
Noname manuscript No.
(will be inserted by the editor)

SIEVE: Helping Developers Sift Wheat from Chaff
via Cross-Platform Analysis

Agus Sulistya · Gede Artha Azriadi
Prana · Abhishek Sharma · David Lo ·
Christoph Treude

Received: date / Accepted: date

Abstract Software developers have benefited from various sources of knowl-
edge such as forums, question-and-answer sites, and social media platforms to
help them in various tasks. Extracting software-related knowledge from differ-
ent platforms involves many challenges. In this paper, we propose an approach
to improve the effectiveness of knowledge extraction tasks by performing cross-
platform analysis. Our approach is based on transfer representation learning
and word embeddings, leveraging information extracted from a source plat-
form which contains rich domain-related content. The information extracted
is then used to solve tasks in another platform (considered as target platform)
with less domain-related contents. We first build a word embeddings model
as a representation learned from the source platform, and use the model to
improve the performance of knowledge extraction tasks in the target platform.
We experiment with Software Engineering Stack Exchange and Stack Over-
flow as source platforms, and two different target platforms, i.e., Twitter and
YouTube. Our experiments show that our approach improves performance of
existing work for the tasks of identifying software-related tweets and helpful
YouTube comments.

Keywords Word Embeddings, Transfer Representation Learning, Software
Engineering

Agus Sulistya, Gede Artha Azriadi Prana, Abhishek Sharma and David Lo
Singapore Management University
E-mail: {aguss.2014,arthaprana.2016,abhisheksh.2014,davidlo}@smu.edu.sg

Christoph Treude
University of Adelaide
E-mail: christoph.treude@adelaide.edu.au

ar
X

iv
:1

81
0.

13
14

4v
1

 [
cs

.I
R

]
 3

1
O

ct
 2

01
8

2 Agus Sulistya et al.

1 Introduction

Software developers rely on many sources of knowledge to help them keep
up-to-date on the latest technologies and to solve their problems. A study
conducted by Maalej et al. [29] shows that 70 percent of developers use online
resources (web search engine, public documentation, forums) as channels to
access knowledge. Among those channels, some are more popular and contain
richer content relevant to software engineering compared to others. For ex-
ample, Xin et al. [73] conducted an observation on how developers commonly
make use of a web search engine such as Google to find online resources to
improve their productivity. They found that 63% of the searches on the Inter-
net ended up with a visit to Stack Overflow, a popular question and answer
(Q&A) site.

Despite the popularity of Stack Overflow, software developers also seek
knowledge in other platforms, such as microblogging platforms (e.g., Twitter).
A large number of software developers use Twitter frequently to support their
professional activities, e.g., to share and obtain the latest technical news [56].
Another growing popular knowledge source for developers is online video shar-
ing platforms, such as YouTube. A study by MacLeod et al. [31] found that
video is a useful medium for communicating knowledge between developers,
and that developers build their online personas and reputation by sharing
videos through social channels. Developers as content creators will also be
able to digest feedback from valuable comments given by their viewers. It will
help content creators to improve their future videos [42].

Extracting software-related knowledge from different platforms requires
varying levels of effort and skill. For example, on Stack Overflow, almost all
of the contents are related to software development. The content is also main-
tained to be of high quality by collective community effort and the site’s mod-
erators. But it is more challenging to extract useful information from tweets,
due to the information overload problem in Twitter’s space. Twitter is a pop-
ular social media channel with about 330 million users who produce about 500
million tweets daily [64]. Singer et al. found that Twitter is popular among
software developers also, who use it to keep up with the fast-paced development
landscape [56]. Around 70% of the respondents said that they use Twitter to
stay current about the latest technologies, practices, and tools, and also to
learn about things that they are not actively looking for. A number of them
also said that they use Twitter for community building especially around their
development projects. They also found that developers face challenges while
using Twitter, which relate to dealing with a huge amount of irrelevant tweets
produced on Twitter, as well as the challenge of maintaining a relevant net-
work. With a huge amount of content being produced by a large number of
users, developers face a hard time in finding tweets with information relevant
to software development. Twitter is a channel which is very noisy with infor-
mation and users from domains other than software engineering. This gives
rise to the problem of information overload for software developers who use
Twitter.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 3

In this paper, we propose SIEVE, an approach to utilize contents from a
rich software-development-specific platform to help automated knowledge ex-
traction tasks in other less software-development-specific platforms, based on
a transfer representation learning approach. We consider two platforms, Soft-
ware Engineering Stack Exchange and Stack Overflow, as the rich domain-
related platforms. We build word embeddings based on the dataset collected
from these platforms. We then leverage the word embeddings vectors to solve
information retrieval and classification problems in two different target plat-
forms. We experiment with two different use cases: finding tweets relevant
to software development on Twitter [52], and classifying useful comments for
software engineering video tutorials on YouTube [42]. We conducted experi-
ments based on the existing golden datasets provided by Sharma et al. [52]
for Twitter, and Poché et al. [42] for YouTube comments. Our experiments
show the effectiveness of our proposed cross-platform analysis approach which
achieves performance improvements of up to 23% and 10.3% for the first and
second use case respectively. Our contributions can be summarized as follows:

1. We propose an approach based on transfer representation learning and
word embeddings to solve information retrieval problems on how to use
data from domain-specific platforms to help tasks in other platforms.

2. We conduct experiments to show the effectiveness of the proposed approach
for two different tasks and platforms (i.e., Twitter and YouTube), and use
baselines described in existing work.

The next sections in this paper are structured as follows. In Section 2, we
describe background related to knowledge channels for software developers,
and background on representation learning and word embeddings. In Section 3,
we describe our approach on learning a knowledge representation from source
platforms. We present our first use case on finding software-related tweets in
Section 4. Next, we present the second use case on classifying informative com-
ments on YouTube in Section 5. Threats to validity are discussed in Section 6.
We describe related work in Section 7. Finally, we conclude and mention future
work in Section 8.

2 Background

In this section, we first discuss the knowledge sources used by developers which
we have considered in our current work. Next, we discuss some background on
transfer representation learning and word embeddings.

2.1 Knowledge Sources for Software Developers

Storey et al. found that software developers use many communication tools and
channels in their software development work [59,60]. In our current work we
focus on learning word embeddings from software-development-specific chan-
nels such as Software Engineering Stack Exchange and Stack Overflow (which

4 Agus Sulistya et al.

are popular software discussion forums), and use the learned embeddings to
improve the performance of information retrieval and classification tasks re-
lated to the extraction of software-development-related knowledge from open
domain channels such as Twitter (a microblogging site) and YouTube (video
sharing). In the subsequent paragraphs we give background on these channels.

Software Engineering Stack Exchange: Stack Exchange1 is a network of ques-
tion and answer (Q&A) websites, where each website focuses on a specific
topic. On any of the websites each of which is related to a particular do-
main, its users can ask questions related to that domain and other users can
provide answers to these questions. The motivation for users to answer ques-
tions comes from the points that they can gain when other users in the same
community upvote or accept their answers. These points help them to build
a reputation in the domain (and the related community), which the Stack
Exchange website is focused on. The Stack Exchange community has been
the focus of many studies such as [7,49]. In this work as we are interested
in improving the performance of information retrieval and classification tasks
related to software engineering, we focused on Stack Exchange communities
focused on software engineering and programming, which are Software En-
gineering Stack Exchange2 and Stack Overflow3 respectively. The difference
between these two sites is that Stack Overflow is focused only on specific pro-
gramming tasks and problems, whereas Software Engineering Stack Exchange
allows more general questions related to software development and engineering
such as discussions about various libraries, methodologies etc. The latter has
about 50,655 questions and 260,361 users. The intuition behind using Software
Engineering Stack Exchange is that models trained on the general nature of
content may achieve different performance on the task of filtering information
from open domain websites such as Twitter and YouTube.

