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ABSTRACT
Software Composition Analysis (SCA) has gained traction in recent
years with a number of commercial o�erings from various compa-
nies. SCA involves vulnerability curation process where a group of
security researchers, using various data sources, populate a data-
base of open-source library vulnerabilities, which is used by a
scanner to inform the end users of vulnerable libraries used by their
applications. One of the data sources used is the National Vulner-
ability Database (NVD). The key challenge faced by the security
researchers here is in �guring out which libraries are related to
each of the reported vulnerability in NVD. In this article, we report
our design and implementation of a machine learning system to
help identify the libraries related to each vulnerability in NVD.

The problem is that of extrememulti-label learning (XML), and we
developed our system using the state-of-the-art FastXML algorithm.
Our system is iteratively executed, improving the performance of
the model over time. At the time of writing, it achieves F1@1 score
of 0.53 with average F1@k score for k = 1, 2, 3 of 0.51 (F1@k is the
harmonic mean of precision@k and recall@k). It has been deployed
in Veracode as part of a machine learning system that helps the
security researchers identify the likelihood of web data items to
be vulnerability-related. In addition, we present evaluation results
of our feature engineering and the FastXML tree number used.
Our work formulates and solves for the �rst time library name
identi�cation from NVD data as XML, and deploys the solution in
a complete production system.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software maintenance tools.
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1 INTRODUCTION
Open-source libraries are critical to modern information infrastruc-
ture, which relies heavily on software written using open-source
dependencies, such as those in Maven central, npmjs.com, and PyPI.
As with any software, however, open-source libraries may contain
security vulnerabilities. Software Composition Analysis (SCA) auto-
matically identi�es vulnerable versions of the dependencies used in
an application, so that developers can continue using open-source
libraries with peace of mind. SCA has gained traction in recent
years with a number of commercial o�erings from various com-
panies [1, 9–11]. The design of a state-of-the-art SCA product is
discussed in a recent article by Foo et al. [20].

Figure 1 depicts a typical SCA work�ow. SCA helps developers
by discovering vulnerable libraries used by their application. This
is done by matching the application’s dependencies with a database
of vulnerable libraries. SCA importantly involves a vulnerability
curation process where a team of security researchers populate
the database with data from various sources. Most relevant to our
work is theNational Vulnerability Database (NVD) data source. Each
NVD entry includes a unique Common Vulnerability Enumeration
(CVE) identi�cation number. a vulnerability description, Common
Platform Enumeration (CPE) con�gurations, and references (web
links). Each CPE con�guration is a regular expression that identi�es
a set of CPE names. Each name in turn identi�es an information
technology system, software, or package related to the vulnerability.
Unfortunately, these information may not explicitly identify the
vulnerable library. For example, Figure 2 shows the words that
are included in the report for CVE-2015-7318, that we extracted
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2015 allows responses bugzilla.redhat.com show_bug.cgi http oss
16 header lists 09 headers injection 22 www.openwall.com plone
hot�x plone.org 20150910 1264796

Figure 2: Text from CVE-2015-7318

pipermail 2 source advisories lists.fedoraproject.org package an-
nounce secunia.com function 0 attacks www.vupen.com english
securitytracker.com output releases sql argument 11 2011 4 april
injection 3 8 group values rails groups.google.com arguments
ruby rubyonrails weblog.rubyonrails.org integer limit msg dmode
gplain 057650.html 0877 4e19864cf6ad40ad 43278 1025063 new

Figure 3: Text from CVE-2011-0448

automatically from its web page [5]. This vulnerability is included
in the Zope2 Python library of Plone content management system,
however, Zope2 is nowhere mentioned in the text, as well as in the
original NVD record [5]. As another example, Figure 3 shows the
text that we automatically extracted from the web page of CVE-
2011-0448 [4]. Although the Ruby on Rails Active Record library has
the vulnerability, it is neither mentioned in the text data nor in the
NVD record [4]. Within the context of SCA vulnerability curation
process, therefore, the key challenge faced by the SCA security
researchers here is in �guring out which libraries are related to
each of the reported vulnerability in the NVD from these data.

In this article, we report an automated prediction system using
machine learning to predict the related library names for any given
CVE id. It implements the function

identify : NVD ! P(L) (1)

with NVD the set of CVE ids in the NVD, and P(L) the powerset
of L, the �nite set of library names. For training our prediction
models, we collect training data from NVD and obtained thousands
of NVD vulnerability records with their library names from SCA
database of library vulnerabilities, manually curated by security
researchers in years. The machine learning task is in essence an
extreme multi-label text classi�cation (XMTC), which is more gen-
erally known as extreme multi-label learning (XML). For training
and prediction, we use the state-of-the-art FastXML algorithm [28].
Our work formulates and solves for the �rst time library name
identi�cation from NVD data as XML.

In summary, our main contribution is the application of the
FastXML [28] approach for mapping vulnerability data to library
names in the context of SCA. As demonstrated by our examples of
Figures 2 and 3, our problem here is in relating a query to a library
whose name that may not even be mentioned in the query. Hence,
the problem is di�erent to that of information retrieval, in particular
learning-to-rank [25]. In this article, we describe our approaches
for data collection, feature engineering, and model training and
validation. We also present evaluation results of our design choices
in data preparation, and the FastXML tree number used. In addition,
we present a case study model evaluation, where at the time of
writing, our model achieves F1@1 score of 0.53 with average F1@k
score for k = 1, 2, 3 of 0.51 (4th column of Table 9, Section 6.1—
F1@k is the harmonic mean of precision@k and recall@k , all of
which are de�ned in Section 4.2).

