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Programming screencasts have become a pervasive resource on the Internet, which help developers learn
new programming technologies or skills. The source code in programming screencasts is an important and
valuable information for developers. But the streaming nature of programming screencasts (i.e., a sequence
of screen-captured images) limits the ways that developers can interact with the source code in the screen-
casts. Many studies use the Optical Character Recognition (OCR) technique to convert screen images (also
referred to as video frames) into textual content, which can then be indexed and searched easily. However,
noisy screen images significantly affect the quality of source code extracted by OCR, for example, no-code
frames (e.g., PowerPoint slides, web pages of API specification), non-code regions (e.g., Package Explorer
view, Console view), and noisy code regions with code in completion suggestion popups. Furthermore, due
to the code characteristics (e.g., long compound identifiers like ItemListener), even professional OCR tools
cannot extract source code without errors from screen images. The noisy OCRed source code will negatively
affect the downstream applications, such as the effective search and navigation of the source code content in
programming screencasts.

In this article, we propose an approach named psc2code to denoise the process of extracting source code
from programming screencasts. First, psc2code leverages the Convolutional Neural Network (CNN) based
image classification to remove non-code and noisy-code frames. Then, psc2code performs edge detection and
clustering-based image segmentation to detect sub-windows in a code frame, and based on the detected sub-
windows, it identifies and crops the screen region that is most likely to be a code editor. Finally, psc2code calls
the API of a professional OCR tool to extract source code from the cropped code regions and leverages the
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OCRed cross-frame information in the programming screencast and the statistical language model of a large
corpus of source code to correct errors in the OCRed source code.

We conduct an experiment on 1,142 programming screencasts from YouTube. We find that our CNN-based
image classification technique can effectively remove the non-code and noisy-code frames, which achieves
an F1-score of 0.95 on the valid code frames. We also find that psc2code can significantly improve the quality
of the OCRed source code by truly correcting about half of incorrectly OCRed words. Based on the source
code denoised by psc2code, we implement two applications: (1) a programming screencast search engine;
(2) an interaction-enhanced programming screencast watching tool. Based on the source code extracted from
the 1,142 collected programming screencasts, our experiments show that our programming screencast search
engine achieves the precision@5, 10, and 20 0f 0.93, 0.81, and 0.63, respectively. We also conduct a user study of
our interaction-enhanced programming screencast watching tool with 10 participants. This user study shows
that our interaction-enhanced watching tool can help participants learn the knowledge in the programming
video more efficiently and effectively.

CCS Concepts: « Software and its engineering — Software maintenance tools;
Additional Key Words and Phrases: Programming videos, deep learning, code search
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1 INTRODUCTION

Programming screencasts, such as programming video tutorials on YouTube, can be recorded by
screen-capturing tools like Snagit [27]. They provide an effective way to introduce programming
technologies and skills and offer a live and interactive learning experience. In a programming
screencast, a developer can teach programming by developing code on-the-fly or showing the
pre-written code step-by-step. A key advantage of programming screencasts is the viewing of a
developer’s coding in action, for example, how changes are made to the source code step-by-step
and how errors occur and are being fixed [14].

There is a huge number of programming screencasts on the Internet. For example, YouTube, the
most popular video-sharing website, hosts millions of programming video tutorials. The Massive
Open Online Course (MOOC) websites (e.g., Coursera,! edX?) and the live streaming websites
(e.g., Twitch®) also provide many resources of programming screencasts. However, the streaming
nature of programming screencasts, i.e., a stream of screen-captured images, limits the ways that
developers can interact with the content in the videos. As a result, it can be difficult to search and
navigate programming screencasts.

To enhance the developer’s interaction with programming screencasts, an intuitive way is to
convert video content into text (e.g., source code) by the Optical Character Recognition (OCR)
technique. As textual content can be easily indexed and searched, the OCRed textual content makes
it possible to find the programming screencasts with specific code elements in a search query.
Furthermore, video watchers can quickly navigate to the exact point in the screencast where some
APIs are used. Last but not the least, the OCRed code can be directly copied and pasted to the
developer’s own program.

Thttps://www.coursera.org.
https://www.edx.org.
Shttps://www.twitch.tv/.
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However, extracting source code accurately from programming screencasts has to deal with
three “noisy” challenges (see Section 2 for examples). First, developers in programming screen-
casts not only develop code in IDEs (e.g., Eclipse, Intellij IDEA) but also use some other software
applications, for example, to introduce some concepts in PowerPoint slides or to visit some API
specifications in web browsers. Such non-code content does not need to be extracted if one is only
interested in the code being developed. Second, in addition to code editor, modern IDEs include
many other parts (e.g., tool bar, package explorer, console, outline). Furthermore, the code editor
may contain popup menu, code completion suggestion window, and so on. The mix of source code
in code editor and the content of other parts of the IDE often result in poor OCR results. Third,
even for a clear code editor region, the OCR techniques cannot produce 100% accurate text due to
the low resolution of screen images in programming screencasts and the special characteristics of
GUI images (e.g., code highlights, the overlapping of UI elements).

Several approaches have been proposed to extract source code from programming screen-
casts [4, 13, 22, 34]. A notable work is CodeTube [22, 23], a programming video search engine
based on the source code extracted by the OCR technique. One important step in CodeTube is to
extract source code from programming screencasts. It recognizes the code region in the frames us-
ing the computer vision techniques including shape detection and frame segmentation, followed
by extracting code constructs from the OCRed text using an island parser.

However, CodeTube does not explicitly address the aforementioned three “noisy” challenges.
First, it does not distinguish code frames from non-code frames before the OCR. Instead, it OCRs
all the frames and checks the OCRed results to determine whether a frame contains the code. This
leads to unnecessary OCR for non-code frames. Second, CodeTube does not remove noisy code
frames, for example, the frames with code completion suggestion popups. Not only is the quality
of the OCRed text for this type of noisy frames low, but also the OCRed text highly likely contains
code elements that appear only in popups but not in the actual program. Third, CodeTube simply
ignores the OCR errors in the OCRed code using a code island parser and does not attempt to fix
the OCR errors in the output code.

In this work, we propose psc2code, a systematic approach and the corresponding tool that ex-
plicitly addresses the three “noisy” challenges in the process of extracting source code from pro-
gramming screencasts. First, psc2code leverages the Convolutional Neural Network (CNN) based
image classification to remove frames that have no code and noisy code (e.g., code is partially
blocked by menus, popup windows, completion suggestion popups) before OCRing code in the
frames. Second, psc2code attempts to distinguish code regions from non-code regions in a frame.
It first detects Canny edges [7] in a code frame as candidate boundary lines of sub-windows. As
the detected boundary lines tend to be very noisy, psc2code clusters close-by boundary lines and
then clusters frames with the same window layout based on the clustered boundary lines. Next,
it uses the boundary lines shared by the majority of the frames in the same frame cluster to de-
tect sub-windows and subsequently identify the code regions among the detected sub-windows.
Third, psc2code uses the Google Vision API [11] for text detection to OCR a given code region
image into text. It fixes the errors in the OCRed source code based on the cross-frame informa-
tion in the programming screencast and the statistical language model of a large corpus of source
code.

To evaluate our proposed approach, we collect 23 playlists with 1,142 Java programming videos
from YouTube. We randomly sample 4,820 frames from 46 videos (two videos per playlist) and
find that our CNN-based model achieves 0.95 and 0.92 F1-scores on classifying code frames and
non-code/noisy-code frames, respectively. The experiment results on these sampled frames also
show that psc2code corrects about half of incorrectly OCRed words (46%), and thus it can signifi-
cantly improve the quality of the OCRed source code.
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We also implement two downstream applications based on the source code extracted by
psc2code:

(1) We build a programming video search engine based on the source code of the 1,142 collected
YouTube programming videos. We design 20 queries that consist of commonly used Java
classes or APIs to evaluate the constructed video search engine. The experiment shows
that the average precision@5, 10, and 20 are 0.93, 0.81, and 0.63, respectively, while the
average precision@5, 10, and 20 achieved by the search engine built on CodeTube [22] are
0.53, 0.50, and 0.46, respectively.

(2) We implement an interaction-enhanced tool for watching programming screencasts. The
interaction features include navigating the video by code content, viewing file content, and
action timeline. We conduct a user study with 10 participants and find that our interaction-
enhanced video player can help participants learn the knowledge in the video tutorial
more efficiently and effectively, compared with participants using a regular video player.

Article contributions:

e We identify three “noisy” challenges in the process of extracting source code from program-
ming screencasts.

e We propose and implement a systematic denoising approach to address these three “noisy”
challenges.

e We conduct large-scale experiments to evaluate the effectiveness of our denoising approach
and its usefulness in two downstream applications.

Article Structure: The remainder of the article is structured as follows: Section 2 describes the
motivation examples of our work. Section 3 presents the design and implementation of psc2code.
Section 4 describes the experiment setup and results of psc2code. Section 5 demonstrates the use-
fulness of psc2code in the two downstream applications based on the source code extracted by
psc2code. Section 6 discusses the threats to validity in this study. Section 7 reviews the related
work. Section 8 concludes the article and discusses our future plan.

2 MOTIVATION

We identify three “noisy” challenges that affect the process of extracting source code from pro-
gramming screencasts and the quality of the extracted source code. In this section, we illustrate
these three challenges with examples.

2.1 Non-code Frames

Non-code frames refer to screen images of software applications other than software development
tools or screen images of development tools containing no source code. Figure 1 shows some
typical examples of non-code frames that we commonly see in YouTube programming videos,
including a frame of PowerPoint slide and a frame of web page with API Documentation. Many
non-code frames, such as PowerPoint slides, do not contain source code. Some non-code frames
may contain some code elements and code fragments, for example, API declarations and sample
code in the Javadoc pages, or file, class, and method names in Package Explorer and Outline views
of IDEs. In this study, we focus on the source code viewed or written by developers in software
development tools. Thus, these non-code frames are excluded.

Existing approaches [13, 22, 34] blindly OCR both non-code frames and code frames and then
rely on post-processing of the OCRed content to distinguish non-code frames from code frames.
This leads to two issues. First, the OCR of non-code frames is completely unnecessary and wastes
much computing resource and processing time. Second, the post-processing may retain the code
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Fig. 2. A frame with a completion suggestion popup.

elements in non-code frames that are never used in the programming screencast. For example,
none of the API information in the Javadoc page in Figure 1(b) is relevant to the programming
screencast discussing the usage of the Math APIs.* Retaining such irrelevant code elements will
subsequently result in inaccurate search and navigation of the source code in the programming
screencast. To avoid these two issues, our approach distinguishes non-code frames from code
frames before the OCR (see Section 3.2).

2.2 Non-code Regions and Noisy Code Regions

Modern development tools usually consist of many non-code sub-windows (e.g., Package Explorer,
Outline, Console) in addition to the code editor. As such, a code frame usually contains many non-
code regions in addition to the code editor region. Such Ul images consist of multiple regions with
independent contents. They are very different from the images that the OCR techniques com-
monly deal with. As such, directly applying the OCR techniques to such Ul images often results in
poor OCR results.? Existing approaches [13, 22, 34] for extracting source code from programming
screencasts leverage the computer vision technique (e.g., edge detection) to identify the region of
interest (ROI) in a frame, which is likely the code editor sub-window in an IDE, and then OCR
only the code editor region.

However, as indicated by the green lines in Figure 2(a) (see also the examples in Figure 6),
edge detection on Ul images tends to produce very noisy results due to the presence of multiple

4https://www.youtube.com/watch?v=GgYXEFhPhRE.
SPlease refer to the OCR results generated by Google Vision API: https://goo.gl/69a8Vo.
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@ private class ItemHandler implements ,IEFEQ':&%&EFS‘:@?‘
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Fig. 3. A cropped image of a line of code (1) and its OCR text by Tesseract (2) and Google Vision API (3).

sub-windows, scroll bars, code highlights, and so on, in the UI images. The detected noisy hori-
zontal and vertical lines will negatively affect the accurate detection of sub-window boundaries,
which in turn will result in inaccurate segmentation of code editor region for OCR. Existing ap-
proaches do not explicitly address this issue. In contrast, our approach performs edge clustering
and frame layout clustering to reduce the detected noisy horizontal and vertical lines and improve
the accuracy of sub-window segmentation (see Section 3.3).

A related issue is noisy code region in which code editor contains some popup window. For
example, when recording a programming screencast, the developer usually writes code on the fly
in the IDE, during which many code completion suggestion popups may appear. As illustrated in
the example in Figure 2(b), such popup windows cause three issues. First, the presence of popup
windows complicates the identification of code editor region, as they also contain code elements.
Second, the popup windows may block the actual code in the code editor, and the code elements
in popup windows are of different visual presentation and alignment from the code in the code
editor. This may result in poor OCR results. Third, popup windows often contain code elements
that are never used in the programming screencasts (e.g., the API hashCode, toString in the
popup window in Figure 2).