Stack Overflow : Stack Overflow3 is a programming question and answer web-
site founded in 2008 with a focus on software development. It is an online
forum where anybody facing a programming issue can post a question de-
scribing the problem they face. The questions posted are public on the forum,
so any other user on the forum can post their solutions as answers to the
posted questions. The original asker can then mark an answer as accepted if it
solved the problem. Other users can also upvote an answer if they think it is
the right method to solve the programming challenge being addressed. Thus
Stack Overflow helps developers in getting answers to their problems with the
help of the crowd. It is one of the most used websites by software developers in
the world having more than 9,000,000 registered users, more than 16,000,000
questions and an Alexa Rank of 704. As Stack Overflow contains rich software
development and software engineering content, it has been immensely popular
among software engineering researchers in recent years, where it has been used

1 https://stackexchange.com/
2 https://softwareengineering.stackexchange.com/
3 https://stackoverflow.com/
4 https://en.wikipedia.org/wiki/Stack Overflow

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 5

to discover topics and trends [6], generate API call rules [3], explore knowledge
networks [77], build information filtering models [52] etc. More related work
is discussed in detail in Section 7.

Fig. 1 A Sample question-answer-thread on Stack Overflow with tags (Thread ID 626759)

Figure 1 shows a sample question-and-answer thread from Stack Overflow.
Each thread generally contains five types of information: title, tags, body,
answers, and comments. The title of a thread is a summary of the question
asked. The tags represent the metadata related to the question being asked

6 Agus Sulistya et al.

and are entered by the person who asked the question. Whenever somebody
asks a question on Stack Overflow, they receive a recommendation to attach
at least three tags to the question. The body part of the thread contains
the description of the question. Whenever a question is answered, the answer
appears in the answers section of the thread. Other developers can also ask
further clarifying questions or comment on the question or answers posted up
to that point.

Twitter and Software Engineering: Twitter is currently one of the most popular
microblogging sites in the world. On Twitter, a user can post short messages
(a.k.a. tweets) broadcasted to all other Twitter users who are following the
user. Twitter allows a user to follow another user, which means the latter
subscribes to all the tweets of the user he/she is following. Users also have
an option of reposting the tweets posted by others – an activity known as
retweeting. Twitter also allows users to mark favorite tweets, which conveys
their interest in the content of a tweet.

By virtue of its simple design and easy-to-use functionality, Twitter has be-
come a powerful medium for information sharing and dissemination. It started
as a social networking medium but has nowadays become one of the important
sources of information for people to keep up-to-date with the latest news and
information about their domains of interest, to share and promote knowledge,
and to keep in touch with their family and friends [26]. Twitter influences many
communities including the software engineering community as highlighted by
many prior studies [56,9,71,61]. Various techniques have been proposed re-
cently to mine software engineering relevant information from Twitter [52,54,
72,23].

YouTube and Software Engineering: YouTube is a website where anybody can
share videos [17]. It has over 1 billion users and generates billions of views
daily [79]. YouTube has also evolved into a knowledge sharing resource, where
people can share informational videos, follow other users and comment on
videos. Thus it provides people with resources to share information, learn new
knowledge, as well as get and provide feedback.

Software developers also use YouTube for sharing information as well as
learning [31,44]. MacLeod et al. found that developers share videos detail-
ing information they wished they had found earlier [31]. The videos mainly
relate to sharing knowledge about development experiences, implementation
approaches, design pattern application, etc. Other work focuses on extract-
ing relevant information for developers from YouTube, which is a challenging
task given the large size of videos. Tools to help developers find relevant con-
tent from software engineering videos have been proposed in [45,75]. Poché et
al. analyzed user comments related to software engineering videos posted on
YouTube [42] and proposed a technique for finding relevant comments.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 7

2.2 Transfer Representation Learning and Word Embeddings

Representation learning can be described as learning representations of data
that make it easier to extract useful information when building classifiers or
other predictors [8]. In the field of Natural Language Processing (NLP) ap-
plications, distributed word representations are one of the applications of rep-
resentation learning. Distributed word representations, i.e., word embeddings,
have been widely applied in various text mining and natural language process-
ing tasks.

Word embeddings represent words in a low dimensional continuous space,
to convey semantic and syntactic information [28]. One of the most popular
word embedding techniques is Word2Vec, which uses a shallow neural network
to reconstruct contexts of words. Mikolov et al. [32,33] proposed two word em-
bedding models Continuous Bag-of-Word (CBOW) and the skip-gram model
which have been widely adopted due to their effectiveness and efficiency. For
CBOW, a neural network is trained to predict a word based on its surround-
ing words. In this architecture, the continuous value vector for a word is the
vector that is input to the last layer in the network after we input its sur-
rounding words to the network. For skip-gram, a neural network is trained
to predict surrounding words based on the current word. In this architecture,
the continuous value vector for a word is the vector that is output by the
first layer in the network. It has been shown that the embedding vectors pro-
duced by these models preserve the syntactic and semantic relations between
words under simple linear operation. For example, the resultant vector of the
following arithmetic operation (vector of brother - vector of man + vector of
woman) is similar to the vector of sister. This is related to analogical reasoning
where brother is to sister as man is to woman, which is encoded in the vector
representation learned by Word2Vec.

In machine learning, many methods perform well under the common as-
sumption that the training and test data are drawn from the same feature
space and the same distribution. In many contexts, this assumption may not
hold. For example, we attempt to solve a classification problem in a domain
that does not have enough training data, but we have sufficient data in other
related domains. In this case, knowledge transfer or transfer learning would
be useful to solve the classification problem [38]. In the context of represen-
tation learning, transfer representation-learning is where rich representations
are learnt in a source platform with the aim of transferring them to different
target platforms [1].

3 Representation Learning from Sofware-Development-Specific
Platforms

Our work is related to transfer representation-learning, where rich represen-
tations are learnt from a software-development-specific platform, and lever-
aged in a different target platform. To represent knowledge in the source plat-

8 Agus Sulistya et al.

form, we build a word embedding model that represents each word as a low-
dimensional vector such that words that are similar in meaning are associated
with similar vectors. Word embedding models have successfully been applied
in various natural language processing (NLP) tasks, such as in [78,74,16].

A recent finding by Mou et al. [35] shows that the transferability of neural
NLP models depends largely on the semantic relatedness of the source and
target tasks. Therefore, since our target tasks are related to the extraction of
knowledge relevant to software development, we need to define a source plat-
form that contains rich software engineering content. In this work, we choose
two source platforms (Software Engineering Stack Exchange and Stack Over-
flow), and compare the performance of models built from the two platforms.

Our approach consists of two stages: representation learning from a source
platform, and model building for a target platform. In the first stage, we
learn a word embedding representation from a software-development-specific
platform. In the second stage, we leverage the word embedding model built
from the platform to resolve tasks in the target platform. Figure 2 shows the
overall architecture of our proposed framework.