Figure 4: Recommendation System Screenshot

Our system has been deployed in production at Veracode as
part of a larger system that helps the security researchers identify
the likelihood of web data items to be vulnerability-related. The
prediction facility is packaged as a web service, where the inputs are
vulnerability description of the given CVE id, its CPE con�gurations,
and its references, and it responds to an input with a ranked list
of library names, with a score attached to each library name in the
list. Based on the scores, we can select the top-k library names. The
prediction results are made available via a web user interface as
search suggestions, when the researchers query a library database
for possible libraries that are related to an NVD entry (Figure 4).

We �rst provide some background in Section 2, including our
vulnerability curation system for SCA, XML, and FastXML. We
next describe our data gathering and feature engineering e�orts
in Section 3. We detail our core approach in Section 4, and present
experimental evaluations of our approach in Section 5. We then
discuss a model deployment case study in Section 6, followed by a
discussion on the threats to validity in Section 7. We present related
work in Section 8, and conclude our article in Section 9.

2 BACKGROUND
2.1 Software Composition Analysis

Vulnerability Curation System
As mentioned, SCA involves a vulnerability curation process where
a team of security researchers populate a library vulnerability data-
base using information they discover from internet sources, such as
the NVD, Jira tickets, Bugzilla reports, Github issues, PRs, and com-
mits, as well as emails (Figure 1). Veracode employs an automated
system based on machine learning technology [55] to provide rec-
ommendation to the security researchers on input data items likely
to be related to security vulnerabilities. As depicted in Figure 5, the
internet data are �rst cleaned, and then after the feature extraction
and selection process, existing machine learning models in pro-
duction are used to perform prediction on the input data to decide
whether each data item should be recommended to the security
researchers or not. The security researchers review a recommended
data item manually, and labels it as actually vulnerability-related
or not, and then use it to manually populate a library vulnerability
database. The new labeled data are then used to train new and
more precise machine learning models for the next iteration. In
this system, a new suite of models is trained monthly. The system
employs k-fold stacking ensemble machine learning models which
mitigate data imbalance issue, where there is a disproportionately
large number of negative (vulnerability-unrelated) data compared
to the positive (vulnerability-related) ones [55]. It is also enhanced
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Figure 5: Data Flow Diagram (DFD) of A Machine-Learning-
Based Vulnerability Curation System. The system itera-
tively improves the prediction models with the labeling by
the security researchers as the only manual task.

by self-training to signi�cantly and automatically increases the size
of the labeled dataset for training, opportunistically maximizing
the improvement in the quality of the models at each iteration. The
performance of the models di�er according to the data source, but
in one experiment, the worst-performing model, which is that for
Jira tickets achieved precision of 0.78 for a recall of 0.54.

The work reported in this article enhances the above system fur-
ther by having it automatically recommends related library names
for each new entry in the NVD. Again, the security researchers
review the recommendations and manually decide on the �nal set
of library names. The new library names are then added into the
library vulnerability database. And again, these data are then used
to train the new models of the subsequent iterations.

2.2 XML and FastXML
We initially approached our problem by directly associating library
names found in CPE con�gurations with library vulnerability data,
however, the performance is low (Section 5.3), hence we considered
machine learning and modeled our problem as an XML instance.
XML (or XMTC in natural language processing) is a classi�cation of
input data with multiple tags or labels [14]. XML is di�erent from
normal multi-label learning (ML) because it involves an extremely
large number of labels. XML is also di�erent from multi-class clas-
si�cation [44] because a data item can be labeled with multiple
labels [14]. Liu et al. summarizes the main challenges in XML [24]:

(1) Severe data sparsity. The majority of the labels have very
few training instances associated with them, making it di�-
cult to learn the dependency patterns among labels reliably.

(2) Computational costs. The costs of both training and test-
ing of independent multi-class classi�ers (i.e., the binary
relevance (BR) method [26]) is prohibitive due to the large
number of labels, possibly reaching millions.

For our work we use the state-of-the-art tree-based algorithm
FastXML [28], which is often used in the literature for comparison
with other approaches [24, 52]. In a tree-based method, the input or
label space is arranged in a tree hierarchy, where the root usually
represents the whole dataset. FastXML’s tree node partitioning
formulation directly optimizes a rank sensitive loss function called
normalized DCG (nDCG) over all the labels. DCG (discounted cumu-
lative gain) is a measure to quantify the quality of ranking. Given a
rank p of an item, its DCG is DCG(p) [40]. Normalized DCG (nDCG)
is DCG(p) normalized to [0, 1] using an ideal DCG (IDCG), which is
the maximum of theDCG(p). That is, nDCG(p) = DCG(p)/IDCG(p).

We next compare FastXML with the various other approaches
to XML in the literature.

FastXML vs. embedding methods. Embedding methods perform com-
pression to reduce the dimensionality of the label vector space. The
approaches in this category include WSABIE [41], SLEEC [14], and
AnnexML [34]. SLEEC is reported to slightly outperform FastXML
on LSHTC4, a large-scale benchmark for text classi�cation using
Wikipedia dataset [27]. In an embedding method, however, the
models can be costly to train [41] and the prediction can also be
slow even for small embedding dimensions [14], as it requires to
decompress a prediction to the labels in the original vector space.
More importantly, because of data sparsity [24, 34], the critical
assumption that the training label matrix is low-rank, is violated
in almost all real world applications [14]. This entails a heavy loss
of information in the compression. Tree-based methods such as
FastXML generally perform better than embedding-based methods.