Existing approaches simply OCR code regions with popup windows. Not only is the quality of
the OCR results low, but it is also difficult to exclude code elements in popup windows from the
OCRed text by examining whether the OCR text is code-like or not (e.g., using the island parser in
Reference [22]). The presence of such irrelevant code elements will negatively affect the search and
navigation of the source code in programming screencasts. Additionally, excluding these noisy-
code frames would not lose much important information, because we can usually find other frames
with similar content in the videos. In our approach, we consider frames containing code editor with
popup window as noisy code frames and exclude noisy code frames using an image classification
technique before the OCR (see Section 3.2).

2.3 OCR Errors

Even when the code editor region can be segmented accurately, the code extracted by an OCR
technique still typically contain OCR errors, due to three reasons. First, the OCR techniques gen-
erally require the input images with 300 DPI (Dots Per Inch), but the frames in the program-
ming screencasts usually have much lower DPL Second, the code highlighting changes the fore-
ground and background color of the highlighted code. This may result in low contrast between
the highlighted code and the background, which has an impact on the quality of OCR results.
Third, the overlapping of UI components (e.g., cursor) and the code beneath it may result in OCR
errors.

Figure 3 shows an example for the second and third reasons. We use the Tesseract OCR en-
gine [29] and Google Vision API for text detection [11] to extract code from a given code re-
gion image. The Tesseract OCR engine is an open source tool developed by Google, and the
Google Vision API is a professional computation vision service provided by Google that sup-
ports image labeling, face, logo and landmark detection, and OCR. As seen in the OCR results,
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Fig. 4. The work flow of psc2code.

both Tesseract and Google Vision API fail to correctly OCR “ItemListener,” and Tesseract also
fails to correctly OCR “ItemHandler.” Google Vision API performs better, but it still has an OCR
error (“s” recognized as “f” due to the overlapping of the cursor over the “s” character). For the
bracket symbol, Tesseract recognizes it as a left parenthesis while Google Vision API misses this
symbol.

OCR errors like missing brackets are relatively minor, but the erroneously OCRed identifiers
such as “Icemflandlex” and “ItemLiftener” will affect the search and navigation of the source code
in programming screencasts. CodeTube [22] filters out these erroneously OCRed identifiers as
noise from the OCRed text, but this post-processing may discard important code elements. A bet-
ter way is to correct as many OCR errors in the OCRed code as possible. An intuition is that an
erroneously OCRed identifier in one frame may be correctly recognized in another frame con-
taining the same code. For example, if the “ItemListener” in the next frame is not blocked by the
cursor, it will be correctly recognized. Therefore, the cross-frame information of the same code in
the programming screencast can help to correct OCR errors. Another intuition is that we can learn
a statistical language model from a corpus of source code and this language model can be used as
a domain-specific spell checker to correct OCR errors in code. In this work, we implement these
two intuitions to fix errors in the OCRed code (see Section 3.4), instead of simply ignoring them
as noise.

3 APPROACH

Figure 4 describes the work flow of our psc2code approach. Given a programming screencast (e.g.,
YouTube programming video tutorial), psc2code first computes the normalized root-mean-square
error (NRMSE) of consecutive frames and removes identical or almost-identical frames in the
screencast. Such identical or almost-identical frames are referred to as non-informative frames,
because analyzing them do not add new information to the extracted content. Then, psc2code
leverages a CNN-based image classification technique to remove non-code frames (e.g., frames
with PowerPoint slides) and noisy-code frames (e.g., frames with code completion suggestion pop-
ups). Next, psc2code detects boundaries of sub-windows in valid code frames and crops the frame
regions that most likely contain code-editor windows. In this step, psc2code clusters close-by can-
didate boundary lines and frames with similar window layouts to reduce the noise for sub-window
boundary detection. Finally, psc2code extracts the source code from the cropped code regions us-
ing the OCR technique and corrects the OCRed code based on cross-frame information in the
screencast and a statistical language model of source code.
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3.1 Reducing Non-Informative Frames

A programming screencast recorded by the screencast tools usually contain a large portion of
consecutive frames with no or minor differences, for example, when the developer does not interact
with the computer or only moves the mouse or cursor. There is no need to analyze each of such
identical or almost-identical frames, because they contain the same content. Therefore, similar to
existing programming video processing techniques [1, 17, 22, 23], the first step of psc2code is to
reduce such non-informative frames for further analysis.

Given a screencast, psc2code first samples each second of the screencast. It extracts the first frame
of each second as an image using FFmpeg.® We denote the sequence of the extracted frames as {f;}
(1 < i < N, N being the last second of the screencast). Then, it starts with the first extracted frame
f1 and uses an image differencing technique [31] to filter out subsequent frames with no or minor
differences. Given two frames f; and f; (j > i + 1), psc2code computes the normalized root-mean-
square error (NRMSE) as the dissimilarity between the two frames, which is similar to the way
used in the approach of Ponzanelli et al. [22]. NRMSE ranges from 0 (identical) to 1 (completely
different). If the dissimilarity between f; and f; is less than a user-specified threshold Tg;ss;pm (0.05
in this work), then psc2code discards f; as a non-informative frame. Otherwise, it keeps f; as an
informative frame and uses f; as a new starting point to compare its subsequent frames.

3.2 Removing Non-code and Noisy-code Frames

The goal of psc2code is to extract code from frames in programming screencasts. As discussed
in Section 2, an informative frame may not contain code (see Figure 1 for a typical examples of
non-code frames). Furthermore, the code region of an IDE window in an informative frame may
contain noise (e.g., code completion popups that block the real code). Extracting content from such
non-code and noisy-code frames not only wastes computing resources, but also introduces noise
and hard-to-remove content irrelevant to the source code in the screencast. Therefore, non-code
and noisy-code frames have to be excluded from the subsequent code extraction steps.

The challenge in removing non-code and noisy-code frames lies in the fact that non-code and
noisy-code frames vary greatly. Non-code frames may involve many different software applica-
tions with diverse visual features (e.g., toolbar icons, sub-windows). Furthermore, the window
properties (e.g., size and position of sub-windows and popups) can be very different from one
frame to another. Such variations make it very complicated or even impossible to develop a set of
comprehensive rules for removing non-code and noisy-code frames.

Inspired by the work of Ott et al. [19], which trains a CNN-based classifier to classify program-
ming languages of source code in programming videos, we design and train a CNN-based image
classifier to identify non-code and noisy-code frames in programming screencasts. Specifically,
we formulate our task as a binary image classification problem, i.e., to predict whether a frame
contains valid code or not:

e Invalid frames: frames contain non-IDE windows or IDE windows with no or partially vis-
ible code.

e Valid code frames: frames contain IDE windows with at least an entire code editor window
that contains completely visible source code.

Instead of relying on human-engineered visual features to distinguish valid frames from invalid
ones, the CNN model will automatically learn to extract important visual features from a set of
training frames.

Ohttp://www.ffmpeg.org/.
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Fig. 5. An example of annotator disagreement: a tiny popup (highlighted with the red rectangle).

Table 1. Labeled Frames Used to Train and Test
the CNN-based Image Classifier

Valid Invalid Total
Training 2,990 1,679 4,669
Testing 334 185 519
Total 3,324 1,864 5,188

3.2.1 Labeling Training Frames. To build a reliable deep learning model, we need to label suf-
ficient training data. Although developers may use different system environments and tools in
programming screencasts, the software applications and tools are used for the same purpose (e.g.,
code development, document editing, web browsing) and often share some common visual fea-
tures. Therefore, it is feasible to label a small amount of frames that contain typical software ap-
plications commonly used in programming screencasts for model training.

In this work, we randomly selected 50 videos from the dataset of programming screencasts
we collected (see Table 2 for the summary of the dataset). This dataset has 23 playlists of 1,142
programming video tutorials from YouTube. The 50 selected videos contain at least one video
from each playlist. Eight selected videos come from the playlists (P2, P12, P19, and P20) in which
the developers do not use Eclipse as their IDE. These 50 selected videos contain in total 5,188
informative frames after removing non-informative ones following the steps in Section 3.1.

To label these 5,188 informative frames, we developed a web application that can show the
informative frames of a programming screencast one-by-one. Annotators can mark a frame as
invalid frame or valid code frame by selecting a radio button. Identifying whether a frame is a
valid code frame or not is a straightforward task for human. Ott et al. reported that a junior student
usually spends five seconds to label an image [19]. In this study, the first and second authors labeled
the frames independently. Both annotators are senior developers and have more than five years
of Java programming experience. Each annotator spent approximately 10 hours to label all 5,188
frames. We use Fleiss Kappa’ [10] to measure the agreement between the two annotators. The
Kappa value is 0.98, which indicates almost perfect agreement between the two annotators. There
are a small number of frames that the two annotators disagree with each other. For example,
one annotator sometimes does not consider the frames with a tiny popup window such as the
parameter hint when using functions (see Figure 5) as noisy-code frames. For such frames, the
two annotators discuss to determine the final label. Table 1 presents the results of the labeled
frames. There are 1,864 invalid frames and 3,324 valid code frames, respectively.

3.2.2 Building the CNN-based Image Classifier. We randomly divide the labeled frames into
two parts: 90% as the training data to train the CNN-based image classifier and 10% as the testing
data to evaluate the trained model. We use 10-fold cross-validation in model training and testing.
The CNN model requires the input images having a fixed size, but the video frames from different
screencasts often have different resolutions. Therefore, we rescale all frames to 300300 pixels. We

Fleiss Kappa of [0.01, 0.20], (0.20, 0.40], (0.40, 0.60], (0.60, 0.80], and (0.80, 1] is considered as slight, fair, moderate, sub-
stantial, and almost perfect agreement, respectively.
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(a) Original image with detected code region b) Detected horizontal and vertical lines c) Detected layout using clustered lines

(d) Original image with detected code region (e) Detected horizontal and vertical lines (f) Detected layout using clustered lines

Fig. 6. lllustration of sub-window boundary detection.

follow the approach used in the study of Ott et al. [19], which leverages a VGG network to predict
whether a frame contains source code or not. A VGG network consists of multiple convolutional
layers in succession followed by a max pooling layer for downsampling. It has been shown to
perform well in identifying source code frames in programming screencast [19].

We use Keras® to implement our deep learning model. We set the maximum number of training
iterations as 200. We use accuracy as the metric to evaluate the trained model on the test data.
For the training of the CNN network, we follow the approach of Ott et al. [19], i.e., use the default
trained VGG model in Keras and only train the top layer of this model. We run the model on
a machine with Intel Core i7 CPU, 64 GB memory, and one NVidia 1080Ti GPU with 16 GB of
memory. Finally, we obtain a CNN-based image classifier that achieves a score of 0.973 in accuracy
on the testing data, which shows a very good performance on predicting whether a frame is a valid
code frame or not. We use this trained model to predict whether an unlabeled frame in our dataset
of 1,142 programming screencasts is a valid code frame or not.

3.3 Distinguishing Code versus Non-code Regions

A valid code frame predicted by the deep learning model should contain an entire non-blocked
code editor sub-window in the IDE, but the frame usually contains many other parts of the IDE
(e.g., navigation pane, outline view, console output) as well. As discussed in Section 2, OCRing the
entire frame will mix much noisy content from these non-code regions in the OCRed code from
code regions. A better solution is to crop the code region in a valid code frame and OCR only the
code region. As the sub-windows in the IDE have rectangle boundaries, an intuitive solution to
crop the code region is to divide the frame into sub-windows by rectangle boundaries and then
identify the sub-window that is most likely to be the code editor. However, as shown in Figure 6,
the unique characteristics of Ul images often result in very noisy boundary detection results. To
crop the code region accurately, such noisy boundaries must be reduced. Our psc2code clusters
close-by boundaries and similar window layout to achieve this goal. It uses OpenCV APIs [18] for
image processing.

8https://keras.io/.
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3.3.1 Detecting Candidate Boundary Lines. We use the Canny edge detector [7] to extract the
edge map of a frame. Probabilistic Hough transform [15] is then used to get the horizontal and
vertical lines, which are likely to be the boundaries of the sub-windows in the frame. We filter the
very short lines (less than 60 pixels in this work), which are unlikely to be sub-window bound-
aries. Figure 6(b) and Figure 6(e) show the resulting horizontal and vertical lines for the frames in
Figure 6(a) and Figure 6(d), respectively. We can see that the detected horizontal and vertical lines
are noisy. To reduce noisy horizontal (or vertical) lines, we use the density-based clustering algo-
rithm DBSCAN [9] to cluster the close-by horizontal (or vertical) lines based on their geometric
distance and overlap. Each line cluster is then represented by the longest line in the cluster. By
this step, we remove some close-by horizontal (or vertical) lines, which can reduce the complexity
of sub-window boundary detection.