Fig. 2 Overall approach

We describe each stage of our proposed approach as follows:

Stage 1: Representation Learning from Source Platform

While most research done on Q&A sites is based on Stack Overflow
data (e.g. [52,80]), we believe that Software Engineering Stack Exchange
(StackExchange-SE) is also a good source for software engineering related
terms. Therefore, we use text data extracted from the two sites, and build two
different models: SIEVE SO which is based on Stack Overflow and SIEVE SE

which is based on Stack Exchange data.

The StackExchange-SE dataset is publicly available on the Stack Exchange
data dump site.5 We use the following two files: Posts.7z and Comments.7z.
Posts.7z contains the title and body of posts (i.e., questions and answers)

5 http://archive.org/download/stackexchange

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 9

that appear on Stack Exchange. Comments.7z contains comments that users
give to the questions and answers on Stack Exchange. Our Stack Exchange
dataset contains a total of 149,478 posts, 409,740 comments, and 46,246 titles
generated in a time period spanning from September 2010 to August 2017. We
combined all of the posts, comments and titles for learning word embeddings
from this dataset.

We used the Stack Overflow data dump provided by previous work by
Sharma et al. [52]. The data was also taken from the data dump site.5 They
extracted the questions and answers from the Posts.7z file, and user’s com-
ments from Comments.7z. These files contain content posted on Stack Over-
flow from September 2008 to September 2014. There are a total of 7,990,787
titles, 21,736,594 posts (questions and answers), and 32,506,636 comments.
Since there are too many posts and comments to efficiently process the data,
to reduce the time it takes to learn a model, they randomly selected 8 million
posts and comments from the data dump. We use this randomly selected data
and combine all of the posts, comments and titles.

Before we build the word embeddings model, we performed the following
text preprocessing for both datasets:

1. Parse the posts into sentences, since we want to train word embeddings at
sentence-level. We use NLTK's punkt tokenizer6 for sentence splitting.

2. Remove all HTML tags since they do not contain useful information for
word embeddings.

3. Remove all special characters (e.g., symbols, punctuations, etc.) and words
that contain only numbers.

4. Change all words to their lower case.

We chose the continuous skip-gram Word2Vec model proposed by Mikolov
et al. [32] We use the Word2Vec implementation in Gensim7. We set the pa-
rameters according to Mikolov et al. [32]: context windows size to 5, dimension
to 300, batch size to 50, negative sampling to 10, minimum word frequency to
5 and iterations to 5. The output of the model is a dictionary of words, each
of which is associated with a vector representation. Table 1 includes statistics
on the generated word embeddings learned from the datasets.

Table 1 Statistics of datasets and word embeddings extracted from Stack Overflow
(SIEVE SO) and StackExchange-SE (SIEVE SE)

StackExchange-SE Stack Overflow

Number of Posts+Comments 605,464 8,000,000
Number of Sentences (after preprocessing) 1,884,959 5,007,411
Size of Vocabulary in word vector 232,953 275,103

Stage 2: Model Building for Target Platform

6 http://www.nltk.org
7 https://pypi.org/project/gensim/

10 Agus Sulistya et al.

Our goal is to leverage knowledge extracted from software-development-
specific platforms and apply it to open-domain platforms. In order to examine
the learned word embeddings representation in stage 1, we utilize the word
embeddings in two different use cases. In the first use case, we aim to resolve
the task of finding tweets related to software engineering. In the second use
case, we leverage the word embeddings to classify user comments on YouTube
coding tutorial videos. We discuss each of the use cases further in the next
sections.

4 Finding Relevant Tweets Using Word Embeddings

In this section, we show how our approach can be used for the task of finding
tweets related to software engineering. Researchers have found that developers
use Twitter to support their professional activities by sharing and discover-
ing various information from microblogs, e.g., new features of a library, new
methodologies to develop a software system, opinions about a new technol-
ogy or tools, etc. [52] However, due to various topics posted on Twitter, it
becomes a challenge to find interesting software-related information on Twit-
ter. To overcome this problem, Sharma et al. [52] proposed a language-model
based approach and used the model to rank tweets based on their relevance
to software engineering. We will use the proposed model as a baseline, along
with other baselines. We aim to answer the following research question:

RQ1. How effective is our approach at the task of finding software
related tweets?

4.1 Approach

Figure 3 shows an instance of our proposed approach for the task of finding
software development-related tweets, by utilizing word embeddings trained
from a source platform. In general, we formulate the task of finding software-
related tweets as a ranking problem, i.e., ranking the tweets in the order of
their similarity scores with selected sentences from the source platforms. We
follow these steps:

Step 1: Instance Selection
In our approach, selecting instances (i.e., sentences) from the source plat-

form is an important task, since we will use these selected sentences to rank the
tweets based on a similarity measure. Sentences extracted from the source plat-
form (StackExchange-SE/Stack Overflow) are considered as software-related.
However, some of the sentences may have different characteristics with Twitter.
Therefore, we use the following heuristic methods to select suitable sentences
from a source platform:

1. We select sentences that have a length of no more than 140 characters
which corresponds to a tweet’s maximum length.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 11

Fig. 3 Our approach for finding software-related tweets

2. Among these selected sentences, we randomly sample sentences. By default,
we sample 1000 sentences. We believe that this sampled set should be
enough to represent sentences that contain software-related terms.

Step 2: Preprocess Tweets

We use the Twitter dataset provided by Sharma et al. [52]. The tweets are
preprocessed by removing punctuation marks and URLs, and all words are
changed into lowercase.

Step 3: Calculate Similarity

To measure similarity between tweets and selected sentences taken from
the source platforms, we need to implement the same representation for both
texts. Because sentences (or tweets) have different lengths, we need to use
a fixed-length vector to represent them. To build the vector representation,
we leverage the word embeddings learned from a source platform. The model
consists of word vectors that have a dimension of 300 as mentioned in Section 3.
We follow these steps:

1. For each sentence or tweet in the dataset, we tokenize it into words.
2. For each word, we look up its weight from the word embeddings model.

If a word does not exist in the model, we can either ignore that word,
use a vector whose values are all 0 to represent it, or use the average of
the embeddings from words having the lowest frequency in the model. By
default, we ignore the word that not exist in the model. The result is a 300-
dimension vector of real values taken from the word embeddings model.

3. We represent the sentence into a fixed-length vector. There are different
ways to obtain text representation from word embeddings. The most com-
mon methods use the maximum, minimum, or average of the embeddings
of all words (or just the important words) in a sentence [57]. In this case,
we take the average of the word embeddings of all words within the text,

12 Agus Sulistya et al.

following [25]. At the end, we have a word vector of real values with di-
mension of 300 for each tweet or sentence.