FastXML vs. deep learning. Deep learning approaches include that
of Liu et al. [24], You et al. [49], and Zhang et al. [52]. Shah et al.
report the application of the fastText [23] deep learning approach to
XML (product matching problem), demonstrating that the approach
is e�cient to train [31]. Deep learning has been shown to have
competitive results compared to FastXML [24, 52], but deep learning
is not applicable to our problem since we have a small labeled data
size of only about more than 7,000 items (see Tables 1 and 7).

FastXML vs. other tree-based methods. Agrawal et al. [12] show
that using multi-label random forest (MLRF ) classi�er results in sig-
ni�cantly better bid phrase recommendations than ranking-based
techniques. Label partitioning for sublinear ranking (LPSR) approach
partitions the input space and assigns labels to the partitions taking
into account the ranking provided by an original scorer of the label
assignment. This achieves validation time complexity sublinear
in the size of the label space [42]. However, FastXML has much
less training costs than MLRF or LPSR [28]. The main di�erence of
FastXML to MLRF and LPSR is in the tree node partitioning: The
use of nDCG in FastXML leads to more accurate predictions over
MLRF’s Gini index or LPSR’s clustering error.

FastXML uses an e�cient alternating minimization algorithm to
optimize nDCG(p) that converges in a �nite number of iterations.
Jain et al. proposes PfastXML that improves FastXML by replac-
ing optimization of nDCG with minimization of propensity-scored
loss precision@k or nDCG@k [22]. They also propose PfastreXML
which further re-ranks the predictions of PfastXML using classi�ers
that take into account tail labels which occur infrequently.
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FastXML vs. sparse model methods. Sparse model methods include
PD-Sparse [48], with parallelized versions by Yen et al. [47] and
Babbar and Schölkopf [13], however, even when considering these
methods, FastXML’s training and prediction times are still compet-
itive for our purpose.

3 INPUT DATA
3.1 Data Sources
The data that we use for model training come from two sources: the
NVD and the SCA library vulnerability database. We implement
a script to automatically download JSON data �les from NVD [6]
from 2002 to 2019. Each entry in the JSON �le corresponds to an
NVD web page [7], and has a unique CVE id. We note that the
content of each �le may be di�erent when downloaded at di�erent
times due to updates to the NVD. We use this data to construct the
function fNVD : NVD ! ÆX , where NVD, as in Equation 1, is the set
of CVE ids, and ÆX is the set of all input feature vectors.

From the SCA vulnerability database we obtain the mapping
of CVE ids to library names. Each library name in the vulner-
ability database is a pair of coordinates. The SCA vulnerability
database provides an API which, given a CVE id, returns the co-
ordinates of all libraries already identi�ed to be related. The co-
ordinates of a library consist of a �rst coordinate (coordinate1),
and an optional second coordinate (coordinate2). For example, a
Maven Java library such as Jackson Databind has its group identi-
�er com.fasterxml.jackson.core and its artifact identi�er jack-
son-databind as respectively the �rst and second coordinates.
Here, as the library name we use “coordinate1 coordinate2”, which
for our Jackson Databind case is “com.fasterxml.jackson.core
jackson-databind.” Some libraries, however, only have the �rst
coordinate, which is directly used as its name. One CVE id may
be mapped to a multiple of library names. More formally, when
L is the set of all library names, the SCA vulnerability database
de�nes fSCA : NVD ! P(L), which is a function that maps the CVE
ids in the NVD to the subsets of library names. We note that the
support of fSCA in reality is some subset of NVD, because Veracode
SCA has a limited focus on open-source libraries and a number of
programming languages. Given id 2 NVD, | fSCA(id)| is typically
orders of magnitude smaller than |L|. We combine fNVD and fSCA by
matching CVE ids to build our training data. Using fNVD and fSCA,
we de�ne fNVD-SCA : ÆX ! P(L), a function that directly maps the
input feature vectors to the subset of labels, as the following set:

{(Æx ,D) | 9id 2 NVD · Æx = fNVD(id) ^ D = fSCA(id)}

Finally, our training dataset is the �nite function dtrain : ÆX ! ÆY
de�ned as the set

{(Æx , Æ�) | D = fNVD-SCA(Æx) ^ (81  i  |L| · Æ�i = 1D (Li ))}. (2)

Here, 1D : L ! {0, 1} is an indicator function such that 1D (Li ) = 1
if and only if the input Æx is labeled with the library name Li 2 D1.
We also note that for any (Æx , Æ�) 2 dtrain, |Æ� | = |L| (this equals 4,682
for our experiments dataset of Section 5). As an example for (Æx , Æ�) 2
dtrain, for the CVE-2015-7318, Æx is the vectorization of the input text
in Figure 2 while Æ� encodes the set D = {zope2, plone} of library

1 Æ� is not 1-hot encoded, which requires that there is exactly one i where Æ�i = 1.

text = re.sub(r�[^A-Za-z0-9!?\�]�, � �, in)
text = re.sub(r�what�s�, �what is �, text)
text = re.sub(r�\�s�, � �, text)
text = re.sub(r�\�ve�, � have �, text)
text = re.sub(r�n�t�, � not �, text)
text = re.sub(r�i�m�, �i am �, text)
text = re.sub(r�\�re�, � are �, text)
text = re.sub(r�\�d�, � would �, text)
text = re.sub(r�\�ll�, � will �, text)
text = re.sub(r�!�, � ! �, text)
text = re.sub(r�\?�, � ? �, text)
text = re.sub(r���, � �, text)
out = text.lower()

Figure 6: BasicDataCleaning inPythonConverting in to out.
re.sub substitutes substrings in its 3rd argument matching
its 1st argument regular expression, with its 2nd argument.

out = ��
for word, pos in

nltk.pos_tag(nltk.word_tokenize(in)):
if pos == �NN� or pos == �NNP� or

pos == �NNS� or pos == �NNPS�:
out = out + � � + word.lower()

Figure 7: Noun Removal in Python Converting in to out.
Here we use the NLTK [3] package, where word_tokenize

splits in into words it contains, and pos_tag tags each word
in the list. Here we include all words tagged by NLTK with
either NN, NNP, NNS, or NNPS, denoting nouns.

names, with Æ�i = 1 if and only if i is the index of zope2 or plone
in L. We input dtrain to FastXML [28] to train new models.