3.3.2  Clustering Frames with Same Window Layouts. Although clustering close-by lines reduce
candidate boundary lines, there can still be many candidate boundary lines left that may complicate
the detection of sub-window boundaries. One observation we have for programming screencasts is
that the developers do not frequently change the window layout during the recording of screencast.
For example, Figure 6(a) and Figure 6(b) show the two main window layouts in a programming
video tutorial in our dataset of programming screencasts. Figure 6(b) has a smaller code editor but a
larger console output to inspect the execution results. Note that the frames with the same window
layout may have different horizontal and vertical lines, for example, due to presence/absence of
code highlights, scrollbars, and so on. But the lines shared by the majority of the frames with the
same layout are usually the boundaries of sub-windows.

To detect the frames with the same window layout, we cluster the frames based on detected
horizontal and vertical lines in the frames. Let L = (hy, hs, . .., A, U1, 02, . . ., U,) be the set of the
representative m horizontal lines and n vertical lines in a frame after clustering close-by lines. Each
line can then be assigned a unique index in L and referred to as L[i]. A frame f can be denoted as
a line vector V(f), which is defined as follows:

V(f) = (ind(L[0], f),...,ind(L[m + n], f)),

where ind(l, f) = 1 if the frame f contains the line [, and ind(l, f) = 0 otherwise. We then use
the DBSCAN clustering algorithm to cluster the frames in a programming screencast based on the
distance between their line vectors. This step results in some clusters of frames, each of which
represents a distinct window layout. For each cluster of frames, we keep only the lines shared by
the majority frames in the cluster. In this way, we can remove noisy candidate boundary lines that
appear in only some frames but not others. Figure 6(c) and Figure 6(f) show the resulting boundary
lines based on the analysis of the common lines in the frames with the same window layout.
We can see that many noisy lines such as those from different code highlights are successfully
removed.

3.3.3 Detecting Sub-windows and Code Regions. Based on the clear boundary lines after the
above two steps of denoising candidate boundary lines, we detect sub-windows by forming rect-
angles with the boundary lines. When several candidate rectangles overlap, we keep the smallest
rectangle as the sub-window boundary. This allows us to crop the main content region of the sub-
windows but ignore window decorators such as scrollbars, headers, and/or rulers. We observe that
code editor window in the IDE usually occupies the largest area in the programming screencasts
in our dataset. Therefore, we select the detected sub-window with the largest rectangle area as the
code region. The detected code regions for the two frames in Figure 6(a) and Figure 6(d) are high-
lighted in red box in the figures. Note that one can also develop image classification method such as
the method proposed in Section 3.2 to distinguish code-editor sub-windows from non-code-editor
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1 }catch(InterruptedException e){

4 System.out.println("Completed: "+id);
2 teet w\n
¢ | Missing “}

8 public class App{

10 public static void main(String[]args){

11

12 ExecutorService executozl}xecutors .newFixedThreadPool(2);
13

14 for(int i=0; i<5; i++){

15 executor.submit (new Processor(i));

16

17

18 executor.shutdown();

19

20 System.out.println("All tasks submitted.");
21

22 try{

Fig. 7. The OCRed source code for the code region in Figure 6(d); the OCR errors are highlighted by the red
rectangles.

sub-windows. However, we take a simpler heuristic-based method in this work, because it is more
efficient than deep learning model and is sufficient for our experimental screencasts.

3.4 Correcting Errors in OCRed Source Code

Given an image of the cropped code region, we use the Google Vision API [11] to extract source
code for the image. The Google Vision API for text detection returns the OCR result in the format
of JSON, which includes the entire extracted string as well as individual words and their bounding
boxes. We can reconstruct the extracted string into the formatted source code based on the position
of words. Figure 7 shows the OCRed source code for the code region in the frame in Figure 6(d).
We can see that there are some OCR errors. For example, some brackets are missing (Lines 5 and
6); in Line 12, the symbol “=" is recognized as “-.” Furthermore, we often observe that the cursor
is recognized as “i” or “I,” which results in incorrect words.

Many existing techniques [13, 22], except Yadid and Yahav [34], simply discard the words with
OCR errors. In contrast, we survey the literature and choose to integrate the heuristics in the two
previous works [13, 34] to fix as many OCR errors as possible. First, we use the effective heuristics
of Kandarp and Guo [13] to remove line numbers and fix Unicode errors:

e Sometimes there are line numbers displayed on the left edge of the cropped image. To deal
with them, we first identify whether there are numbers at the beginning of the lines. If yes,
then we remove these numbers in the OCRed lines.

e Due to image noise, the OCR technique sometimes erroneously recognizes text within im-
ages as accented characters (e.g., 0 or ) or Unicode variants. We convert these characters
into their closest unaccented ASCII versions.

Then, we integrate the approach of Yadid and Yahav [34] to further correct the OCR errors. This
approach assumes that an erroneously OCRed word in one frame may be correctly recognized
in another frame containing the same code. Take the OCR errors in Figure 3 as an example. If
the “TtemListener” in the next frame is not blocked by the cursor, then it will be correctly recog-
nized. Therefore, the cross-frame information of the same code can help to correct OCR errors.
Furthermore, this approach learns a statistical language model from a corpus of source code as a
domain-specific spell checker to correct OCR errors.
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e For some incorrect words or lines of code, we can find the correct one in other related
frames. Thus, we follow the approach of Yadid and Yahav [34], which uses cross-frame
information and statistical language models to correct these minor errors in the OCRed text.
First, we use the top 300 starred Github Java projects to build a unigram language model and
a line structure model, which captures frequent line structures permitted by the grammar
of the language. We build the unigram language model based on the extracted tokens from
source code and build the line structure model based on the common line structures using
token types. Second, given the OCRed source code extracted from a video, we detect the
incorrect words and lines of code based on the statistical language models. Finally, given
an incorrect line of code (or word), we find the most similar correct line (or word) with
sufficient confidence based on edit distance to correct it.

To illustrate this process, we use an example line of code from our dataset: Properties
propIn = new Properties();, whose line structure is denoted as IDU IDL = new IDU ()
;» where IDU is the identifier starting with upper character and IDL is the identifier starting
with lower character. An incorrect OCR text of this line from a frame is Properties prop
In - new Properties();. There is an extraneous space between prop and in and the
symbol “=" is recognized as “-.” Thus, its line structure becomes IDU IDL IDU - new IDU
() ;,whichislikely to be incorrect based on our constructed statistical line structure model.
To make correction for this line, we find the correct line detected based on edit distance in
another frame.

4 EXPERIMENTS
4.1 Experiment Setup

4.1.1  Programming Video Tutorial Dataset. In this study, our targeted programming screencasts
are live coding video tutorials where tutorial authors demonstrate how to write a program in IDEs
(e.g., Eclipse, Intellij). We focus on Java programming in this study, but it is easy to extend our
approach to other programming languages. Since YouTube has a large number of programming
video tutorials and also provides YouTube Data APIs’ to access and search videos easily, we build
our dataset of programming video tutorials based on YouTube videos.

We used the query “Java tutorial” to search video playlists using YouTube Data API From the
search results, we considered the top-50 YouTube playlists ranked by the playlists’ popularity.
However, we did not use all these 50 playlists, because some tutorial authors did not do live coding
in IDEs but used other tools (e.g., PowerPoint slides) to explain programming concepts and code,
or the videos in the playlist are not screencast videos. Finally, we used 23 playlists in this study,
which are listed in Table 2. For each playlist, we downloaded its videos at the maximum available
resolution and the corresponding audio transcripts using pytube.' We further found that not all
downloaded videos include writing and editing source code. For example, some video tutorials just
introduce how to install JDK and IDEs. We removed such videos and got in total 1,142 videos as
our dataset for the experiments.!!

As shown in Table 2, our dataset is diverse in terms of programming knowledge covered, devel-
opment tools used, and video statistics. Many playlists are for Java beginners. But there are several
playlists that provide advanced Java programming knowledge, such as multithreading (P6), chess
game (P12), and 2D game programming (P15). Among the 23 playlists, the majority of tutorial
authors use Eclipse as their IDE, while some tutorial authors use other IDEs including NetBeans

%https://developers.google.com/youtube/v3/.
Ohttps://github.com/nficano/pytube.
11 All videos can be found: https://github.com/baolingfeng/psc2code.
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Table 2. The YouTube Playlists Used in the Study

. . Average Dur. Average Average Average
D Playlist Name #Videos Res. R . . .
(Sec) #Informative #Valid #Valid/#Informative
P1 Java (Intermediate) Tutorials 59 362 360p 63 32 0.51
P2 Java Tutorial in Tamil 56 369 720p 83 45 0.54
P3 Java tutorial for beginners 20 819 720p 89 50 0.56
P4 Java Tutorials 98 421 720p 65 43 0.66
P5 Java Online Training Videos 25 4,067 720p 335 216 0.64
P6 Java Multithreading 14 686 720p 100 80 0.80
P7 Belajar Java Untuk Pemula 44 243 720p 28 19 0.68
P8 Java Video Tutorial 90 852 720p 161 75 0.47
P9 Java Programming with Eclipse Tutorials 60 576 720p 78 53 0.68
P10 Java (Beginner) Programming Tutorials 84 420 720p 85 54 0.64
P11 Tutorial Java 52 444 360p 50 35 0.70
P12 Java Chess Engine Tutorial 52 928 720p 138 101 0.73
P13 Advanced Java tutorial 58 297 720p 40 25 0.63
P14 Java Tutorial For Beginners (Step by Step tutorial) 72 597 720p 89 54 0.61
P15 NEW Beginner 2D Game Programming 33 716 720p 183 123 0.67
P16 Socket Programming in Java 4 472 720p 42 18 0.43
P17 Developing RESTful APIs with JAX-RS 18 716 720p 153 66 0.43
P18 Java 8 Lambda Basics 18 488 720p 62 35 0.56
P19 Java Tutorial for Beginners 55 348 720p 40 32 0.80
P20 Java Tutorial For Beginners 60 312 720p 38 31 0.82
P21 Java Tutorial for Beginners 2018 56 363 720p 63 46 0.73
P22 Eclipse and Java for Total Beginners 16 723 360p 159 62 0.39
P23 Java 8 Features Tutorial(All In One) 98 622 720p 113 75 0.66
Average 50 593 91 56 0.62

ID=the index of a playlist, Playlist Name=the title of the playlist in YouTube, #Videos=number of videos used in the study, Average Dur.
(Sec)=average video duration in seconds, Res.=resolution of the videos in a playlist, Average #Informative=average number of informative
frames, Average #Valid=average number of valid code frames, Average #Valid/#Informative=ratio of valid code frames out of informative
frames.

(P19, P20), Intellij IDEA (P12), and Notepad++ (P2). The duration of most videos is 5 to 10 minutes
except those in the playlist P5 that have the duration of more than one hour. This is because each
video in P5 covers many concepts, while other playlists usually cover only one main concept in
one video. Most of videos have the resolution of 720 p (1280x720), except for the videos in the
playlist P1, P11, and P22, which have the resolution 360 p (480x360).

We applied psc2code to extract source code from these 1,142 programming videos. After per-
forming the step of reducing redundant frames (Section 3.1), the number of informative frames
left is not very large. For example, the videos in the playlist P5 are of long duration but there are
only 335 informative frames left per video on average. After applying the CNN-based image classi-
fier to remove non-code and noisy-code frames (Section 3.2), more frames are removed. As shown
in Table 2, about 62% of informative frames are identified as valid code frames on average across
the 23 playlists. psc2code identifies code regions in these valid code frames and, finally, OCRs the
source code from the code regions and corrects the OCRed source code.

4.1.2  Research Questions. We conduct a set of experiments to evaluate the performance of
psc2code, aiming to answer the following research questions:
RQ1: Can our approach effectively remove non-informative frames?

Motivation. The first step of our approach removes a large portion of consecutive frames with no
or minor differences, which are considered as non-informative frames. In this research question,
we want to investigate whether these removed frames are truly non-informative.

RQ2: Can the trained CNN-based image classifier effectively identify the non-code and
noisy-code frames in the unseen programming screencasts?
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Motivation. To train the CNN-based image classifier for identifying non-code and noisy-code
frames, we select and label a small subset of programming videos from our dataset. Although the
trained model achieves 97% accuracy on the testing data (see Section 3.2.1), the performance of the
trained model on the remaining programming videos that are completely unseen during model
training needs to be evaluated. If the trained model cannot effectively identify the non-code and
noisy-code frames in these unseen videos, then it will affect the subsequent processing steps.