For each tweet, we calculate similarity between the vector representations
of tweets and the vector representations of each of selected sentences in the
source platform. We then rank the tweets based on their similarity scores. The
higher the scores, the more likely the tweet contains software-related contents.
To calculate similarity between two word vectors, we use cosine similarity.
Cosine similarity is a measure of similarity between two vectors (in this case,
vector of text representation) that measures the cosine of the angle between
them. Given a tweet T and a selected sentence S, that are represented by
two word vectors wvtweet and wvso, we define their semantic similarity as the
cosine similarity between their word vectors:

similarity(T, S) =
wvTtweet.wvso
||wvtweet||||wvso||

4.2 Dataset and Baselines

Dataset. For the Twitter dataset, we use the same dataset used by Sharma et
al. [52]. The dataset consists of around 6.2 million tweets downloaded through
the Twitter REST API. To collect tweets, they first obtained a set of mi-
crobloggers that are likely to generate software-related contents. They started
with a collection of 100 seed microbloggers who are well-known software de-
velopers. Next, they analyzed the follow links of these microbloggers to iden-
tify other Twitter accounts that follow or are followed by at least 5 seed
microbloggers. After they had identified the target microbloggers, they down-
loaded tweets that were generated by these individuals. They then performed
preprocessing on the collected tweets such as removing punctuation marks and
URLs, and changed all words into lowercase.

Baselines. We used several baselines to show the effectiveness of our ap-
proach. First, we compared our proposed approach against NIRMAL [52], since
we used the same dataset as their work. Next, since our models are trained
on software-development-specific platforms, we compared the models with a
within-platform model trained from the target platform (Twitter). To show
the effectiveness of the Word2Vec-based models that we use, we compared the
models with a model that uses Term Frequency− Inverse Document Frequency
(td-idf) vectors generated from a source plarform. Tf-idf technique has been
widely used in other software-engineering-related information retrieval tasks
such as in [19,37]. We briefly describe the baselines as follows:

1. NIRMAL by Sharma et al. We used this approach as the main baseline,
since the approach is the state-of-the-art in the task of ranking software-
related tweets. This approach builds an N-gram language model by us-
ing SRILM [58], a language modeling toolkit. NIRMAL learns a language

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 13

model from Stack Overflow data. NIRMAL then uses the learned model
to compute the perplexity score of each tweet. The lower the perplexity
score, the more likely the tweet is software related. NIRMAL then ranks
the tweets in ascending order of their perplexity scores and returns a ranked
list.

2. Term Frequency − Inverse Document Frequency (tf-idf). In this
approach, instead of using vectors generated by word embeddings, we used
td-idf vectors generated from a source plarform. We built two variants of
tf-idf vectors: one from Stack Overflow posts, and one from Stack Exchange
posts. Term frequency (tf) is the number of times a word occurs in a given
sentence, accompanied with a measure of the term scarcity across all the
sentences, known as inverse document frequency (idf). Before constructing
the vectors, we performed stemming using Porter Stemmer [48] and re-
moved English stopwords. To remove stopwords, we used stopwords listed
in the Python NLTK library8.

3. Word2Vec trained on Twitter. We consider this approach as a within-
platform baseline, since we leverage knowledge extracted from Twitter itself
as the target platform. We trained a skip-gram word embeddings model
using the set of parameters advised by Mikolov et al. [32]: context windows
size of 5, dimensions of 300, batch size of 50, negative sampling to 10, min-
imum word frequency of 5 and iterations of 5 - the same set of parameters
that are used by our proposed approach.

4.3 Experiments and Results

Experiments Setting. We conducted experiments to answer RQ1 and eval-
uated the effectiveness of our approach as compared to the baselines. After
following the steps in our proposed approach, we ranked the tweets based
on similarity scores between the tweets and selected instances taken from
a source platform. We investigated three different word embeddings models
trained from Stack Overflow, StackExchange-SE and Twitter, and one non-
word embeddings model (tf-idf).

As an evaluation metric, we used accuracy@K, which is defined as the pro-
portion of tweets in the top-K positions that are software-related. We manually
evaluated the top-K tweets ranked by their similarity scores. We asked two la-
belers who have master’s degrees in Computer Science to manually label the
tweets, either as ”relevant” or ”not relevant” to software engineering. For our
final ground truth, we labeled a particular tweet as ”relevant” only if both la-
belers agreed that the tweet is software-development-related. We used Cohen’s
Kappa to measure inter-rater reliability for the labeling task. We obtained a
Kappa value of 0.78 for labeling SIEVE SE and a Kappa value of 0.68 for la-
beling SIEVE SO – following Landis and Koch’s interpretation [27], this value
indicates substantial agreement.

8 https://www.nltk.org/

14 Agus Sulistya et al.

Results. The results of our experiments are shown in Table 2 and Figure 4.
Overall, the word embeddings model trained on Stack Exchange performed
best, except for accuracy@10, where the tf-idf based approach performed best.
Word embeddings models trained on platforms that contain rich software-
development-related knowledge (Stack Exchange and Stack Overflow) per-
formed better as compared to the baselines.

Table 2 Accuracy@K results of different approaches in our experiments (best results are
in bold).

Approach acc@10 acc@50 acc@100 acc@150 acc@200

Nirmal 0.900 0.820 0.720 0.707 0.695
TF-IDF (Stack Overflow) 1.000 0.540 0.730 0.693 0.575
TF-IDF (Stack Exchange) 1.000 0.560 0.400 0.347 0.310
Word2Vec (Twitter) 0.400 0.220 0.260 0.260 0.235
SIEVE SO 0.900 0.880 0.870 0.847 0.800
SIEVE SE 0.900 0.980 0.970 0.940 0.925

Fig. 4 Comparison of Accuracy@K achieved by different approaches

Based on our experiments, the performance of Word2Vec trained on Twit-
ter was lower than the other Word2Vec models. The low scores achieved by
the Word2Vec model trained on Twitter data can be attributed to the content
of tweets that are mostly not related to software development.

While the tf-idf-based approach performed best when ranking the top-10
most relevant tweets, the performance degrades significantly when ranking
top 50, and fluctuates when ranking the top 100, 150 and 200 tweets. Figure 5

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 15

shows a box-plot diagram, describing the word count of the top 200 tweets
returned by various approaches. We found that, in the top-200 tweets ranked
by the tf-idf approach, the tweets mostly contain word stem ”use”, such as
”What is the use of c”, ”Java MySQL Insert Record using Jquery”, ”@shayman
I used to work there”. On the other hand, the top 200 tweets returned by
SIEVE SE contain more diverse vocabulary and tend to be lengthy, such as
”I still very much admire all the work put into TinyMCE Building a RTE
is one of the most gruesome things you can do in a browser,” ”@Youdaman
yes angular is very minimal in the amount of code and glue you need to do
specially if you use a RESTful service”. This finding highlights the benefit of
leveraging word embedding models to learn feature representation from a rich
software-related platform.

Fig. 5 A box plot diagram representing word count of tweets returned by various approaches

RQ1: Two variants of SIEVE (SIEVE SE and SIEVE SO) are able to find
software-related tweets with accuracy of 0.800 - 0.980.

5 Finding Informative Comments on YouTube Using Word
Embeddings

The objective of this task is to analyze user comments for YouTube coding
tutorial videos. Important users’ questions and concerns can then be auto-
matically classified in order to help content creators to better understand the

16 Agus Sulistya et al.

needs and concerns of their viewers, as described in work by Poché et al. [42]
They categorized the comments into two general categories: informative vs.
non-informative (which corresponds to other miscellaneous comments). We
aim to answer the following research question:

RQ2. How effective is our approach at the task of finding informative
comments on YouTube?