3.2 Data Cleaning
Before using collected data for model training, we need to clean
them. We perform the following three steps:

(1) In the �rst basic cleaning we remove non-alphanumeric char-
acters except exclamation and question marks, and we ex-
pand aposthropes. Figure 6 shows the Python procedure.

(2) We remove non-noun words that our data collection sys-
tem can recognize automatically using the NLTK Python
package [3] (Figure 7). Using only nouns have been found to
be e�ective for bug assignment recommendation [32]. Our
non-noun �ltering actually improves model performance,
signifying the importance of the focus on nouns in prediction
quality (see the experimental results in Section 5.5).

(3) We also remove the words which appear in more than 30%
of the NVD vulnerability data, since they are common words
which are likely to not help in identifying library names.
These are not only stop words, but also include words like
“security,” which appears in most of the NVD entries. Such
words reduce the performance as they are not speci�c to
a particular CVE or set of libraries. This is done using the
CountVectorizer API of scikit-learn 0.20 [8]. We chose the
30% frequency limit due to its more favorable results when
compared with other limits (see Section 5.5).



Automated Identification of Libraries from Vulnerability Data ICSE-SEIP ’20, May 23–29, 2020, Seoul, Republic of Korea

We show experimentally how our data cleaning approaches improve
model performance in Section 5.5.

3.3 Feature Engineering and Selection
From each NVD entry we select description, CPE con�gurations,
and references for our model training since the other features are
unlikely to help in identifying library names. These other features
include management data such as data format, version, timestamp,
and dates. They also encompass codi�ed problem type including
a Common Weakness Enumeration (CWE) id, and also impact data
which include Common Vulnerability Scoring System (CVSS) infor-
mation, severity level, exploitability and impact scores. We clean
the description as explained in Section 3.2. The CPE con�gurations
are important features to predict the related library names, as each
is made up from vendor name and product name which are very
close to library coordinates. There are di�erent versions of CPE
formats, but here we consider only the latest version 2.3 at the
time of writing. For a given NVD vulnerability entry, there can be
multiple CPE con�gurations. We extract vendor name and product
name from each con�guration and treat the pair as one unit of text.
For example, for the CPE con�guration

cpe:2.3:a:arastta:ecommerce:1.6.2:*:*:*:*:*:*:*

we extract arastta (vendor name) and ecommerce (product name),
and consider them as a text “arastta ecommerce.” Finally we get a
list of “vendor product” for each NVD entry without duplication.
There are also multiple reference web links for each NVD entry.
From each link, we remove the protocol part (http, https, or ftps)
and replace the characters in the set /=&? with a white space.

3.4 Matchers
Initially we use the combination of all selected NVD entry features
including description, CPE con�gurations, and references into a sin-
gle textual feature. Our tests show, however, that for some entries,
even though the description or the CPE con�gurations contain the
exact coordinate1 or coordinate2 (see Section 3.1) for the library,
the model fails to map the feature vector to the corresponding li-
brary name when used in prediction. This led us to use the product
name in a CPE con�guration to search for all of the matched library
coordinates and use these matched coordinates as another input
feature. Here, we search all the library entries in the SCA vulner-
ability database to �nd those whose coordinate1 or coordinate2
equals the product name in a CPE con�guration. We then add the
name (“coordinate1 coordinate2” pair) of this library, called the
matchers, to our input text data. We note that although one may
be tempted to use the matchers alone for matching an NVD entry
with vulnerable libraries, we experimentally show in Sections 5.3
and 5.4 that the performance of this approach has actually been
discouraging.

In summary, there are four features making up the input used to
train the models (Æxi s of Section 3.1), including the cleaned vulnera-
bility description (nouns only), a list of “vendor product” pairs from
the CPE con�gurations, cleaned reference links, and the matchers.
We concatenate all features into one contiguous string for each
NVD entry. This is how we build the fNVD function of Section 3.1.

4 CORE APPROACH
4.1 Using FastXML
Consider a domain ÆQ |L | of rational vectors of length |L| (recall that
L is the set of labels). For any Æz 2 ÆQ |L | , Æzk is called a score. The
higher the score Æzi , the more “relevant” is a label Li given Æz. The
FastXML [28] algorithm produces amodel, which is a function with
signature ÆX ! ÆQ |L | given a �nite function with signature ÆX �n! ÆY ,
which is the training dataset of Equation 2 of Section 3.1. That is, it
is a function:

trainFastXML : ( ÆX
�n! ÆY ) ! ( ÆX ! ÆQ |L | ).

Given a training dataset dtrain of Equation 2, the model produced
by the FastXML algorithm is trainFastXML(dtrain).