RQ3: Can our approach accurately locate code regions in code frames?

Motivation. To detect code regions in code frames, our approach leverages computer vision tech-
niques to identify candidate boundary lines and cluster frames with same window layouts. How-
ever, due to the noise (e.g., highlighted lines in IDEs) in these frames, our approach might detect
incorrect code regions. So, we want to investigate whether our approach can accurately locate
code regions in code frames.

RQ4: Can our approach effectively fix the OCR errors in the source code OCRed from
programming videos?

Motivation. There are still many OCR errors in the OCRed source code even when we use a
professional OCR tool. Our psc2code uses the cross-frame information in the screencast and a sta-
tistical language source code model to correct these errors. We want to investigate whether the
corrections made by our approach are truly correct and improve the quality of the OCRed source
code.

RQ5: Can our approach efficiently extract and denoise code from programming
screencast?

Motivation. In this research question, we want to investigate the scalability of our approach. We
want to know how long each step in our approach takes, such as extracting the informative frames,
locating code regions, and correcting the extracted code fragments.

4.2 Experiment Results

4.2.1 Effectiveness of Removing Non-informative Frames (RQ1). Approach. Since the num-
ber of the removed non-informative frames is too large, it is impossible to verify all the non-
informative frames. Therefore, given a video, we randomly sample one frame between the two
adjacent frames kept in the first step if the interval of these two frames is larger than one second.
We randomly sample one video from each playlist, and we obtain 1,189 non-informative frames
in total. Because we are interested in source code in this study, the annotators label a discarded
frame as truly non-informative if a completed statement in its source code can be found in the cor-
responding position of the kept frames (i.e., informative frames), otherwise, we regard the frame
as an informative frame, which is incorrectly discarded. The two annotators who label the frames
for the training data verify the sampled non-informative frames.

Results. We find that there are 11 frames out of the 1,189 non-informative frames (less
than 1%) that contain at least one completed statement that cannot be found in the informa-
tive frames. These 11 frames are from six videos, and the largest number of incorrect non-
informative frames for a video is 3. However, we find that the source code in these discarded
informative frames are usually intermediate and will be changed by the developers in a short
time. For example, in the sampled video of the playlist P1, there are 3 informative frames
found in the non-informative frames. One of the 3 informative frames has three same state-
ments System.out.println(‘‘Sophomore’’) with different if condition, which is generated
by copy and paste. While among the informative frames, we only find that there are three
System.out.println statements with ¢ ‘Sophomore,’’ ‘‘Junior,’’ ‘‘Senior’’ in some
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Table 3. The Results of Distinguishing Invalid Frames from Valid Code Frames
by the CNN-based Image Classifier of psc2code

. . . Valid frames Invalid frames
Playlist| #Valid = #Invalid TP FPIN | FN - Accuracy Precision Recall Fl-score Precision Recall Fl-score
P1 122 40 121 7 33 1 0.95 0.95 0.99 0.97 0.97 0.83 0.89
P2 108 102 100 11 91 8 0.91 0.90 0.93 0.91 0.92 0.89 0.91
P3 91 73 88 18 55 3 0.87 0.83 0.97 0.89 0.95 0.75 0.84
P4 104 26 64 1 25 40 0.68 0.98 0.62 0.76 0.38 0.96 0.55
P5 448 358 362 28 330 86 0.86 0.93 0.81 0.86 0.79 0.92 0.85
P6 117 37 115 8 29 2 0.94 0.93 0.98 0.96 0.94 0.78 0.85
P7 93 49 93 12 37 0 0.92 0.89 1.00 0.94 1.00 0.76 0.86
P8 154 91 149 7 84 5 0.95 0.96 0.97 0.96 0.94 0.92 0.93
P9 103 18 75 1 17 28 0.76 0.99 0.73 0.84 0.38 0.94 0.54
P10 117 29 114 2 27 3 0.97 0.98 0.97 0.98 0.90 0.93 0.92
P11 99 39 13 0 39 86 0.38 1.00 0.13 0.23 0.31 1.00 0.48
P12 242 111 201 15 96 41 0.84 0.93 0.83 0.88 0.70 0.86 0.77
P13 35 24 32 6 18 3 0.85 0.84 0.91 0.88 0.86 0.75 0.80
P14 87 53 76 7 46 11 0.87 0.92 0.87 0.89 0.81 0.87 0.84
P15 324 109 295 15 94 29 0.90 0.95 0.91 0.93 0.76 0.86 0.81
P16 21 64 19 1 63 2 0.96 0.95 0.90 0.93 0.97 0.98 0.98
P17 98 197 98 51 146 0 0.83 0.66 1.00 0.79 1.00 0.74 0.85
P18 69 92 54 7 85 15 0.86 0.89 0.78 0.83 0.85 0.92 0.89
P19 70 81 69 5 76 1 0.96 0.93 0.99 0.96 0.99 0.94 0.96
P20 69 52 62 1 51 7 0.93 0.98 0.90 0.94 0.88 0.98 0.93
P21 77 22 74 3 19 3 0.94 0.96 0.96 0.96 0.86 0.86 0.86
P22 135 156 102 39 117 33 0.75 0.72 0.76 0.74 0.78 0.75 0.76
P23 121 101 83 11 90 38 0.78 0.88 0.69 0.77 0.70 0.89 0.79
All 2,904 1,924 2,459 256 1,668 445 0.85 0.91 0.85 0.88 0.79 0.87 0.83

frames, respectively. Overall, we think the information loss is small and would not affect our final
analysis results, because only a small proportion of unimportant information is dismissed.

4.2.2  Effectiveness of Identifying Non-code and Noisy-code Frames (RQ2). Approach. Except
the 50 programming videos labeled for model training, we still have more than 1K unlabeled videos
with a large number of informative frames. It is difficult to manually verify the classification results
of all these informative frames. Therefore, to verify the performance of the trained CNN-based
image classifier, we randomly sample two videos from each playlist, which provided us with 46
videos with 4,828 informative frames in total. Examining the classification results of these sampled
frames can give us the accuracy metrics at the 95% confidence level with an error margin of 1.38%.

There are 1,924 invalid frames and 2,904 valid code frames as predicted by the trained image
classifier, respectively (see Table 3). The ratio of invalid frames versus valid code frames in the
examined 46 videos is similar to that of the 50 programming videos for model training (see Table 1).
The two annotators who label the frames for the training data verify the classification results of
the 4,828 frames in the 46 videos. We also use Fleiss Kappa to measure the agreement between the
two annotators. The Kappa value is 0.97, which indicates almost perfect agreement between the
two annotators. For the classification results that the two annotators disagree on, they discuss to
reach an agreement.

For each frame, there can be four possible outcomes predicted by the image classifier: a valid
code frame is classified as valid (true positive TP); an invalid frame is classified as valid (false posi-
tive FP); a valid code frame is classified as invalid (false negative FN); an invalid frame is classified
as invalid (true negative TN). For each playlist, we construct a confusion matrix based on these
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four possible outcomes, then calculate the accuracy, precision, recall, and F1-score. We also merge
all the confusion matrices of all playlists and compute the overall metrics for the performance of
the image classifier.

e Accuracy: the number of correctly classified frames (both valid and invalid) over the total

: _ TP+TN
number of frames, i.e, Acc = TPTFPAINTTN

e Precision on valid frames: the proportion of frames that are correctly predicted as valid

among all frames predicted as valid, i.e., P(V) = %.
e Recall on valid frames: the proportion of valid frames that are correctly predicted, i.e.,
R(V) = TPT;};“N'

e Precision on invalid frames: the proportion of frames that are correctly predicted as
invalid among all frames predicted as invalid, i.e., P(IV) = %

e Recall on invalid frames: the proportion of invalid frames that are correctly predicted,
. _ _TIN
1.e., R(IV) = TN+FP"

e Fl-score: a summary measure that combines both precision and recall—it evaluates if an

increase in precision (recall) outweighs a reduction in recall (precision). For F1-score of valid

frames, it is F(V) = Z2WXRI) 2xP(IV)XR(IV)

pon+R( - For Fl-score of invalid frames, it is F(IV) = PAVITRAVY -

Results. Table 3 presents the results of the prediction performance for the 4,828 frames in the 46
examined programming videos (in the last row, the first six columns are the sum of all playlists,
and the last seven columns are the overall metrics). The overall accuracy is 0.85, and the overall F1-
score on invalid frames and valid code frames are 0.88 and 0.83, respectively. These results indicate
that the image classifier of psc2code can identify valid code frames from invalid ones effectively.
In terms of accuracy, it is often larger than 0.9, which shows a high performance of the ps2code
image classifier of psc2code. For example, for the playlist P1, our model can identify most of valid
and invalid frames. However, the accuracy of our approach on some cases is not very good. For
example, for the playlist P11, the accuracy is only 0.38. In this playlist, the NetBeans IDE is used
and the image classifier fails to recognize many frames with code completion popups as noisy-code
frames. This may be because of the limited number of training data that we have for NetBeans IDE.
In our frame classification task, we care more about the performance on valid code frames.
However, misclassifying too many valid code frames as invalid may result in information loss in
the OCRed code for the video. In terms of recall of valid code frames, the overall recall is 0.85. For
14 out the 23 plalists, the recall is greater than 0.9 for 14 playlists. In two cases (e.g., P7 and P17),
the recall is equal to 1. However, for the playlist P11, the recall is very low, i.e., 0.13, which might
again be caused by the NetBeans IDE used in its programming videos and the limited number of
training data that use the NetBeans IDE. For the remaining playlists, we find that for the most
of misclassified valid frames there are “nearby” valid code frames (i.e., the time stamps of the
frames are close to those of the misclassified frames) that have the same or similar code content.
We also find that anthoer reason for misclassified frames is the intermediate code. For example,
one misclassified code frame contains a line of code System.out.println(" "), which is the
intermediate code of System.out.println("Copy of list :") in a later frame. Overall, the
information loss resulting from misclassifying valid code frames as invalid is acceptable.
However, misclassifying too many invalid frames as valid may result in much noise in the OCRed
code. In terms of precision on valid frames, the overall precision is 0.91 with 16 out of 23 playlists
having precision scores above 0.9. Playlist 17 had the lowest precision with 0.66. We find that
there are many frames in which the console window overlaps with the code editor, thus our image
classifier misclassifies them, because this type of invalid frame does not appear in the training data.
Overall, the negative impact of misclassifying invalid frames as valid on the subsequent processing
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steps is minor, but more training data can further improve the model’s precision on valid code
frames.

4.2.3  Effectiveness of Locating Code Regions in Code Frames (RQ3). Approach. We use the
approach of Alahmadi et al. [1] as our baseline. Their approach leverages the You Only Look Once
(YOLO) neural network [25], which can predict the location of code fragments in programming
video tutorials directly. Given a frame, the baseline approach can not only predict whether it is
valid or not, but also can identify the location of code fragments for valid frames. We use the
labeled frames from Section 3.2.1 to train a model for the baseline and apply the trained model on
these 4,828 frames.

Additionally, we use the Intersection over Union (IoU) metric [37], which is also used in
Alahmadi et al.’s work, to measure the accuracy of a predicted code bounding box for a frame.
IoU divides the area of overlap between the bounding boxes of the prediction and ground truth by
the area of the union of the bounding boxes of the prediction and ground truth. Given a frame, we
use the same IoU computation as Alahmadi et al.’s work, which is as follows:

e If a model predicts it as an invalid frame and it is correct, then IoU = 1.

e If the prediction result of a model is incorrect, then IoU = 0.

AgtnApred
Ag[UApred
Apreq are the areas of the ground truth and the predicted bounding boxes, respectively.

e If a model predicts it as a valid frame and it is correct, then IoU = , where Ay and

We compute the average of IoU for each playlist and an overall IoU on all the frames.

To generate the ground truth of the bounding boxes that contain code, we provide a web ap-
plication that shows the frames with the predicted code area and allow the annotators to adjust
the bounding box. When two annotators were labeling a valid frame, they were also required
to adjust the bounding box of its predicted code area. When the IoU of the bounding boxes la-
beled by two annotators for a frame is larger than 95%, which indicates most of the two bounding
boxes overlap, we think that the two annotators reach an agreement. Since the ground truth of
the bounding boxes that contain code is usually the code editor in the IDE (see Figures 6(a) and
(d)), the two annotators reach an agreement easily for most of valid frames. A small number of
disagreement cases were caused by the margin of the code editor. Most of the disagreement cases
are due to the scroll bars in the code editor window. After a discussion, the two annotators include
the scroll bars in the annotated code area for all the cases. Compared with the whole code editor
windows, the areas of scroll bars are small. Thus, our results and findings would not be affected by
much.