5.1 Approach

Figure 6 shows our proposed approach for the task of finding informative com-
ments on YouTube, by utilizing word embeddings models trained on the source
platforms (StackExchange-SE and Stack Overflow). We formulate this task as
a binary classification problem, where a comment can be either informative or
non-informative with regards to the video content. In order to build a classifier
for this task, we need to represent the YouTube comments into a feature rep-
resentation. We leverage the word embeddings learned from a source platform.
The model consists of word vectors that have 300 dimensions as mentioned
in Section 3. We build vectors to represent the comments, by following these
steps:

Fig. 6 Approach for finding relevant comments on YouTube

1. For each comment, we tokenize it into words, remove words that contain
only numbers, and change all words into lowercase.

2. Next, for each word in the comment, we look up its vector value taken from
the word embeddings model. We ignore a word if it does not exist in the
word embeddings model. We take the average of the word embeddings of
all words within the text, following [25]. At the end, we have a word vector
of real values with dimension of 300 for each comment.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 17

5.2 Dataset and Baselines

Dataset. We used the dataset provided by Poché et al.9 The dataset con-
sists of 6,000 YouTube comments sampled from 12 different coding tutorial
videos. The data was collected on Sep 6, 2016. They collected a total of 41,773
comments from all videos. They used YouTube Data API310 to retrieve the
comments. This API extracts comments and their metadata, including the
author's name, the number of likes, and the number of replies. Finally, 500
comments were sampled from the videos. Based on a manual classification
process, around 30% of the comments were found to be informative, meaning
that the majority of comments are basically not related to the content.

Baselines. Since we used the same dataset and experiment setting as Poché et
al.’s work, we used their approach as the first baseline. To show the effective-
ness of our models that are trained on software-development-specific platforms,
we compared the models with a within-platform model trained from YouTube
comments, and another cross-platform pretrained model that was learned from
more general contents. We briefly describe the baselines as follows:

1. Normalized Term-Frequency (as proposed by Poché et al. [42]).
In order to automatically identify content-relevant comments, Poché et al.
investigate the performance of two classification algorithms: Naive Bayes
(NB) and Support Vector Machines (SVM). They performed text prepro-
cessing on the dataset, by stemming and removing stopwords. They also
remove words that appear in one comment only since they are highly un-
likely to carry any generalizable information. As feature representation,
they use normalized term frequency (tf) of words in their documents. They
found that their SVM classifier performs better than Naive Bayes. They
also experimented with different combinations of data preprocessing such
as stemming and removing stop-words, and found that the best result was
achieved without stemming and stop-word removal.

2. Word2Vec trained from YouTube Comments. We consider this base-
line as a within-platform baseline, since we leverage knowledge extracted
from the target platform itself (i.e., YouTube comments). We built a skip-
gram word embeddings model from this dataset with the same set of pa-
rameters used by our proposed approach.

3. Pretrained Word2Vec on GoogleNews. We used a pretrained word
embedding model on GoogleNews11 which is an alternative cross-platform
pretrained model as another baseline. The model contains 300-dimensional
vectors for 3 million words and phrases, which was trained on part of
Google News dataset (about 100 billion words).

9 http://seel.cse.lsu.edu/data/icpc17.zip
10 https://developers.google.com/youtube/v3/
11 https://code.google.com/archive/p/word2vec/

18 Agus Sulistya et al.

5.3 Experiments and Results

Experiments Settings. We conducted experiments to answer RQ2 and eval-
uated the effectiveness of our approach as compared to the baselines. We used
Support Vector Machines (SVM) as the classification algorithm, since this algo-
rithm performs better in Poché et al.’s work [42]. To enable a fair comparison,
we used the same implementation of SVM (inside Weka12) for classification.
For the kernel function, in Poché et al’s work, the best results were obtained
using the universal kernel. Therefore, we also used the universal kernel in
our experiment. To validate the result, we used 10-fold cross validation. With
this technique, the dataset was first partitioned randomly into 10 partitions
of equal size. Afterwards, one of the partitions was selected as validation set
while the remaining partitions are used for training. The process was repeated
10 times with a different partition being selected as validation set, ensuring
that the entire dataset was used for both training and validation, and each
entry in the dataset was used for validation exactly once.

To measure the effectiveness of our approach, we used the same metrics as
Poché et al.’s study (i.e., Precision, Recall and F-measure). F-measure is the
harmonic mean of precision and recall, and it is used as a summary measure
to evaluate if an increase in precision (recall) outweighs a reduction in recall
(precision). These metrics are calculated based on four possible outcomes of
each comment in an evaluation set: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). TP corresponds to the case
when a comment is correctly classified as an informative comment; FP cor-
responds to the case when a non-informative comment is wrongly classified
as an informative comment; FN is when a comment is wrongly classified as a
non-informative comment; TN is when a non-informative comment is correctly
classfied as such. The formulas to compute precision, recall, and F-measure are
shown below:

Precision =
#TP

#TP + #FP

Recall =
#TP

#TP + #FN

FMeasure = 2× Precision×Recall

Precision + Recall

Results. The results of our approach as compared to the baselines are shown
in Table 3 and Figure 7. The results showed that the best performance (in
terms of precision, recall, and F-measure) was achieved by using word embed-
dings model trained on StackExchange-SE data.

The results also showed that by using word embeddings as feature repre-
sentation, the performance of the classifiers can be improved by up to 10.3%

12 https://www.cs.waikato.ac.nz/ml/weka/

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 19

Table 3 Performance of different approaches for classifying informative comments.

Approach Precision Recall F-Measure

NTF (Poché et al.) 0.790 0.750 0.770
Word2Vec (GoogleNews) 0.859 0.861 0.859
Word2Vec (YouTube Comments) 0.829 0.833 0.830
SIEVE SO 0.868 0.870 0.869
SIEVE SE 0.872 0.874 0.873

in terms of F-measure, as compared to the normalized-tf based approach pro-
posed by Poché et al. Among the four word embeddings models used in our
experiment, models trained on Stack Exchange and Stack Overflow performed
best. This finding justifies the importance of choosing a source platform that
is more relevant to a target task. Even though the corpus’ size is less as com-
pared to GoogleNews data, Stack Exchange and Stack Overflow data contains
more software-development-specific contents than GoogleNews, and this ex-
plains the improved performance.

Fig. 7 Comparison of Precision, Recall and F-measure achieved by different approaches

RQ2: Two variants of SIEVE (SIEVE SE and SIEVE SO) performed bet-
ter than various baselines with F-measure score of 0.874 and 0.869
respectively

20 Agus Sulistya et al.

6 Threats to Validity

We present the potential threats to the validity of our findings. The threats
include threats to internal, external, and construct validity.

Threats to internal validity. These threats are related to potential errors
that may have occurred when performing the experiments and labelling. In-
ternal threats might stem from the tools we used in our analysis. We used
Gensim13, a popular Python module for machine learning to build word em-
beddings that has also been used in many previous studies related to word
embeddings. For machine learning and classification tools, we used Weka14

which has been extensively used in the literature and has been shown to gen-
erate robust results for various applications. Potential errors might also occur
when labelling our dataset. To label tweets as software related or not, we asked
two labelers with experience in programming, and with degrees in Computer
Science. We believe the labelers have enough expertise to judge if a tweet is
software-related or not.