Now, our objective is to use the FastXML algorithm for predic-
tion, which in our case is library identi�cation. When NVD, L, and
Q are respectively the sets of CVE ids, library names, and ratio-
nal numbers, our library identi�cation function can be formally
speci�ed as:

identifyFastXML : NVD ! (L ! Q).
By virtue of the �niteness of L, L ! Q is �nite. We �rst de�ne
a function � : ÆQ |L | ! (L ! Q) that transforms a �nite rational
vector of length |L| into the function L ! Q as follows:

� (Ær ) = {(Li , Æri ) | 1  i  |L|}.
Using � , we de�ne identifyFastXML as:

identifyFastXML(id) = � (trainFastXML(dtrain)(fNVD(id))).
We can sort the elements of the �nite S : L ! Q (the output of

identifyFastXML) in descending order of their right components:

sort(S) = (l1,n1), . . . , (l |S | ,n |S | )
where ni � nj whenever i < j. Now, the top-k elements of S is:

topk (S) = {(l1,n1), . . . , (lk ,nk )}
when sort(S) = (l1,n1), . . . , (lk ,nk ), (lk+1,nk+1), . . . , (l |S | ,n |S | ). Gi-
ven a �xed k , we de�ne our implementation as the function:

identifyk (id) = topk · identifyFastXML(id)
It is easy to see that using identifyk as identify satis�es Equation 1
of Section 1.

4.2 Model Evaluation
We use the prediction result to help our security researchers to
map CVE ids to library names to save their manual research ef-
fort. As usual in evaluating multi-label learning approaches, we use
precision@k , recall@k , and their harmonic mean F1@k as valida-
tion metrics. precision@k is the precision of the top-k prediction
results, where recall@k is the recall of the top-k prediction results.
These metrics focus on the positive labels only, and are therefore
suitable for use in XML due to the number of positive labels for
an input data item is very small compared to the irrelevant nega-
tive labels (less than ten vs. thousands for our typical case). This
characteristic renders other methods such as Hamming loss inap-
propriate [22, 28]. Weston et al. show for the �rst time the utility
of optimizing precision@k for an XML application in image recog-
nition [41]. The metrics have also found applications in machine
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learning approaches for software engineering such as in library
recommendation [35, 53], in �nding analogical libraries [15], and
in tag recommendation [33, 38, 39, 46, 50, 54], essentially where the
number of positive labels is magnitudes smaller than the number
of negative labels. We de�ne the metrics in this section.

We assume that the results of a manual labeling of CVE id with
library names by the security researchers is given by the function:

identifymanual : NVD ! P(L)

This is indeed the validation dataset. Given a prediction identifyk (id)
under the bound k , we de�ne the precision@k and recall@k for a
given CVE id as follows:

precision@k(id) =
|identifyk (id) \ identifymanual(id)|

k

recall@k(id) =
|identifyk (id) \ identifymanual(id)|

|identifymanual(id)|

precision@k(id) here is therefore the proportion of the correctly-
predicted names among the maximum k of predicted names for
a given id, whereas recall@k(id) here is the proportion of the
correctly-predicted names among all correct names for a given
id. We care about maximizing precision@k(id) since we want to
save the manual e�ort of con�rming that the CVE id is actually
related to the predicted library name. We also care about maximiz-
ing recall@k(id) since we want our results to cover as many of the
related library names as possible.

Given NVD� the subset of NVD CVE ids that we use for valida-
tion, the metrics precision@k and recall@k that we actually use for
validation are as follows:

precision@k = avg
id 2 NVD�

precision@k(id)

recall@k = avg
id 2 NVD�

recall@k(id)

with avg denoting arithmetic mean. We use these metrics or their
harmonic mean F1@k to evaluate our models.

5 EXPERIMENTS
5.1 Research Questions
We experimented with various aspects of our design and report the
performance results in this section. We conduct the experiments to
answer the following research questions:
RQ1 What is the performance of using only matchers without

machine learning?
RQ2 What is the performance of using only matchers as inputs?
RQ3 Does adding description, CPE con�gurations, and references

of NVD entries improve the model performance?
RQ4 Do non-noun and frequent-words removal improve model

performance?
RQ5 What is the number of the FastXML trees that results in the

best performance?

5.2 Dataset and Setup
Table 1 shows the sizes of our input data. Other than the NVD and
SCA library vulnerability database, we also retrieve SCA library

Table 1: Dataset Sizes

Dataset No. Entries
NVD 130,115

SCA Library Vulnerability Database 74,664
SCA Library Data 2,106,242
Labeled Data 7,696

Table 2: FastXML Training Parameter Values

Parameter Value
Number of Trees 64
Parallel Jobs No. of CPUs
Max. Leaf Size 10
Max. Labels per Leaf 20
Re-Split Count. The number of node re-splitting
tries using PfastreXML re-ranking classi�er. 0

Subsampling Data Size. 1 = no subsampling. 1
Sparse Multiple. Constant for deciding the data
structure to use in nDCG computation. 25

Random Number Seed 2016

Table 3: Label Number Average and Distribution
Arith. Avg. 1 2 3 4 � 5

4.90 60.58% 20.60% 5.21% 3.99% 9.63%

data, containing data on libraries that may not currently be asso-
ciated with any CVE id. We use the SCA library data to build the
matchers. Our �nal labeled dataset contains 7,696 records, which is
only about 6% of the total number of NVD entries. This is because
our SCA databases have a limited focus on open-source projects
and a number of supported languages.

Table 3 shows the average and distribution of the number of
labels in the labeled dataset. The distribution is skewed, where
more than 60% of the entries only have one label. This agrees with
the sparsity characteristic of the XML problems. We conduct all
experiments on Amazon EC2 instance running Ubuntu 18.04 with
32 GB RAM and 16-core 3 GHz Intel(R) Xeon(R) Platinum 8124M
CPU. We use the default parameters for FastXML excluding two:

• We changed the number of trees from the default 1 to 64.
• We changed the number of parallel jobs to the number of
detected CPUs (16).