Results. Table 4 presents the comparison results between psc2code and the baseline approach
on accuracy, F1-score on valid and invalid frames, and IoU. In terms of accuracy and F1-score, the
image classifier of psc2code achieves much better performance than the baseline for most of the
playlist except for the playlists P3, P7, and P18. But for the playlists P3, P7, and P18, the differences
are very small. In terms of IoU, all values are larger than 0.85 except the playlist P1. For the playlist
P1, the value of IoU is 0.78, which is also considered as a successful prediction in the study of
Alahmadi et al. [1]. Comparing to our approach, the IoUs achieved by the baseline are much
smaller. We apply Wilcoxon signed-rank test [30] and find that the differences are statistically
significant at the confidence level of 99%.

The low IoUs of the baseline are caused by their incorrect predicted results. Moreover, even if we
ignore the incorrect cases, the overall IoU is still 0.76, which is smaller than that of our approach.
To get more insight, we look into the valid code frames with bounding boxes identified by the
baseline. We found that the bounding boxes identified by the baseline usually did not cover the
whole area of the code editor and missed some parts of the code area, which result in information
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Table 4. The Comparison Results between Our Approach and the Baseline

Playlist Approach Accuracy Fl-score@valid Fl-score@invalid IOU
P1 Ours 0.95 0.97 0.89 0.78
Baseline 0.62 0.66 0.56 0.49
P2 Ours 0.91 0.91 0.91 0.97
Baseline 0.73 0.71 0.75 0.67
P3 Ours 0.87 0.89 0.84 0.98
Baseline 0.91 0.92 0.90 0.77
P4 Ours 0.68 0.76 0.55 1.00
Baseline 0.73 0.80 0.59 0.66
P5 Ours 0.86 0.86 0.85 0.86
Baseline 0.66 0.60 0.70 0.59
P6 Ours 0.94 0.96 0.85 0.89
Baseline 0.76 0.82 0.62 0.62
P7 Ours 0.92 0.94 0.86 0.92
Baseline 0.96 0.97 0.94 0.84
P8 Ours 0.95 0.96 0.93 0.97
Baseline 0.94 0.95 0.92 0.79
P9 Ours 0.76 0.84 0.54 0.95
Baseline 0.76 0.84 0.48 0.59
P10 Ours 0.97 0.98 0.92 0.94
Baseline 0.62 0.70 0.48 0.50
P11 Ours 0.38 0.23 0.48 0.90
Baseline 0.38 0.28 0.45 0.35
P12 Ours 0.84 0.88 0.77 0.94
Baseline 0.75 0.80 0.68 0.61
P13 Ours 0.85 0.88 0.80 0.89
Baseline 0.87 0.89 0.84 0.74
P14 Ours 0.87 0.89 0.84 0.94
Baseline 0.49 0.29 0.60 0.47
P15 Ours 0.90 0.93 0.81 0.98
Baseline 0.72 0.78 0.60 0.60
P16 Ours 0.96 0.93 0.98 0.93
Baseline 0.90 0.82 0.93 0.86
P17 Ours 0.83 0.79 0.85 0.90
Baseline 0.72 0.61 0.78 0.67
P18 Ours 0.86 0.83 0.89 0.95
Baseline 0.90 0.88 0.91 0.79
P19 Ours 0.96 0.96 0.96 0.85
Baseline 0.85 0.84 0.86 0.73
P20 Ours 0.93 0.94 0.93 0.85
Baseline 0.81 0.85 0.75 0.70
P21 Ours 0.94 0.96 0.86 0.92
Baseline 0.63 0.69 0.53 0.47
P22 Ours 0.75 0.74 0.76 0.91
Baseline 0.72 0.61 0.78 0.67
P23 Ours 0.78 0.77 0.79 0.87
Baseline 0.73 0.72 0.74 0.62
All Ours 0.85 0.88 0.83 0.92
Baseline 0.73 0.74 0.72 0.64
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Fig. 8. Two example frames with bounding boxes identified by the baseline (red color) from the playlist P3;
the ground truth of the bounding boxes is in green.

loss. Figure 8 shows an example identified by the baseline. We can see that the bounding boxes of
the two frames identified by the baseline miss some code content.

Although YOLO is a powerful object detection model for generic object detection, we think
there are some limitations of object detection—based methods for our code extraction task. First,
the boundary features of strokes, characters, words, and text lines can confuse the YOLO model
for accurately detecting code window boundaries (see Figure 8 for example). Second, YOLO uses
a set of anchor boxes (with pre-defined sizes and aspect ratios) to locate the potential object re-
gions. This works fine for natural objects (e.g., person, dog, car), but it is fundamentally limited
for locating code content that can have arbitrary sizes and aspect ratios. Third, YOLO uses CNN to
extract image features. Due to the CNN’s spatial downsampling nature, it can only produce an ap-
proximate bounding box around the object (with some background and even parts of other objects
in the box). This is fine for detecting natural objects as long as the boxes cover a large region of
the object. However, such approximate bounding boxes will not satisfy the much higher accuracy
requirement of locating code regions, as we do not want to miss any actual code fragments and do
not want to include any non-code regions

4.2.4  Improvement of the Quality of the OCRed Source Code (RQ4). Approach. In this RQ,
we use the same 46 programming videos examined in the RQ2. To evaluate the ability of our ap-
proach to correct OCR errors in the OCRed source code, we first get a list of distinct words from
the OCRed source code for each video. Then, we determine the correctness of the words based on
the statistical language model learned from the source-code corpus and count the number of cor-
rect and incorrect words. For the incorrect words, we correct them using the methods proposed in
Section 3.4 and count the number of incorrect words that are corrected by our approach. Among
the corrected words, some words may not be truly corrected. For example, given several similar
variables in the code such as obj1, obj2, ob3j3, these variables might be OCRed as obji or
objl due to the overlapping cursor or other noise. Thus, our approach may choose a wrong word
from these similar candidate words based on cross-frame information. Thus, we manually check
whether a word with OCR errors is truly corrected by comparing it with the content of the cor-
responding frame. We calculate two correction accuracies: the proportion of the truly corrected
words in all incorrect words (Accuracyl) and the proportion of the truly corrected words in the
words corrected by our approach (Accuracy2)

Results. Table 5 presents the analysis results. In this table, the columns #CorrectOCR and #Erro-
rOCR list the number of distinct correct and incorrect words identified by the statistical language
model, respectively. The column #Corrected is the number of incorrect words corrected by our ap-
proach and the column #TrueCorrected is the number of incorrect words that are truly corrected
by our approach. The last two columns list Accuracyl and Accuracy2, respectively.
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Table 5. The Statistics of the OCRed Source Code Corrected by psc2code

Playlist #CorrectOCR #ErrorOCR #Corrected #TrueCorrected Accuracyl Accuracy?2

P1 166 34 25 24 0.71 0.96
p2 121 29 13 8 0.28 0.62
P3 175 30 9 7 0.23 0.78
P4 55 15 4 4 0.27 1.00
P5 284 176 132 92 0.52 0.70
P6 95 16 15 15 0.94 1.00
pP7 85 59 40 37 0.63 0.93
P8 237 81 30 21 0.26 0.70
P9 181 143 91 85 0.59 0.93
P10 75 14 9 7 0.50 0.78
P11 149 102 31 31 0.30 1.00
P12 507 184 86 82 0.45 0.95
P13 195 28 11 11 0.39 1.00
P14 178 53 33 33 0.62 1.00
P15 329 119 61 52 0.44 0.85
P16 39 3 1 1 0.33 1.00
P17 159 58 14 13 0.22 0.93
P18 179 45 24 22 0.49 0.92
P19 136 17 8 8 0.47 1.00
P20 99 20 7 7 0.35 1.00
P21 59 9 4 4 0.44 1.00
P22 162 79 42 40 0.51 0.95
P23 158 43 25 24 0.56 0.96
All 3,823 1,357 715 628 0.46 0.88

As shown in Table 5, there are many words with OCR errors in the OCRed source code. Over-
all, the ratio of incorrect words and correct words is about 1:3. Among all incorrect words, our
approach makes corrections for half of them. For the incorrect words that our approach does not
attempt to correct, many of them are partial words while the developer is still typing the whole
word, and some are meaningless words resulting from the noise in the frame. Among the incorrect
words that are corrected by our approach, most of them (88%) are truly corrected. Many words are
falsely corrected when there are multiple similar words in the code such as similar variables obj1,
obj2, obj3. Overall, our approach can truly correct about half of incorrect words (46%), which
can significantly improve the quality of the OCRed source code by reducing the ratio of incorrect
words and correct words from 1:3 to 1:6.

4.2.5 Efficiency of Our Approach (RQ5). Approach. In this RQ, we apply our approach on
the 46 programming videos used in RQ1. As shown in Section 3, our approach has four steps to
process a programming video: (1) Reducing Non-informative Frames, (2) Removing Non-code and
Noisy-code Frames, (3) Distinguishing Code versus Non-code Regions, (4) Correcting Errors in
OCRed Source Code. So, given a programming video, we compute the time used by each step in
our approach. We run our approach on a machine with Intel Core i7 CPU, 64 GB memory, and one
NVidia 1080Ti GPUs with 16 GBs of memory.

Results. Table 6 presents the statistics of run time of each step of our approaches on these 46
programming videos. psc2code takes 47.64 seconds to complete processing a programming video
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Table 6. The Statistics of Run Time (seconds) of Each
Step of psc2code on 46 Programming Videos

Stepl Step2 Step3 Step4d Al
Mean 32.04 5.93 7.19 248 47.64
Std. 50.67 5.74 16.57 4.51 73.16
Median 19.53 4.64 3.17 0.90 27.21

on average. The first step, i.e., reducing non-informative frames, takes the longest time. This is
because it needs to process all frames in a programming video. We find that the process time has
a positive relationship with the duration of the programming videos. For example, the duration
of a video in the playlist P5 is about 1 hour and 41 minutes; thus, psc2code takes about 493 sec-
onds to complete the process, including 339 seconds in the first step. For the other three steps,
it is fast for psc2code to complete the process. On average, each step only needs less than 10 sec-
onds. In sum, we believe that our approach can efficiently process a large number of programming
videos.

5 APPLICATIONS

In this section, we describe two downstream applications built on the source code extracted from
programming screencasts by psc2code: programming video search and enhancing programming
video interaction.

5.1 Programming Video Search

As a programming screencast is a sequence of screen images, it is difficult to search program-
ming videos by their image content. A primary goal of extracting source code from programming
screencasts is to enable effective video search based on the extracted source code.

5.1.1  Programming Video Search Engine. In this study, we build a programming video search
engine based on the source code of the 1,142 programming videos extracted by psc2code. For each
programming video in our dataset, we aggregate the source code of all its valid code frames as
a document. The source-code documents of all 1,142 videos constitute a source-code corpus. We
refer to this source-code corpus as the denoised corpus as opposed to the noisy source-code corpus
produced by the baseline method described below. We then compute a TF-IDF (Term Frequency
and Inverse Document Frequency) vector for each video in which each vector element is the TF-IDF
score of a token in the source-code document extracted from the video. Given a query, the search
engine finds relevant programming videos by matching the keywords in the query with the tokens
in the source code of programming videos. The returned videos are sorted by the descending order
of the sum of the the TF-IDF scores of the matched source-code tokens in the videos. For each
returned programming video, the search engine also returns the valid code frames that contain
any keyword(s) in the query.