Threats to external validity. These threats refers to the generalizability
of our results. To mitigate these threats, we have considered two source do-
mains (Software Engineering Stack Exchange and Stack Overflow), two target
domains (Twitter and YouTube), two tasks (relevant tweet identification and
informative comment classification), and two settings (ranking and classifica-
tion).

Threats to construct validity. These threats are related to the suitability
of the evaluation metrics that we use for analyzing the result. We use the
same evaluation metrics used to evaluate previous studies [52,42] to enable fair
comparisons (i.e., Accuracy@k, Precision, Recall and F-measure). Therefore,
we believe that the threat to construct validity is minimal.

7 Related Work

In this section, we describe work related to our study.

7.1 Developer Information Channels

In the past few years, there has been a substantial amount of work which has
analyzed tools or channels used by software developers. Storey et al. found
that software developers use many communication tools and channels in their
software development work [59,60]. They found that a lot of knowledge is em-
bedded in these tools and channels which also encourages a participatory cul-
ture in software development. Their work also highlights the challenges faced

13 https://pypi.org/project/gensim/
14 https://www.cs.waikato.ac.nz/ml/weka

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 21

by developers while using these channels. In the paragraphs below, we discuss
work related to channels such as Software Engineering Stack Exchange and
Stack Overflow (software question-and-answer sites), Twitter, and Youtube,
as these are the domains we have considered in this work.

Stack Overflow has received much attention in recent years in the software
engineering research community. Barua et al. analyzed in detail the topics
and trends among discussions on Stack Overflow by applying Latent Dirichlet
Allocation (LDA) [6]. They found that the topics which interest developers
range from jobs to version control systems to C# syntax etc. Their analysis
showed that web development, mobile applications, Git, and MySQL were the
topics that were gaining the most popularity over time. Vasilescu et al. ex-
plore how the developer’s use of Stack Overflow and GitHub relates to each
other [68]. Many empirical studies have focused on understanding and mod-
eling questions and/or answers on Stack Overflow. Asaduzzaman et al. found
that some questions go unanswered on Stack Overflow as the questions may
be short, unclear, too hard, etc. [2]. Rahman et al. developed a prediction
model based on behavior, topics, and popularity of a question to determine
unresolved questions [51]. Ponzanelli et al. have performed studies to analyze
the quality of questions on Stack Overflow [46] and also proposed an approach
to detect low-quality questions [47]. Treude et al. did an analysis of how pro-
grammers ask and answer questions on Stack Overflow [63]. How the crowd
generates valuable documentation on Stack Overflow and ways of measuring
it have been discussed in [40,39]. A lot of tools have also been proposed which
can help developers in their usage of Stack Overflow. Many techniques have
been proposed for solving the problem of tag prediction for questions on Stack
Overflow [70,81,10]. Seahawk, an Eclipse plugin was proposed to integrate
Stack Overflow knowledge within the IDE [43,4]. Identification of opinionated
sentences from Stack Overflow data and subsequent aspect identification have
been proposed recently by Uddin et al. [65,66].

Stack Exchange was first explored from a software engineering perspective
by Begel et al. [7]. This work explored what kinds of service were provided
by Stack Exchange, what challenges they face, and how people benefit from
the service. Possnet et al. did an empirical analysis of user expertise on Stack
Exchange websites and found that the expertise of users does not increase
with time spent in the community; experts join the community as experts,
and provide good answers from the beginning [49]. Vasilescu et al. analyzed
how social Q&A sites such as Stack Exchange affect the knowledge sharing
practices in open source communities [69].

Twitter also has been explored in recent years by the software engineering
research community. Singer et al. did a survey involving 271 developers from
GitHub and found that Twitter is used by developers to keep themselves up-
to-date with the latest happenings in software development [56]. Bougie et al.
did an exploratory study on understanding how Twitter is used in software
engineering [9]. Wang et al. studied the usage of Twitter in Drupal open source
development [71]. Tian et al. found that Twitter is also used by software de-
velopers for coordination of efforts, sharing of knowledge, etc. [62,61]. Sharma

22 Agus Sulistya et al.

et al. have explored the categories of software engineering related tweets and
events on Twitter [53]. Methods to filter software-relevant tweets and links
have been proposed in Prasetyo et al. [50] and Sharma et al. [52,54]. Sharma
et al. also proposed an approach to find software experts on Twitter [55].
Guzman et al. analyzed tweets on Twitter which talked about software appli-
cations and companies, and demonstrated that machine learning techniques
have the capacity to identify valuable information for companies and develop-
ers of software applications [21,22]. They also proposed a technique to mine
tweets for software requirements and evolution [23]. There has been other work
also on mining Twitter feeds for software user requirements such as by William
et al. [72]. Mezouar et al. found that tweets generated by users can help in
early detection of bugs in software applications, and can help developers know
about a bug which may be affecting a large user base [20].

Software development videos on YouTube in recent years have been stud-
ied as a repository from which software-related knowledge can be extracted.
MacLeod et al. studied the developer’s usage of videos (on YouTube) to doc-
ument software knowledge [31,30]. They found that the main motivation for
sharing videos by developers are building an online identity, to give back to
community, to promote themselves, etc. Ponzanelli et al. proposed an approach
to extract relevant fragments from software development video tutorials [45,
44]. Their approach splits the video tutorials into coherent fragments, which
are then classified into relevant categories. These fragments are then available
individually for developers to query, rather than being forced to browse the
whole video. Poche et al. proposed an approach to identify relevant user com-
ments on coding video tutorials on YouTube [42]. Parra et al. had proposed
a text-mining-based approach to recommend tags for software development
videos on YouTube [41]. Recently there has been work on extracting code
and/or code related features also from programming tutorial videos extracted
from YouTube by Yadid et al. [75] and Ott et al. [36].

7.2 Leveraging Word Embeddings

Harris et al. had hypothesized that words tend to have similar meaning in
similar contexts [24]. Mikolov et al. proposed two neural-network-based lan-
guage models to represent words as a low dimensional vector [32,33]. These
vectors are commonly known as word embeddings. These models have shown
considerable success in many NLP tasks [18,34,5]. Word embeddings has been
used in software engineering for improving information retrieval tasks [78,74,
16]. Chen et al. have used word embeddings based methods to mine analogical
libraries [12], assist collaborative editing [14], recommend tag synonyms [15]
and recommend similar libraries [13]. In [76], word embeddings was combined
with information retrieval to recommend similar bug reports. Methods simi-
lar to or based on word embeddings have also been used recently for better
code retrieval [67], to find common software weaknesses [82], API recommenda-
tion [80] and sentiment analysis for software engineering [11]. Our work comple-

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 23

ments the existing work as we build a cross-platform approach that leverages
word embeddings to aid software-development-specific knowledge extraction
tasks. Additionally, we demonstrate the value of leveraging word embeddings
built from a platform that contains rich software-development-relevant content
to solve tasks in another platform.

8 Conclusion and Future Work

We proposed an approach to exploit knowledge from rich software-
development-specific platforms, to automate knowledge seeking tasks in other
less software-development-specific platforms. We first built word embeddings
from text extracted from Stack Overflow and Sofware Engineering Stack Ex-
change, to represent software-development-related knowledge sources. We then
leveraged the word embeddings to solve tasks in two different target platforms.
In the first use case, we leveraged the word embeddings and sampled sentences
from source platforms, to find software-related tweets. In the second use case,
we used the word embeddings to classify informative comments on YouTube
video tutorials. Based on our experiments conducted in both use cases, our
approach improves performance of existing state-of-the-art work for software-
development-specific knowledge extraction tasks in the target platforms.