Table 2 summarizes the FastXML parameter values for parameters
that a�ect our experiments. The FastXML implementation that we
use has other parameters (see the constructor of Trainer class in
the source code [2]). They are for training classi�ers for PfastreXML
node re-splitting, however, since we do not use this feature (in Table
2 we set the re-split count to 0), we do not list them in Table 2. We
also exclude parameters that are not actually used and those that
are only used for reporting purposes.

Our standard approach, unless indicated otherwise, is to ran-
domly select 75% of our labeled dataset to train the models and the
remaining 25% for testing. When presenting performance results
here and in Section 6, we use geometric average unless otherwise
indicated [19]. We note that our problem is time-agnostic, where
the identi�cation of libraries are not a�ected by the timestamps
of the NVD entries. Our dataset is therefore not sorted based on
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Table 4: Matchers-as-Inputs Performance
k precision@k recall@k F1@k

1 0.52 0.37 0.43
2 0.39 0.48 0.43
3 0.30 0.52 0.38

Avg. 0.39 0.45 0.41

time, and this removes the necessity of using sliding window-based
validation techniques.

5.3 Using Matchers Without Machine Learning
Matchers (Section 3.4) alone can be used for prediction without
machine learning. Since matchers have no scores (Section 4),@k
performance values are irrelevant. Assuming identifymatcher (id) to
be the set of matchers computed from the CPE con�gurations of id
2 NVD (Section 3.4), we can compute the performance metrics for
matchers alone as follows:

precision(id) =
|identifymatcher (id) \ identifymanual(id)|

|identifymatcher (id)|

recall(id) =
|identifymatcher (id) \ identifymanual(id)|

|identifymanual(id)|

with F1(id) to be the harmonic mean of the two. The computed
arithmetic averages for the precision, recall, and F1 score
from our labeled data and the values are respectively 0.24,
0.28, and 0.24, thereby answering RQ1. We note that the per-
formance is very low, necessitating a better prediction technique.
The reasons are the following two:

(1) CPE con�gurations may not identify all relevant li-
braries. There are possibly more relevant libraries than the
“vendor product” pairs identi�ed in the CPE con�guration,
lowering the recall.

(2) CPE con�gurations do not identify the most relevant
libraries. Libraries that are not speci�ed in the CPE con�g-
urations may have higher relevance, lowering the precision.

5.4 Using Only Matchers as Inputs
Weperform an experiment to determine the performancewhen only
matchers are included in the input. The results are shown in Table
4. As most of the NVD entries are associated with one or two labels
(Table 3), we evaluate the top-k labels from the prediction results,
for k = 1, 2, or 3. It is easy to see the answer to RQ2, that the
prediction performances are low when only matchers are
included in the input, with average F1@k of only 0.41. Here
we also observe that precision@k decreases with the increase of k .
This is because the majority of data are labeled with only one or
two libraries, as can be seen from Table 3. Such observation holds
true for all precision@k results we report in this article.

5.5 Experiments with Data Cleaning
We perform experiments to measure the e�ect of our data prepara-
tion approaches to the model performance. Table 5 shows the the
precision@k , recall@k , F1@k results for k = 1 and 3, and the train-
ing and validation times (using the 75% and 25% labeled data). When

Table 5: Precision@k , Recall@k , and F1@k Results (k = 1, 2,
and 3). T = training time, V = validation time. The con�gura-
tion that we use in production is of the shaded column.

Basic Cleaning
Non-Noun Removal
Frequent-Words Removal

k 30% 60% 90%

pre.@
k

1 0.64 0.65 0.65 0.65 0.65
2 0.48 0.48 0.48 0.48 0.48
3 0.37 0.37 0.37 0.37 0.37

Avg. 0.48 0.49 0.49 0.49 0.49

rec.@
k

1 0.44 0.45 0.45 0.45 0.45
2 0.57 0.58 0.58 0.58 0.58
3 0.61 0.61 0.62 0.61 0.61

Avg. 0.53 0.54 0.54 0.54 0.54
F1 @

k

1 0.52 0.53 0.53 0.53 0.53
2 0.52 0.53 0.53 0.53 0.53
3 0.46 0.46 0.46 0.46 0.46

Avg. 0.50 0.50 0.51 0.50 0.50
T (S) 175 161 159 160 160
V (S) 219 200 197 199 200

Table 6: Precision@k , Recall@k , F1@k (k = 1,2,3) and Train-
ing (T) and Validation (V) Times with Various Tree Numbers.
The tree number that we use is 64 (shaded columns).

No. Trees No. Trees
k 32 64 128 32 64 128

pre.@
k

1 0.64 0.65 0.66 rec.@
k

0.45 0.45 0.46
2 0.47 0.48 0.48 0.57 0.58 0.58
3 0.36 0.37 0.37 0.61 0.62 0.62

Avg. 0.48 0.49 0.49 0.54 0.54 0.55

F1 @
k

1 0.53 0.53 0.54 T (S) 80 219 317
2 0.52 0.53 0.53 V (S) 108 227 375
3 0.45 0.46 0.46

Avg. 0.50 0.51 0.51

we compare Table 5 with Table 4,we can answer RQ3 in the a�r-
mative, that the addition of description, CPE con�gurations,
and references of NVD entries does improve the model per-
formance. Comparing the minimum 0.50 average F1@k of Table
5 and the average F1@k of 0.41 of Table 4, we get the minimum
improvement in average F1@k to be 21.95%. The best performance
in Table 5 is for the con�guration with non-noun and 30% fre-
quent words removal. We use this con�guration in production.
Here we answer RQ4 in the a�rmative: non-noun removal
and frequent-words removal improve the prediction perfor-
mance, albeit by a small amount. Although the di�erence in
average F1@k score for our production con�guration compared to
others is very small, non-noun and frequent-words removal still
reduce training and validation times.