5.1.2  Baseline Methods for Source-code Extraction. To study the impact of the denoising fea-
tures of psc2code on the downstream programming video search, we build two baseline methods
to extract source code from programming videos:

e The first baseline method (which we refer to as baselineI) does not use the denoising features
of psc2code. To implement this baseline, we follow the same strategy as psc2code in the
removal of redundant frames and detection of code regions. However, we do not remove
the noisy-code frames and non-code frames. For this baseline, we use Google Vision API to
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Table 7. The Performance of the Search Engines Built on psc2code and the Two Baselines

Query precision@5 precision@10 precision@20
psc2code baselinel baseline2 | psc2code baselinel baseline2 | psc2code baselinel baseline2

ArrayList isEmpty 1.00 0.00 0.60 1.00 0.10 0.30 0.50 0.15 0.15
Date getTime 0.60 0.60 0.60 0.30 0.30 0.30 0.15 0.15 0.15
event getSource 1.00 1.00 0.80 1.00 1.00 0.90 1.00 0.90 0.90
File write 1.00 0.60 0.60 0.80 0.30 0.40 0.40 0.40 0.30
HashMap iterator 1.00 0.60 0.80 0.70 0.50 0.60 0.35 0.35 0.35
imagelO read file 1.00 0.60 0.20 1.00 0.50 0.10 0.55 0.55 0.05
Iterator forEach 1.00 0.60 0.60 0.80 0.40 0.50 0.40 0.35 0.40
Iterator remove 1.00 0.60 0.80 1.00 0.60 0.90 0.90 0.55 0.80
JButton keyListener 1.00 0.50 0.40 0.50 0.40 0.20 0.25 0.25 0.10
JFrame setLayout 1.00 0.80 1.00 1.00 0.80 0.80 1.00 0.90 0.90
JFrame setSize 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
List indexOf 0.80 0.20 0.60 0.40 0.20 0.30 0.20 0.10 0.15
List sort 1.00 0.40 0.80 1.00 0.60 0.80 1.00 0.55 0.65
Object getClass 1.00 0.20 0.80 1.00 0.40 0.50 1.00 0.30 0.30
Object NullException 1.00 0.60 0.80 1.00 0.70 0.90 0.95 0.80 0.90
String concat 1.00 0.40 1.00 1.00 0.30 0.60 0.55 0.30 0.35
String format 1.00 0.40 0.80 1.00 0.40 0.70 1.00 0.45 0.55
StringBuffer insert 0.40 0.20 0.20 0.20 0.10 0.10 0.10 0.05 0.10
thread wait 0.80 0.40 0.40 0.40 0.30 0.30 0.20 0.20 0.20
thread sleep 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.95 0.95
Average 0.93 0.53 0.69 0.81 0.50 0.56 0.63 0.46 0.46

extract the source code and check if the detected subimages have code or not by identifying
whether there exist Java keywords in the extracted text; this is the same method used by
Kandarp and Guon [13]. In this way, the baseline removes non-code frames. Different from
psc2code, baselinel does not remove noisy-code frames, nor does it fix the errors in the
OCRed source code. baselinel uses the two heuristics of Kandarp and Guon [13] to remove
line numbers and Unicode errors.

e We use the full-fledged CodeMotion [13] as the second baseline method, which is referred
to as baseline2. We obtain the source code of CodeMotion from CodeMotion’s first author’s
Github repository.

For each baseline method, we obtain a noisy source-code corpus for the 1,142 programming
videos in our dataset, which we use for the comparison of the search results quality against the
denoised source-code corpus created by psc2code.

5.1.3 Search Queries. The majority of videos in our video corpus introduce basic concepts in
Java programming. In a typical playlist of a Java programming tutorial (e.g., the playlist P1), the
creator usually first introduces syntax of Java and the concept of object-oriented programming
(e.g., the java.lang.Object class), then he/she writes code to introduce some common used classes,
such as String, Collections, File. Finally, some advanced knowledge (e.g., multi-thread and GUI
programming) may be introduced.

Based on the topics discussed in the programming video tutorials in our dataset, we select the
common used classes and APIs in our video corpus to design 20 queries (see Table 7), which cover
three categories of programming knowledge, including basic Java APIs (e.g., string operations,
file reading/writing, Java collection usages), GUI programming (e.g., GUI components, events, and
listeners), and multi-threading programming (e.g., thread wait/sleep). For these queries, there are
reasonable numbers of programming videos in our dataset. This allows us to investigate the impact
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of the denoised source code by psc2code on the quality of the search results, compared with the
noisy source code extracted by the baseline.

5.1.4  Evaluation Metrics. In this study, only if all the keywords in a query can be found in at
least one valid code frame of a video, the returned video is considered as truly relevant to the
query. To verify whether the returned videos are truly relevant to a query (i.e., the video truly
demonstrates the usage of the class and API referred to in the query), the first two authors manually
and carefully check the top-20 videos in the search results for the 20 search queries.

To compare the search results quality on the denoised source-code corpus by psc2code and the
noisy source-code corpus by the baseline, we use several well-known evaluation metrics: preci-
sion@k, MAP@k (Mean Average Precision [2]) and MRR@k (Mean Reciprocal Rank [2]), which
are commonly used in past studies involving building recommendation systems [24, 28, 32, 33,
36].

For each query Q;, let V; be the number of videos that are truly relevant to the query in the
top-k videos returned by a video search engine over a source-code corpus extracted from a set of
programming videos. The precision@k is the ratio of V; over k, i.e. %

MAP considers the order in which the returned videos are presented in the search results. For
a single query, its average precision (AP) is defined as the mean of the precision values obtained
for different sets of top-j videos that are returned before each relevant video in the search results,
which is computed as:

) ", P(j) X Rel(j)
" the number of relevant videos’

where n is the number of returned videos, Rel(j) = 1 indicates that the video at position j is rele-
vant, otherwise Rel(j) = 0, and P(j) is the precision at the given cut-off position j. Then, for the m
queries, the MAP is the mean of AP, i.e., L AP

Different from MAP, which considers all relevant videos in the search results, MRR considers
only the first relevant video. Given a query, its reciprocal rank is the multiplicative inverse of the
rank of the first relevant video in a ranked list of videos. For the m queries, MRR is the average of
their reciprocal ranks, which is computed as:

1 1
MRR = — _,
m Z rank(q)

where rank(q) refers to the position of the first relevant video in the ranked list returned by the
search engine.

5.1.5 Results. We compute the precision@k, MAP@k, and MRR@k metrics for the top-5, top-
10, and top-20 search results (i.e., k = 5, 10, and 20). Table 7 presents the results of precision@k
for each query, and Table 8 presents the results of MAP@k and MRR@k for the 20 queries. We
can observe that the quality of the search results for the denoised source-code corpus extracted by
our psc2code is much higher compared to the search results we obtained on the noisy source-code
corpus extracted from the two baselines.

The average precision@5, precision@10, and precision@20 of our approach over the 20 queries
are 0.93, 0.81, and 0.63, respectively. The average precision@5, precision@10, and precision@20 of
baselinel are only 0.53, 0.50, and 0.46, respectively; while the average precision@5, precision@10,
and precision@20 of baseline2 are only 0.69, 0.56, and 0.46, respectively. The precision@5 of our
approach is 1 for 16 out of the 20 queries. That is, for these 16 videos, the top-5 videos returned
based on our denoised source-code corpus are all relevant to the search query for these 16 queries.
For the other four queries (“Data getTime,” “StringBuffer insert,” “List indexOf,” and “thread wait”),
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Table 8. The MAP@k and MRR@k
of psc2code and the Baseline

MAP@5 MAP@20 MAP@20

psc2code 0.998 0.998 0.996
baselinel 0.700 0.654 0.620
baseline2 0.813 0.786 0.763
MRR@5 MRR@10 MRR@20
psc2code 1.000 1.000 1.000
baselinel 0.789 0.788 0.788
baseline2 0.825 0.825 0.825

some of the top-5 returned videos are not relevant to the query. The reason is that the number of
programming videos in our dataset is limited (i.e., 1,142). As such, usually only a small number of
videos contain the searched APIs. For example, we check the source code of all the videos in our
dataset and find that only two programming videos mention the API StringBuffer.insert. In
fact, these two videos are returned in the top-5 results for the query “StringBuffer insert.” But as
there are only these two truly relevant videos in the whole dataset, the precision@5 is only 0.4 for
this query.

We note that both our approach and the baselines have high precision in the search results for
some queries, e.g., “event getSource” and “thread sleep.” This is because APIs relevant to these
queries are always used together in the source code of the programming screencasts. For such
cases, searching programming videos based on the source code extracted by the baseline may
achieve acceptable precision. However, the precision of the baseline is generally not satisfactory
for most of the queries. The precision@5 based on the noisy source-code corpus by the baseline is
1 only for three queries. For the query “ArrayList isSEmpty,” there are no relevant videos returned
in the top-5 search results (i.e., precision@5=0). This is because when a developer uses the class
ArrayList, the API “isEmpty” frequently appears in the completion suggestion popups but is not
actually used in the real code. This noise in the extracted code subsequently leads to less accurate
programming video search.

All the MAPs and MRRs of our approach are equal to or close to 1, which indicates that the
search engine can rank the truly relevant videos in the dataset at the top of the search results. For
some queries, when k increases, the top-k precision of our approach decreases. This is because our
video dataset may only have a small number of videos relevant to a query and those ranked lower
in the search results are mostly irrelevant to the query. But when the dataset has a large number of
relevant programming videos for a query (e.g., “list sort,” “thread sleep”), the precision@10 or even
the precision@20 can still be 1, which means that a large number of relevant programming videos
(if any) can be found and ranked in the top search results. In contrast, the MAPs and MRRs of the
baselines are much lower than those of our approach. For some queries (e.g., “Object NullExcep-
tion”), it is interesting to note that the top-k precision of the baseline increases when k increases.
This is because the truly relevant videos may be ranked below the irrelevant videos in the search
results due to the noise source code extracted by the baseline.

Summary: the search engine based on the denoised source-code corpus extracted by our ap-
proach can recommend programming videos more accurately than the two baseline methods. In
the future, we plan to add more information of the programming videos such as their textual de-
scription, audio, and so on, to improve the search results, which is similar to CodeTube [22] and
VT-Revolution [5].
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Java Tutorial-For Beginners 26 - Polymorphism.in.Java. O » Files Actions
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3 public class Myclas:
4 public static v

COERERTI O BANK XYZjava
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(c) Action timeline

Fig. 9. The screenshots of a YouTube video enhanced by psc2code. (1) Video Player. (2) Search/navigate by
code content. (3) Identified Files. (4) File content is synchronous with the video playing. (5) Action timeline.

5.2 Enhancing Programming Video Interaction

Due to the image streaming nature of programming videos, it is difficult to navigate and explore
the content of programming videos. In our previous work, we proposed a tool named VTRevolu-
tion [5], which enhances the navigation and exploration of programming video tutorials by pro-
viding programming-specific workflow history and timeline-based content browsing. But VTRev-
olution needs to collect the developer’s human-computer interaction data through system-level
instrumentation when creating a programming video tutorial. Thus, it is impossible to directly
apply the interaction-enhancing features of VTRevolution to the large amount of existing pro-
gramming screencasts on the Internet. Based on the source code extracted by psc2code, we can use
a similar interaction design of VTRevolution [5] to make existing programming screencasts more
interactive and ease the navigation and exploration of programming video content.

5.2.1 Prototype Design. We developed a web application prototype that leverages the source
code of existing programming video tutorials on YouTube extracted by psc2code to enhance the
navigation and exploration of programming videos. Figure 9 shows the screenshots of this proto-
type tool, which supports the following interaction-enhancing features:

Search/navigate the video by code content. This feature allows video viewers to find the
code elements that they are interested in based on the OCRed source code. Tutorial watchers
enter a query in the search box (annotation @ in Figure 9(a)). The prototype currently performs
a simple substring match between the entered keywords and the OCRed source code of the valid
code frames in the video. It returns a list of time stamps of the matched frames in a chronological
order. Tutorial watchers can double-click a time stamp in the results list to navigate the tutorial
video to the frame of the double-clicked time stamp.
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View file content. This feature provides a file content view (annotation @ in Figure 9(b)) that
allows tutorial watchers to view all contents that the tutorial author already enters to a file till the
current time of video playing during a programming tutorial. To detect the different files in a video
tutorial, we use the density-based clustering algorithm DBSCAN [9] to cluster the frames based on
difference of their lines of code (LOC). Given two frames, we compute the Longest Common Lines
between their LOC, which is similar to Longest Common String (LCS). Then, we normalized the
number of longest common lines by dividing the number of LOC of the frame with longer LOC as
the dissimilarity between two frames. Additionally, we regard each cluster as a file opened in the
video tutorial and identify its name using the class name if the file contains a Java class. As shown
in annotation ) in Figure 9(b), five Java files are identified in the video till the current time of
video playing. We find that the clustering algorithm can identify the files in the three videos used
in the user study (see Section 5.2.2) correctly. We identified three, five, and two Java files for the
three videos, respectively. In the file content view, the focused file (i.e., the file currently visible in
the video) and its content are synchronized with the video playing. As changes are made to the
focused file in the video, the code content of the focused file will be updated automatically in the file
content view. Although only a part of the focused file is visible in the current video frame, tutorial
watchers can view the whole already-created file content of the focused file in the file content
view, and also switch to non-focused files and view their contents, without the need to navigate
the video to the frame where that content is visible. Unfortunately, we cannot guarantee that the
whole content of the source code is complete or correct, because there are many complicated cases
(e.g., some contents are never shown in the video), which are difficult for our prototype to handle.