In the future, we intend to perform additional experiments to evaluate
the effectiveness of the approach for additional tasks. Finally, we also plan to
expand the work to other platforms and knowledge sources, such as Wikipedia
articles, software development blogs, README files on GitHub, and software
documentation.

References

1. Jerone TA Andrews, Thomas Tanay, Edward J Morton, and Lewis D Griffin. Transfer
representation-learning for anomaly detection. ICML, 2016.

2. Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K Roy, and Kevin A
Schneider. Answering questions about unanswered questions of stack overflow. In
Proceedings of the 10th Working Conference on Mining Software Repositories, pages
97–100. IEEE Press, 2013.

3. Shams Azad, Peter C Rigby, and Latifa Guerrouj. Generating api call rules from version
history and stack overflow posts. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2017.

4. Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. Harnessing stack overflow for the
ide. In Proceedings of the Third International Workshop on Recommendation Systems
for Software Engineering, pages 26–30. IEEE Press, 2012.

5. Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a sys-
tematic comparison of context-counting vs. context-predicting semantic vectors. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 238–247, 2014.

6. Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical Software Engineer-
ing, 2014.

7. Andrew Begel, Jan Bosch, and Margaret-Anne Storey. Social networking meets software
development: Perspectives from github, msdn, stack exchange, and topcoder. IEEE
Software, 2013.

24 Agus Sulistya et al.

8. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013.

9. Gargi Bougie, Jamie Starke, Margaret-Anne Storey, and Daniel M German. Towards
understanding twitter use in software engineering: preliminary findings, ongoing chal-
lenges and future questions. In Proceedings of the 2nd international workshop on Web
2.0 for software engineering, pages 31–36, 2011.

10. Xuyang Cai, Jiangang Zhu, Beijun Shen, and Yuting Chen. Greta: Graph-based tag
assignment for github repositories. In Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 1, pages 63–72. IEEE, 2016.

11. Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. Sentiment
polarity detection for software development. Empirical Software Engineering, pages
1–31, 2017.

12. Chunyang Chen, Sa Gao, and Zhenchang Xing. Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge into word embedding.
In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd Inter-
national Conference on, volume 1, pages 338–348. IEEE, 2016.

13. Chunyang Chen and Zhenchang Xing. Similartech: automatically recommend analogical
libraries across different programming languages. In Automated Software Engineering
(ASE), 2016 31st IEEE/ACM International Conference on, pages 834–839. IEEE, 2016.

14. Chunyang Chen, Zhenchang Xing, and Yang Liu. By the community & for the com-
munity: A deep learning approach to assist collaborative editing in q&a sites. In Pro-
ceedings of the 21st ACM Conference on Computer-Supported Cooperative Work and
Social Computing, pages 32:1–32:21. ACM, 2018.

15. Chunyang Chen, Zhenchang Xing, and Ximing Wang. Unsupervised software-specific
morphological forms inference from informal discussions. In Proceedings of the 39th
International Conference on Software Engineering, pages 450–461. IEEE Press, 2017.

16. Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. Learning a dual-
language vector space for domain-specific cross-lingual question retrieval. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering,
pages 744–755. ACM, 2016.

17. Ronald J Chenail. Youtube as a qualitative research asset: Reviewing user generated
videos as learning resources. The Qualitative Report, 13(3):18–24, 2008.

18. Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011.

19. Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, and
Sebastiano Panichella. Labeling source code with information retrieval methods: an
empirical study. Empirical Software Engineering, 19(5):1383–1420, 2014.

20. Mariam El Mezouar, Feng Zhang, and Ying Zou. Are tweets useful in the bug fixing
process? an empirical study on firefox and chrome. Empirical Software Engineering,
23(3):1704–1742, 2018.

21. Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack: What do
twitter users say about software? In Requirements Engineering Conference (RE), 2016
IEEE 24th International, pages 96–105. IEEE, 2016.

22. Emitza Guzman, Rana Alkadhi, and Norbert Seyff. An exploratory study of twitter
messages about software applications. Requirements Engineering, 22(3):387–412, 2017.

23. Emitza Guzman, Mohamed Ibrahim, and Martin Glinz. A little bird told me: min-
ing tweets for requirements and software evolution. In 2017 IEEE 25th International
Requirements Engineering Conference (RE), pages 11–20. IEEE, 2017.

24. Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
25. Tom Kenter and Maarten De Rijke. Short text similarity with word embeddings. In

Proceedings of the 24th ACM international on conference on information and knowledge
management, pages 1411–1420. ACM, 2015.

26. Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,
pages 591–600, 2010.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 25

27. J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

28. Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen. Word
embedding revisited: a new representation learning and explicit matrix factorization per-
spective. In Proceedings of the 24th International Conference on Artificial Intelligence,
pages 3650–3656. AAAI Press, 2015.

29. Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the compre-
hension of program comprehension. ACM Transactions on Software Engineering and
Methodology (TOSEM), 23(4):31, 2014.

30. Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. Documenting and sharing
software knowledge using screencasts. volume 22, pages 1478–1507. Springer, 2017.

31. Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. Code, camera, action:
how software developers document and share program knowledge using youtube. In Pro-
ceedings of the 2015 IEEE 23rd International Conference on Program Comprehension,
pages 104–114. IEEE Press, 2015.

32. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

33. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

34. Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continu-
ous space word representations. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 746–751, 2013.

35. Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How transferable
are neural networks in nlp applications? In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 479–489, 2016.

36. Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cristiano
Firmani, and Erik Linstead. Learning lexical features of programming languages from
imagery using convolutional neural networks. In Proceedings of the 26th Conference on
Program Comprehension, ICPC ’18, pages 336–339, New York, NY, USA, 2018. ACM.

37. Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy Zaid-
man. A textual-based technique for smell detection. In Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on, pages 1–10. IEEE, 2016.

38. Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359, 2010.

39. Chris Parnin and Christoph Treude. Measuring api documentation on the web. In
Proceedings of the 2nd international workshop on Web 2.0 for software engineering,
pages 25–30. ACM, 2011.

40. Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd
documentation: Exploring the coverage and the dynamics of api discussions on stack
overflow. Georgia Institute of Technology, Tech. Rep, 2012.

41. Esteban Parra, Javier Escobar-Avila, and Sonia Haiduc. Automatic tag recommenda-
tion for software development video tutorials. In Proceedings of the 26th Conference on
Program Comprehension, pages 222–232. ACM, 2018.

42. Elizabeth Poché, Nishant Jha, Grant Williams, Jazmine Staten, Miles Vesper, and Anas
Mahmoud. Analyzing user comments on youtube coding tutorial videos. In Proceedings
of the 25th International Conference on Program Comprehension, pages 196–206. IEEE
Press, 2017.

43. Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack overflow in
the ide. In Proceedings of the 2013 International Conference on Software Engineering,
pages 1295–1298. IEEE Press, 2013.

44. Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco Oliveto,
Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. Too long; didn’t watch!:
extracting relevant fragments from software development video tutorials. In Proceedings
of the 38th International Conference on Software Engineering, pages 261–272. ACM,
2016.