5.6 Experiments with Tree Sizes
FastXML uses trees, where each one represents a distinct hierarchy
over the feature space. We perform an experiment which varies the
number of trees among 32, 64, and 128, and summarize the results
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Table 7: Dataset Sizes for Production Model Training and
Validation

Dataset No. Entries
NVD 126,219

SCA Library Vulnerability Database 73,224
SCA Library Data 2,030,578
Labeled Data 7,153

Table 8: Label Number Average and Distribution for Produc-
tion Model Training and Validation Labeled Dataset

Arith. Avg. 1 2 3 4 � 5
5.09 59.95% 20.58% 5.77% 3.96% 9.74%

in Table 6. We also include the time measurement results, both for
training and validation, on respectively the 75% and 25% of the
labeled data. For RQ5, we con�rm that the number of FastXML
trees that result in the best performance is 128. However, the
di�erence in average F1@k between 64 and 128 is very small, and
since the 64 trees con�guration requires only half the training time,
we use it for our production system.

6 DEPLOYMENT CASE STUDY
We want to con�rm that a newly-trained model has a better perfor-
mance than themodel in production before replacing the production
model. In this section we discuss the two steps of validation that
we perform for this purpose via a case study. In this case study,
for the data preparation we use basic cleaning, non-noun removal,
and with 30% frequent words removal. We add matchers into the
input. For the number of FastXML trees, we use 64. We use the
same system setup as the one mentioned in Section 5.2.

6.1 Evaluation Using Training-Time Datasets
The �rst step is to ensure that the new model has a better per-
formance than the production model, at the moment each one is
trained. For our case study, the production model is trained on 18
July 2019 and the new model is trained on 27 September 2019 (70
days di�erence). In training and validating the production model,
the sizes of the datasets that we use are shown in Table 7. For
the new model, the sizes of the datasets that we use are presented
in Table 1. We note that each dataset of Table 7 is a subset of its
counterpart in Table 1. We show the label number average and
distribution for the labeled dataset of Table 7 in Table 8. We observe
that the numbers are characteristically similar to that of Table 3.

For this step, we use 75% of the data for training and 25% for
testing, for both the production and the new models. Columns 3–5
of Table 9 show the results for the production and new models.
Although the new model shows a decrease in precision, the average
F1@k still improves by 1.09%, hence deploying the new model as a
replacement for the production model is still acceptable.

6.2 Evaluation Using the Same Dataset
For the second evaluation, we randomly select 50% of the labeled
data from the labeled dataset of the time we train the new model.
We build this dataset from 25% labeled data used for testing the
new model and a third of the remaining 75% labeled data used for

Table 9: Precision@k , Recall@k , and F1@k Results (k = 1, 2,
and 3) for the Deployment Case Study. I% = percent improve-
ment of the new model vs. the production.

Training-Time Same
Datasets Dataset

k Prod. New I% Prod. New I%

pre.@
k

1 0.63 0.65 3.17 0.75 0.94 25.33
2 0.49 0.48 -2.04 0.56 0.68 21.42
3 0.38 0.37 -2.63 0.44 0.52 18.18

Avg. 0.49 0.49 -0.53 0.57 0.69 21.61

rec.@
k

1 0.43 0.45 4.65 0.52 0.68 30.77
2 0.57 0.58 1.75 0.67 0.85 26.87
3 0.60 0.62 3.33 0.72 0.89 23.61

Avg. 0.53 0.54 3.24 0.63 0.80 27.05
F1 @

k

1 0.51 0.53 4.05 0.61 0.79 28.49
2 0.53 0.53 -0.32 0.61 0.76 23.85
3 0.47 0.46 -0.40 0.55 0.66 20.18

Avg. 0.50 0.51 1.09 0.59 0.73 24.13

Table 10: Training and Prediction Times in Seconds. The pre-
diction time is on the same dataset, which encompasses 50%
of the labeled data for training and validation.

Prod. New Arithmetic Average
Training 147 159 153
Prediction 62 64 63

training the new model. We test the new model and the production
model on this same dataset. Columns 6–7 of Table 9 show the per-
formance comparison between the production and the new models.
All metrics precision@k , recall@k , and F1@k show signi�cant im-
provements by the new model, providing us with more con�dence
in deploying the new model. We note that in this second evaluation,
the performance numbers are higher when compared to the eval-
uating using training-time datasets. This is caused by over�tting:
half of the data in the dataset for the same-dataset evaluation are
used in the training of the new model as well.

6.3 Training and Prediction Times
Table 10 shows the training and prediction times of our production
and new models and their averages. The prediction times are from
the evaluation using the same dataset (see Section 6.2), which is 50%
of all the labeled dataset used in the training and validation of the
new model. Table 10 shows that both the training and prediction
times are fast, roughly about 2.5 minutes and 1 minute, respectively.
This means that prediction �nishes on each data item on average
in 8.17 ms. This demonstrates that our approach is highly practical.