Action timeline. This feature allows users to view when the tutorial author does what to which
file. To detect actions in the programming video, we compare the OCRed source code between the
adjacent valid code frames processed by psc2code. If the adjacent frames belong to the same file
and the extracted code content is different, then the action is denoted as an edit with a summary
of the number of inserted and deleted code lines. The code difference can be viewed by clicking
to expand an edit action in the prototype (see Figure 9(c)). The prototype uses + sign and green
color to indicate code being inserted and — sign and red color to indicate code being deleted. If the
adjacent frames belong to the two different files, then the action is denoted as a switch from one file
to another. Tutorial watchers can click the time stamp of an action to navigate the programming
video to that time when the action occurs.

5.2.2  User Study Design. We conducted a user study to evaluate the applicability of our proto-
type tool for enhancing the developers’ interaction with programming videos.

Video Selection. We selected three programming videos from our video dataset in Table 3. As
summarized in Table 9, the duration of these three videos is representative of YouTube program-
ming videos (from 6 minutes to 12 minutes). These three videos cover different programming top-
ics: the first video presents the usage of the Java class Canvas in game programming; the second
video introduces the polymorphism concept of Java; the third video shows the getter and setter
functions in Java.

Questionnaire Design. To evaluate whether our prototype can help developers navigate and
explore programming videos effectively, we designed a questionnaire for each video. Each ques-
tionnaire has five questions (see Table 9). The questions are designed based on our programming
experiences and a survey of two developers, with the goal to cover different kinds of information
including API usage, source code content, program output, and workflow that tutorial watchers
may be interested in when learning a programming tutorial.
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Table 9. The Selected Programming Videos and Their Corresponding Questionnaire Used in the User Study

Index Video Title Duration Questions Category

1. How many class files are opened and viewed in this programming video? Content

y P! prog; g

3 - Canvas - New Beginner 2D Q2. Which classes have the main entry? Content
Vi Game Programming 06:13 Q3. Which classes are newly created in the video? Workflow
(Video Link) Q4. How to set size for a JFrame instance in the video? API Usage
Q5. How to set size for a Canvas instance in the video? API Usage

Q1. How many class files are opened and viewed in this programming video? Content

Java Tutorial for Beginners 26 Q2. Which classes are the sub class of class Bank? Content

V2 - Polymorphism in Java 08:33 Q3. What is return value of the function getInterestRate in the class Bank_ ABC?  Output

(Video Link) Q4. What is return value of the function getInterestRate in the class Bank_GHI? ~ Output

Q5. What is return value of the function getInterestRate in the class Bank_XYZ?  Output

Q1. How many class files are opened and viewed in this programming video? Content
Java Tutorial for Beginners Q2. What can be the value of the field Orc.height by calling getHeight(9) Workflow
V3 - 31 - Getters and Setters 12:00 when the author creates a function getHeight(int) initially?
(Video Link) Q3. The author revises the initial getHeight(int) afterwards, Workflow
what changes are made to this function?
Q4. What can be the value of the field Orc.height by calling setHeight(9) Workflow

using the first version of setHeight(int)?

Q5. When calling setHeight(9) by two different versions of setHeight(int), Workflow
will value of Ocr.Height be set as the same value?

To answer these questions, participants in our user study have to watch, explore, and summarize
the source code written in the video and the process of writing the code. In particular, participants
are asked to summarize the opened and viewed Java class files for each video (V1/V2/V3-Q1). In
addition, they are also asked to identify some specific content in the videos, for example, the files
that contain the main entry in the first video (V1-Q2), the subclass of the class Bank in the second
video (V2-Q2), and the return value of different functions (V2-Q3/Q4/Q5). As only the first video
contains some complex APIs (i.e., APIs for GUI programming), we design two questions for the first
video that ask participants to identify which APIs are used to set the size of JFrame and Canvas
(V1-Q4/Q5).

A unique property of programming videos is to demonstrate the process of completing a pro-
gramming task. For example, at the beginning of the third video (V3), the tutorial author declares
a function getHeight(int x), which assigns a value to the field height and returns the value of
height. Then the author adds a function setHeight (int height) to set the value of height and
revises the getHeight () by removing the parameter int x and the assignment statement for the
field height. Finally, the author makes setHeight(int) set the value of height with the input
parameter only if the input parameter is less than 10, otherwise it sets the value of height as 0.
Figure 10 and Figure 11 present the initial and the revised source code of the function getHeight
and setHeight, respectively. For the third video, we designed four questions (V3-Q2/Q3/Q4/Q5)
that require participants to properly understand the process (i.e., sequence of steps) in a program-
ming video to answer the questions correctly.

The first author developed standard answers to the questionnaires, which were further validated
by the second and third author. A small pilot study with three developers (one for each tutorial) was
conducted to test the suitability and difficulty of the tutorials and questionnaires. The complete
questionnaires and their answers can be found in the website of our prototype tool.!?

2http://baolingfeng xyz:5000.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 3, Article 21. Pub. date: May 2020.


https://www.youtube.com/watch?v=ck39jt04Qpk
https://www.youtube.com/watch?v=GnLtvmeGAWA
https://www.youtube.com/watch?v=OF3vBYWikYs
http://baolingfeng.xyz:5000

psc2code: Denoising Code Extraction from Programming Screencasts 21:29

class Ocr{

2 public int height;

3

4 public void setHeight(int height){
5 this.height = height;

6 }

7

8 publiic int getHeight(int x){
9 this.height = x;

10 return height;

11 }

12}

Fig. 10. The initial version of getHeight and setHeight.

class Ocr{

2 public int height;

3

4 public void setHeight(int height){

5 if(height<10){

6 this.height=height;

7 System.out.println("Orc met criteria"); 3}

8 else{

9 System.out.println(" Please enter a height under 10
feet");

10 }

11 3}

12

13 publiic int getHeight (){

14 return height;

15 3}

16 3}

Fig. 11. The revised version of getHeight and setHeight.

Participants. We recruited 10 undergraduate students from the College of Computer Science in
Zhejiang University. Out of these 10 students, 6 are junior students (freshman and sophomore)
and 4 are senior students (junior and senior). All 10 participants are not familiar with the Java
programming tasks used in the user study.

We adopted between-subject design in our user study. All the participants are required to com-
plete the questionnaires for the three programming videos. We divided 10 participants into two
groups: the experimental group whose participants use the prototype of psc2code-enhanced video
player, and the control group whose participants use a regular video player. Each group has three
junior participants and two senior participants.

Procedure. Before the user study, we gave a short tutorial on the features of psc2code to partic-
ipants in the experimental group. The training focuses only on system features. We did not give
the tutorial for regular video player, as all the participants are familiar with how to use a video
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Table 10. The Average Completion Time, the Answer Correctness, and the
Usefulness Ratings by the Five Participants of the Two Groups for the Video V1

Completion Time Correctness Usefulness Rating
baseline psc2code baseline psc2code baseline psc2code
353 548 1 0.8 2 4
86 123 1 1 1 5
404 476 0.8 1 3 5
583 216 1 1 4 4
409 251 0.8 1 2 5
367.0 322.8 0.92 0.96 24 4.6

Table 11. The Average Completion Time, the Answer Correctness, and the
Usefulness Ratings by the Five Participants of the Two Groups for the Video V2

Completion Time Correctness Usefulness Rating
baseline psc2code baseline psc2code baseline psc2code
408 584 1 1 3 4
212 149 1 0.8 1 5
1,309 318 0.8 1 3 4
396 313 1 1 2 4
337 140 0.8 1 2 4
5324 300.8 0.92 0.96 2.2 4.2

player. We divided the whole user study into three sessions. In each session, the participants in the
two groups are required to complete the questionnaire for one programming video tutorial. At the
beginning of an experiment session, a questionnaire web page is shown to the participants. Once
the participants click the start button, a web page is opened in another browser window or tab.
The participants in the two groups use the corresponding tool to watch the video tutorial. When
the participants complete the questionnaire, they submit the questionnaire by clicking the submit
button.

After submitting the questionnaire, the participants in the two groups are asked to rate the use-
fulness of the corresponding tool (psc2code-enhanced video player or the regular video player) they
use for navigating and exploring the information in the programming video. All the scores rated
by participants are on a 5-point Likert scale (1 being the worst, 5 being the best). The participants
can also write some suggestions or feedbacks in free text for the tool they use. We mark the the
correctness of the answers against the ground-truth answers, which is built when designing the
questionnaires. The questionnaire website can calculate the completion time for each participant
automatically.

5.2.3 Results. Tables 10, 11, and 12 present the results of the user study for the three pro-
gramming videos, respectively. As shown in these tables, the average completion time of the
participants using psc2code-enhanced video player on the three videos are all less than that of
the participants using the regular video player. Furthermore, the average answer correctness of
the participants using psc2code-enhanced video player is all greater than that of the participants
using the regular video player. Since the programming tasks in the three programming videos
and the questions about the information in the videos are not very complicated, the difference
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Table 12. The Average Completion Time, the Answer Correctness, and the
Usefulness Ratings by the Five Participants of the Two Groups for the Video V3

Completion Time Correctness Usefulness Rating
baseline psc2code baseline psc2code baseline psc2code
1,083 859 0.8 0.8 2 4
379 200 0.8 1 3 5
913 415 1 1 2 5
709 435 0.8 0.8 3 3
489 167 0.6 1 1 4
714.6 415.2 0.8 0.92 2.2 4.2

between the correctness of the participants using the two tools is not very large, except for the
workflow-related questions of the third video. This suggests that it is difficult to navigate through
the workflow and find the workflow-related information in the programming videos using
the regular video player. In contrast, psc2code-enhanced video player can help video watchers
navigate and explore the workflow information more efficiently and accurately.

All the participants in the experimental group agree that psc2code-enhanced video player can
help them navigate and explore the programming videos and learn the knowledge in the video
tutorial effectively. One example of positive feedback is, “I can navigate the video by searching
a specific code element, which help me find the answer easily.” Some participants also give some
feedback on the drawbacks of our prototype tool, for example, “Some code is not complete (such as
missing the bracket ‘|’ at the end of the line)” and “There is a bit synchronization latency between the
video playing and the update of the file content view.” But they also mention that these drawbacks
have no significant impact on understanding the video tutorial. In contrast, the ratings for the
regular video player are not high. A participant complains, “I have to watch the video very carefully
because I do not want to miss some important information. Otherwise, I may have a headache to find
what I miss and where it is in the video.”

5.2.4 Comparison with CodeMotion. CodeMotion [13] is a notable work, which is similar to
our application for enhancing programming tutorial interaction. First, CodeMotion uses image
processing techniques to identify potential code segments within frames. Then, it extracts text
from segments using OCR and removes segments that do not look like source code. Finally, it
detects code edits by computing differences between consecutive frames and splits a video into a
set of time intervals based on chunks of related code edits, which allows users to view different
phases in the video. CodeMotion also has a web-based interface, in which a programming video
is split into multiple mini-videos that correspond to the code edit intervals.

However, we think CodeMotion has several weaknesses, which are as follows:

e It does not reduce non-informative frames. CodeMotion extracts the first frame of each
second and applies its segmentation algorithm and OCR on all extracted frames.

e It does not remove noisy-code frames. CodeMotion filters segments that are not likely to
have source code by identifying keywords of programming languages in the extracted text.
But it can only remove the non-code segments. The noisy-code frames will affect the ef-
fectiveness of the segmentation algorithm and introduce errors in its follow-up steps. For
example, Figure 12 presents an example of segments of a frame from V1 generated by Code-
Motion. As shown in this figure, due to the popup windows, CodeMotion detects two seg-
ments and infers that these two segments contain source code.
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[J] Launcher,java [3) Display.java 2

2 }
B private void createDisplay(){ Segment 1

25 frame = new JFrame(title);

26 frame.setSize(width, height);

27 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

28 frame.setResizable(false);

29 frame.setLocaItionRelativeTo(null);

Trame.

23 createDisplay();

© void java.awt.Window.setLocationRelativeTo(Component arg0)
32 canvas|
33 canvas|
34 canvas|
canvas|

Note: This element neither has attached source nor attached Javadoc and hence no Javadoc ¢

37 frame.add( )3
8 it Segment 2
B

Fig. 12. An example of segments of a frame generated by CodeMotion.

Table 13. The Number of Frames Processed by CodeMotion and psc2Code
for the Three Videos in the User Study

CodeMotion psc2code
Total Filtered #valid #invalid #valid #invalid
Vi 353 321 252 69 54 20
V2 495 491 437 54 63 10
V3 673 672 645 27 65 16

e It does not correct errors in the OCRed source code. CodeMotion only eliminates left-
aligned text that looks like line numbers and converts accented characters or Unicode vari-
ants into their closest unaccented ASCII versions. However, many other OCR errors are not
corrected. For example, among the OCR results of the video V2, there are many errors in

» .

the OCRed source code such as “package” — “erackage,” “int” — “bnt,” and so on.

