language and source code in
a programming language for bug localization tasks. Wei et
al (Wei and Li 2017) proposed an end-to-end deep feature
learning framework for functional clone detection, which
exploiting the lexical and syntactical information via AST-
based LSTM network.

Conclusion
In this paper, we study the important problem of automatic
code review and formalize this task as a learning prob-
lem. Then we propose a novel neural network called DACE,
which first leverages CNN and LSTM to enrich the feature
representation of each changed lines by exploiting their ex-
ecution correlation with the context, and a particularly de-
signed pairwise autoencoder (PAE) is employed to learn the
revision features from both the original hunks and revised
hunks, based on which the review result is determined. Ex-
perimental results on six open source repositories show the
efficiency of DACE.

In the future, considering the relationship between hunks
will be investigated. And since the users are often very sen-
sitive to code review errors, a cost-sensitive analysis will
be studied. Moreover, incorporating additional data to en-
rich the structure of DACE is also another interesting future
work.
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