7 THREATS TO VALIDITY
7.1 Internal Threats to Validity
We identify two kinds of internal threats of validity. Firstly, our
results are exposed to human error from our manually-built data
sources, including NVD and our SCA vulnerable library database.
It is possible that the SCA vulnerability library identi�es more or
less library as related to an NVD entry than it should. This threat
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is mitigated by the updates to the NVD by the security community
and the proven commercial usage of the SCA vulnerable library
database. Secondly, our results may also be a�ected by the possible
bugs and errors in our implementation. This is partly mitigated by
using widely-used standard library packages for machine learning,
including pandas 0.23.4, scikit-learn 0.20, and FastXML 2.0.

7.2 External Threats to Validity
There are two threats to the generalizability of our study. Firstly, as
mentioned, SCA vulnerable library database is curated manually,
from which we build our input feature vector. This manual cura-
tion is highly dependent on the skills of the security researchers.
Secondly, we are only interested in the NVD entries that are related
with open source projects and whose languages are supported by
the Veracode SCA, so the �nal size of the labeled dataset for pro-
ducing the models is only about 6% of the total number of NVD
entries (see Tables 1 and 7).

8 RELATEDWORK
8.1 Machine Learning for SCA
Our work is part of a framework for software composition analy-
sis (SCA), which has gained widespread industrial usage. Machine
learning is extensively used in SCA to identify vulnerable libraries,
which are vulnerabilities that are known by some (e.g., developers
making the vulnerability �x), yet not explicitly declared, such as
via the NVD. Wijayasekara et al. [43] point to the criticality of such
vulnerabilities, whose number has increased in Linux kernel and
MySQL by 53% and 10% respectively from 2006 to 2011. Zhou and
Sharma [55] explore the identi�cation of vulnerabilities in commit
messages and issue reports/PRs using machine learning. Their ap-
proach discovers hidden vulnerabilities in more than 5,000 projects
spanning over six programming languages. Sabetta and Bezzi pro-
pose feature extraction also from commit patches in addition to
commit messages [30]. Wan considers vulnerability identi�cation
from commit messages using deep learning [37]. Compared to these,
our work solves a di�erent problem, that of the vulnerable library
identi�cation from NVD data.

8.2 Library Recommendation
Close to our work is the area of library recommendation. Thung
et al. propose an approach that recommends other third-party li-
braries to use, given the set of third-party libraries currently used
by the application or similar applications [35]. The approach uses a
combination of association rule mining and collaborative �ltering.
Zhao et al. propose an improvement using the application’s descrip-
tion text features and the text features obtained from the libraries
themselves, using NLP technique and collaborative �ltering [53].
Compared to Thung et al. which relies on the Maven dependency
information, this makes Zhao et al.’s approach language agnostic.
Chen et al. considers a related problem, which is that of �nding
analogical libraries [15, 16]. Here, the problem is in discovering
libraries that are related to a target library. To build this relation,
they treat the tags of StackOver�ow question (which may include
library names) as a sentence and apply word embedding. The so-
lutions to library recommendation problem take advantage of the

intuition that applications can be categorized according to the li-
braries they use. Both the library recommendation and analogous
libraries problems can be considered as XML instances. However,
the library recommendation problem is amenable to methods that
narrow down the possible recommendations. This is less applicable
in our setting since the correlation between vulnerabilities and the
set of libraries having them is weaker, or even possibly nonexis-
tent. Compared to the analogous libraries problem, in our case CPE
con�gurations can be considered as tags, however, we cannot take
them at face value to identify libraries: We need to also identify
libraries not mentioned in the CPE con�gurations.

8.3 Multi-Label Classi�cation for Software
Engineering

Multi-label (ML) classi�cation has found many uses in the area of
software engineering. Prana et al. proposes eight-label classi�er to
categorize the sections of Github README �les [29]. The solution
combines BR with support-vector machine (SVM) as the base classi-
�er. It achieves F1 score of 0.746. Feng and Chen maps execution
traces to types of faults using ML-KNN [51] ML algorithm [17].
Xia et al. improves Feng and Chen’s results using MLL-GA [21]
algorithm instead [45]. Feng et al. provide a comparison of var-
ious ML algorithms [18]. Xia et al. propose TagCombine, which
models tag recommendation in software information sites such
as StackOver�ow as ML classi�cation problem [46]. Short et al.
con�rm that by adding information about the network of the Stack-
Over�ow posts, results can be improved [33]. EnTagRec [38] and
subsequently EnTagRec++ [39] improve TagCombine by using a
mixture model that considers all tags together instead of build-
ing one classi�er for each tag (BR). Zhou et al. propose a scalable
solution that considers only a subset of posts data to build the rec-
ommendation [54]. Their approach also improves F1@10 score by
8.05% when compared to EnTagRec. Zavou applies deep learning to
the tag recommendation problem and demonstrates improvements
over TagCombine for AskUbuntu data [50]. SOTagger approach con-
siders the related problem of tagging the posts using intent rather
than the technology [36]. Our problem cannot be categorized as
multi-label classi�cation problem, as we consider thousands of li-
braries (labels) in total. In particular, the usual ML approach using
BR is not applicable.

9 CONCLUSION AND FUTUREWORK
Predicting related libraries for NVD CVE entries is an important
step in SCA to save manual research e�ort in the identi�cation
of vulnerable libraries. In this article, we present the design and
implementation of a system that performs data collection, feature
engineering, model training, validation and prediction automati-
cally, and its experimental evaluations. We model our problem as
an instance of XML, and use tree-based FastXML [28] algorithm to
build prediction models. At the time of writing, our system achieves
F1@1 score of 0.53 with average F1@k score for k = 1, 2, 3 of 0.51
(F1@k is the harmonic mean of precision@k and recall@k , all of
which are de�ned in Section 4.2). Applying deep learning is a pos-
sible future work, once more training data becomes available.
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