We use the code of CodeMotion!® to process the three videos in our user study. Table 13 shows
the number of frames processed by CodeMotion and psc2Code. In this table, the column Total
is the number of frames processed by the segmentation algorithm and OCR technique of Code-
Motion; the column Filtered is the number of frames after CodeMotion removes segments that
are not likely to have source code; the column #valid and #invalid are the number of valid and
invalid frames generated by CodeMotion and psc2code, respectively. As shown, CodeMotion ap-
plied their segmentation algorithm and OCR technique on much more frames than our approach
psc2code. Only a small number of frames that do not have source code are removed by CodeMo-
tion. Among these remaining frames, there are many invalid frames.

The implementation of CodeMotion has a web-based interface, which presents a programming
video as multiple mini-videos that correspond to the code edit intervals detected by it. Each mini-
video corresponds to a code edit interval, which is identified when: (1) the programming language
of the detected code changes or (2) the inter-frame diff shows more than 70% of the lines differing.
Since only Java is used in the three videos used in the study, the code edit intervals would be
identified when the inter-frame difference is large. However, the noisy-code frames have a big
impact on the detection of the code edit intervals. For example, CodeMotion identified 8 code edit

B3Their code is host in GitHub (https://github.com/kandarpksk/codemotion-1as2018), but is not well documented and
maintained.
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intervals for the video V1, but there were three code edit intervals that were caused by a popup
window when running the program. Additionally, due to the errors in the OCRed source code,
we find that it is difficult for users to use CodeMotion to navigate and understand the videos.
Comparing to CodeMotion, our tool psc2code detected three Java files from the video and showed
them in a file content view, which is easier to navigate and understand. Thus, we believe that our
tool has better user experience than CodeMotion.

6 THREATS TO VALIDITY

Threats to internal validity refer to factors internal to our studies that could have influenced
our experiment results:

(1) The implementation and evaluation of psc2code: We manually label and validate the non-
code and noisy-code frames to build and evaluate the CNN-based image classifier used in
psc2code. There could be some frames that are erroneously labelled. To minimize human
labeling errors, two annotators label and validate the frames independently, and their
labels reach almost perfect agreement. In our current implementation, psc2code extracts
the largest detected rectangle as code editor sub-window based on our observation that
most of valid code frames contain only a single code editor sub-window. However, we
observe that developers in a video tutorial occasionally show two or more source code files
side-by-side in the IDE. Our current simple largest-rectangle heuristic will miss some code
regions in such cases. However, our approach can be easily extended to extract multiple
code regions using a CNN-based image classifier to distinguish code-regions from non-
code-regions.

To evaluate the quality of the psc2code’s data processing steps, we randomly select two
videos for each playlist. As developers usually use the same development environment
to record video tutorials in a playlist, we believe that the analysis results for the two se-
lected videos are representative of the corresponding playlist. When we have to manually
examine the output quality of a data processing step, we always use two annotators and
confirm the validity of data annotation by inter-rater agreement. In our experiments, the
two annotators always have almost perfect agreement.

(2) The ground truth for locating code regions in code frames: In RQ3, we use psc2code to gener-
ate the ground truth to reduce the significant human effort and time required to annotate
the ground-truth code region bounding boxes. However, a bias could potentially be in-
troduced by the fact that the annotators (who are the first two authors) were aware of
the prediction before defining the ground truth. The boundaries of code editor windows
are easy to be recognized by annotators manually, and we allow annotators to adjust the
bounding box using a web interface. When the predicted code area is very close to the
ground truth, annotators usually do not change the bounding box and the resulting IoU
difference would actually be very small. When the difference between the predicted code
area and the ground truth is big, annotators can adjust the predicted bounding boxes. In
many cases, there is at least one border of the bounding boxes that matches the ground
truth, which can help annotators match the ground truth. Thus, using predicted code area
by psc2code can save a lot of human effort and time. However, this annotation process may
introduce some bias. To validate whether the difference between the ground truth and the
results annotated by us is small and the introduced bias is acceptable, we randomly select
100 frames from our dataset and invite two graduate students to label the boundaries of
code editor windows manually. Then, we compute the IoU between the ground truth gen-
erated by psc2code and the bounding box of the manual annotation for each frame. The
average IoU is 0.96, which shows that the introduced bias is acceptable.
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(3) Programming video search: There might be some biases in the 20 queries that are used
to evaluate the video search engine. We select these queries based on the APIs and pro-
gramming concepts covered in our dataset of programming videos. More experiments are
needed to generalize our results for different queries and video datasets. We manually
check whether the videos in the returned list are truly relevant to the query, which might
introduce human errors in the results. To minimize the errors, two annotators validate the
results independently and their annotations reach almost perfect agreement.

(4) Enhancing programming video interaction: There might be some biases in the three selected
videos for user study. To reduce the biases, we select three videos that contain different
programming tasks from different playlists. The questionnaires for the three videos are de-
signed collaboratively by the authors, with the goal to cover different categories of knowl-
edge that developers could be interested in the programming tutorials. We also conduct
a pilot study with two developers (different from the study participants) to make neces-
sary revisions of questionnaires based on their feedbacks on the suitability and difficulty
of tutorials and questionnaires. The participants cannot answer the questions without
watching the videos, because all questions require participants to find relevant informa-
tion in the video tutorials, rather than depending on their general programming knowl-
edge. However, there might be some expectation biases that favor our prototype in the
questionnaires. Another threat is that the limited number of participants (i.e., 10) in the
user study might affect our conclusion. In the future, we plan to recruit more participants
to investigate the effectiveness of the prototype.

Threats to external validity refer to the generalizability of the results in this study. We have
applied psc2code on 1,042 Java video tutorials from YouTube, but those video tutorials do not cover
all knowledge in Java. In the future, we plan to collect more video tutorials with different pro-
gramming languages to further evaluate our psc2code system and the downstream applications it
enables.

7 RELATED WORK
7.1 Information Extraction in Screen-captured Videos

Screen-captured techniques are widely used to record video tutorials. Researchers have pro-
posed many approaches to extract different kinds of information from screen-captured videos (i.e.,
screencasts).

Some approaches (e.g., Prefab [8], Waken [3], Sikuli [35]) use the computer vision technique to
identify GUI elements in screen-captured images or videos. For example, Waken [3] uses the image
differencing technique to identify the occurrence of cursors, icons, menus, and tooltips that an
application contains in a screencast. Sikuli [35] uses the template matching techniques to find GUI
patterns on the screen. It also uses an OCR tool to extract text in the screenshots to facilitate video-
content search. The GUI elements identified by these approaches might be used to remove the
noisy-code frames, for example, the completion suggestion popups usually have some UI patterns.
But it is difficult to pre-define and recognize these UI patterns for the GUI windows with very
diverse styles in different programming videos. Thus, in this study, we leverage a deep learning
technique to remove the noisy-code frames.

Bao et al. [4] proposed a tool named scvRipper to extract time-series developers’ interaction
data from programming screencasts. They model the GUI window based on the window layout
and some special icons for each software application. Then, they identify an application using
the image template techniques and crop the region of interest from the screenshots based on the
model of the GUI windows. Finally, they use an OCR tool to extract the textual content from the
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cropped images and construct developers’ actions based on the OCRed textual content. However, it
is impossible to model all the application windows in a large video dataset. In our study, we identify
the code region based on the denoised horizontal and vertical lines that demarcate the boundaries
of the main code editor window. Bao et al. [5] proposed another tool named VTRevolution to
enhance programming video tutorials by recording and abstracting the workflow of developers
when they create them. But their tool cannot be applied on existing programming video tutorials,
since it requires developers’ interaction data recorded by a specific instrumentation tool [6].

Some tools such as NoteVideo [16] and Visual Transcripts [26] focus on specialized video tuto-
rial, i.e., hand-sketched blackboard-style lecture videos popularized by Khan Academy [12]. They
use computer vision techniques to identify the visual content in a video lecture as discrete vi-
sual entities including equations, figures, or lines of text. Different from these tools, our psc2code
focuses on the programming video tutorials where developers are writing code in IDEs.

7.2 Source Code Detection and Extraction in Programming Screencasts

One notable approach to extract source code from programming videos is CodeTube [22] by Pon-
zanelli et al., which is a web-based recommendation system for programming video tutorial search
based on the extracted source code. To remove the noise for code extraction, CodeTube uses shape
detection to identify code regions; it does not attempt to reduce the noisy edge detection results
as our approach does. It identifies Java code by applying OCR to the cropped code-region image
followed by using an island parser to extract code constructs. CodeTube also identifies video frag-
ments characterized by the presence of a specific piece of code. If the code constructs in a video
fragment are not found to be similar, then it applies a Longest Common Substring (LCS) analysis
on image pixels to find frames with similar content. Also, Ponzanelli et al. divided video fragments
into different categories (e.g., theoretical, implementation) and complements the video fragments
with relevant Stack Overflow discussions [23]. Different from the CodeTube’s post-processing of
the OCRed source code, our approach clusters frames with the same window layout to denoise the
noisy candidate window boundary lines before identifying and cropping code regions in frames.
Furthermore, our approach does not simply discard inconsistent OCRed source code across differ-
ent frames, but tries to fix the OCR errors with cross-frame information of the same code.

Similar to our work, Ott et al. [19] proposed to use a VGG network to identify whether frames
in programming tutorial videos contain source code. They also use deep learning techniques to
classify images based on programming language [20] and UML diagrams [21]. In our study, we
combine deep learning techniques and traditional computer vision techniques to achieve better
performance than Ott et al.’s approach. Yadid and Yahav [34] also wanted to address the issue
that the errors in OCRed source code result in a low precision in searching code snippets in pro-
gramming videos. They used cross-frame information and statistical language models to make
corrections by selecting the most likely token and line of code. They conducted an experiment on
40 video tutorials and found that their approach can extract source code from programming videos
with high accuracy. Khandwala and Guo [13] also used the computer vision technique to identify
code from programming videos. But their focus was to use the extracted source code to enhance
the design space of interactions with programming videos. Moslehi et al. used the extracted text
from screencasts to perform feature location tasks [17].

In our study, we not only follow the approach proposed by Yadid and Yahav [34] to make correc-
tions in the OCRed source code, but also leverage a deep learning technique to remove non-code
and noisy-code frames before OCRing the source code from frames. This is because we find that
it is difficult to remove the noise in some kinds of frames (such as the frames with completion
suggestion popups) using traditional computer vision techniques as in Reference [4] or the post-
processing of the OCRed code as in Reference [22]. Inspired by the work of Ott et al. [19], we
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develop a CNN-based image classifier to identify non-code and noisy-code frames. Ott et al. [19]
train a deep learning model to identify the presence of source code in thousands of frames. The
deep learning model in their study can identify four categories of frames: Visible Typeset Code,
Partially Visible Typeset Code, Handwritten Code, andNo Code, and achieves very high accuracies
(85.6%—-98.6%). We follow their approach but the number of classes in our task is two (i.e., valid
and invalid) and train a model using our own dataset.

8 CONCLUSION

In this article, we develop an approach and a system named psc2code to denoise source code ex-
tracted from programming screencasts. First, we train a CNN-based image classifier to predict
whether a frame is a valid code frame or non-code or noisy-code frame. After removing non-
code/noisy-code frames, psc2code extracts the code regions based on the detection of sub-window
boundaries and the clustering of frames with the same window-layout. Finally, psc2code uses a
professional OCR tool to extract source code from videos and leverage the cross-frame informa-
tion in a programming screencast and the statistical language model of a large source-code corpus
to correct the OCR errors in the OCRed source code.

We collect 23 playlists with 1,142 programming videos from YouTube to build a programming-
video dataset used in our experiments. We systematically evaluate the effectiveness of the four
main steps of psc2code on this video dataset. Our experiment results confirm that the denoising
steps of psc2code can significantly improve the quality of source code extracted from programming
screencasts. Based on the denoised source code extracted by psc2code, we implement two applica-
tions. First, we build a programming video search engine. We use 20 queries of some commonly
used Java APIs and programming concepts to evaluate the video search engine on the denoised
source-code corpus extracted by psc2code versus the noisy source-code corpus extracted without
using psc2code. The experiment shows that the denoised source-code corpus enables a much better
video search accuracy, compared with the noisy source-code corpus. Second, we build a web-based
prototype tool to enhance the navigation and exploration of programming videos based on the
psc2code-extracted source code. We conduct a user study with 10 participants and find that the
psc2code-enhanced video player can help participants navigate the programming videos and find
content-, API-usage-, and process-related information in the video tutorial more efficiently and
more accurately, compared with using a regular video player.
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