26 Agus Sulistya et al.

45. Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco Oliveto,
Barbara Russo, Sonia Haiduc, and Michele Lanza. Codetube: extracting relevant frag-
ments from software development video tutorials. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, pages 645–648. ACM, 2016.

46. Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, and Michele Lanza. Understanding
and classifying the quality of technical forum questions. In Quality Software (QSIC),
2014 14th International Conference on, pages 343–352. IEEE, 2014.

47. Luca Ponzanelli, Andrea Mocci, Alberto Bacchelli, Michele Lanza, and David Fullerton.
Improving low quality stack overflow post detection. In Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, pages 541–544. IEEE,
2014.

48. Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
49. Daryl Posnett, Eric Warburg, Premkumar Devanbu, and Vladimir Filkov. Mining stack

exchange: Expertise is evident from initial contributions. In Social Informatics (Social-
Informatics), 2012 International Conference on, pages 199–204. IEEE, 2012.

50. Philips Kokoh Prasetyo, David Lo, Palakorn Achananuparp, Yuan Tian, and Ee-Peng
Lim. Automatic classification of software related microblogs. In ICSM, 2012.

51. Mohammad Masudur Rahman and Chanchal K Roy. An insight into the unresolved
questions at stack overflow. In Proceedings of the 12th Working Conference on Mining
Software Repositories, pages 426–429. IEEE Press, 2015.

52. Abhishek Sharma, Yuan Tian, and David Lo. Nirmal: Automatic identification of soft-
ware relevant tweets leveraging language model. In Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages 449–458.
IEEE, 2015.

53. Abhishek Sharma, Yuan Tian, and David Lo. What’s hot in software engineering twitter
space? In Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, pages 541–545. IEEE, 2015.

54. Abhishek Sharma, Yuan Tian, Agus Sulistya, David Lo, and Aiko Fallas Yamashita.
Harnessing twitter to support serendipitous learning of developers. In Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International Conference on,
pages 387–391. IEEE, 2017.

55. Abhishek Sharma, Yuan Tian, Agus Sulistya, Dinusha Wijedasa, and David Lo. Rec-
ommending who to follow in the software engineering twitter space. ACM Trans. Softw.
Eng. Methodol., 27(4):16:1–16:33, October 2018.

56. Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. Software engineering
at the speed of light: how developers stay current using twitter. In Proceedings of the
36th International Conference on Software Engineering, pages 211–221. ACM, 2014.

57. Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, An-
drew Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631–1642, 2013.

58. Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Seventh interna-
tional conference on spoken language processing, 2002.

59. Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and
Alexey Zagalsky. The (r) evolution of social media in software engineering. In Pro-
ceedings of the on Future of Software Engineering, pages 100–116. ACM, 2014.

60. Margaret-Anne Storey, Alexey Zagalsky, Leif Singer, Daniel German, et al. How social
and communication channels shape and challenge a participatory culture in software
development. IEEE Transactions on Software Engineering, (1):1–1, 2017.

61. Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-Peng
Lim. What does software engineering community microblog about? In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on, pages 247–250. IEEE,
2012.

62. Yuan Tian and David Lo. An exploratory study on software microblogger behaviors.
In MUD, 2014.

63. Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do programmers
ask and answer questions on the web?: Nier track. In Software Engineering (ICSE),
2011 33rd International Conference on, pages 804–807. IEEE, 2011.

SIEVE: Helping Developers Sift Wheat from Chaff via Cross-Platform Analysis 27

64. Twitter. About twitter inc. 2017. [Online; accessed 26-July-2017].
65. Gias Uddin and Foutse Khomh. Automatic summarization of api reviews. In ASE.

IEEE Press, 2017.
66. Gias Uddin and Foutse Khomh. Opiner: an opinion search and summarization engine

for apis. In ASE. IEEE Press, 2017.
67. Thanh Van Nguyen, Anh Tuan Nguyen, Hung Dang Phan, Trong Duc Nguyen, and

Tien N Nguyen. Combining word2vec with revised vector space model for better code
retrieval. In Proceedings of the 39th International Conference on Software Engineering
Companion, pages 183–185. IEEE Press, 2017.

68. Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stackoverflow and
github: Associations between software development and crowdsourced knowledge. In
Social computing (SocialCom), 2013 international conference on, pages 188–195. IEEE,
2013.

69. Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov. How
social q&a sites are changing knowledge sharing in open source software communities.
In Proceedings of the 17th ACM conference on Computer supported cooperative work
& social computing, pages 342–354. ACM, 2014.

70. Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. Entagrec: An
enhanced tag recommendation system for software information sites. In Software Main-
tenance and Evolution (ICSME), 2014 IEEE International Conference on, pages 291–
300. IEEE, 2014.

71. Xiaofeng Wang, I. Kuzmickaja, K.-J. Stol, P. Abrahamsson, and B. Fitzgerald. Mi-
croblogging in open source software development: The case of drupal and twitter. Soft-
ware, IEEE, 2013.

72. Grant Williams and Anas Mahmoud. Mining twitter feeds for software user require-
ments. In 2017 IEEE 25th International Requirements Engineering Conference (RE),
pages 1–10. IEEE, 2017.

73. Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and Zhen-
chang Xing. What do developers search for on the web? Empirical Software Engineering,
22(6):3149–3185, 2017.

74. Bowen Xu, Zhenchang Xing, Xin Xia, David Lo, Qingye Wang, and Shanping Li.
Domain-specific cross-language relevant question retrieval. In Proceedings of the 13th
International Conference on Mining Software Repositories, pages 413–424. ACM, 2016.

75. Shir Yadid and Eran Yahav. Extracting code from programming tutorial videos. In
Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages 98–111. ACM, 2016.

76. Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. Combining word
embedding with information retrieval to recommend similar bug reports. In Software
Reliability Engineering (ISSRE), 2016 IEEE 27th International Symposium on, pages
127–137. IEEE, 2016.

77. Deheng Ye, Zhenchang Xing, and Nachiket Kapre. The structure and dynamics of
knowledge network in domain-specific q&a sites: a case study of stack overflow. Empir-
ical Software Engineering, 22(1):375–406, 2017.

78. Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word embeddings
to document similarities for improved information retrieval in software engineering. In
Proceedings of the 38th international conference on software engineering, pages 404–
415. ACM, 2016.

79. YouTube. Youtube. 2017. [Online; accessed 20-AUG-2018].
80. Jingxuan Zhang, He Jiang, Zhilei Ren, and Xin Chen. Recommending apis for api

related questions in stack overflow. IEEE Access, 6:6205–6219, 2018.
81. Pingyi Zhou, Jin Liu, Zijiang Yang, and Guangyou Zhou. Scalable tag recommenda-

tion for software information sites. In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on, pages 272–282. IEEE, 2017.

82. Hongtao Liu Zhenchang Xing Zhuobing Han, Xiaohong Li and Zhiyong Feng. Deepweak:
Reasoning common software weaknesses via knowledge graph embedding. In Software
Analysis, Evolution, and Reengineering (SANER), 2018 IEEE 25rd International Con-
ference on, 2018.

	1 Introduction
	2 Background
	3 Representation Learning from Sofware-Development-Specific Platforms
	4 Finding Relevant Tweets Using Word Embeddings
	5 Finding Informative Comments on YouTube Using Word Embeddings
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work

