
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Why Reinventing the Wheels?

An Empirical Study on Library Reuse and Re-implementation

Bowen Xu · Le An · Ferdian Thung ·
Foutse Khomh · David Lo

Received: date / Accepted: date

Abstract Nowadays, with the rapid growth of open source software (OSS),
library reuse becomes more and more popular since a large amount of third-
party libraries are available to download and reuse. A deeper understanding
on why developers reuse a library (i.e., replacing self-implemented code with
an external library) or re-implement a library (i.e., replacing an imported
external library with self-implemented code) could help researchers better un-
derstand the factors that developers are concerned with when reusing code.
This understanding can then be used to improve existing libraries and API
recommendation tools for researchers and practitioners by using the developers
concerns identified in this study as design criteria.

In this work, we investigated the reasons behind library reuse and re-
implementation. To achieve this goal, we first crawled data from two popular
sources, F-Droid and GitHub. Then, potential instances of library reuse and
re-implementation were found automatically based on certain heuristics. Next,
for each instance, we further manually identified whether it is valid or not. For
library re-implementation, we obtained 82 instances which are distributed in 75
repositories. We then conducted two types of surveys (i.e., individual survey to
corresponding developers of the validated instances and another open survey)

Bowen Xu† and Le An‡ (joint first authors, contributed equally)
‡ Singapore Management University, Singapore
† Polytechnique Montreal, Canada
E-mail: bowenxu.2017@phdis.smu.edu.sg, le.an@polymtl.ca

Ferdian Thung
Singapore Management University, Singapore
E-mail: ferdiant.2013@phdis.smu.edu.sg

Foutse Khomh
Polytechnique Montreal, Canada
E-mail: foutse.khomh@polymtl.ca

David Lo
Singapore Management University, Singapore
E-mail: davidlo@smu.edu.sg

2 Bowen Xu et al.

for library reuse and re-implementation. For library reuse individual survey, we
received 36 responses out of 139 contacted developers. For re-implementation
individual survey, we received 13 responses out of 71 contacted developers. In
addition, we received 56 responses from the open survey. Finally, we perform
qualitative and quantitative analysis on the survey responses and commit logs
of the validated instances.

The results suggest that library reuse occurs mainly because developers
were initially unaware of the library or the library had not been introduced.
Re-implementation occurs mainly because the used library method is only a
small part of the library, the library dependencies are too complicated, or the
library method is deprecated. Finally, based on all findings obtained from an-
alyzing the surveys and commit messages, we provided a few suggestions to
improve the current library recommendation systems: tailored recommenda-
tion according to users’ preferences, detection of external code that is similar
to a part of the users’ code (to avoid duplication or re-implementation), group-
ing similar recommendations for developers to compare and select the one they
prefer, and disrecommendation of poor-quality libraries.

Keywords code reuse · code re-implementation · library recommendation
systems

1 Introduction

Library reuse has been researched in the 1990s, researchers at that time
claimed that while many companies were developing proprietary software li-
braries, library reuse was not yet a major force in most corporate software
development [12, 6]. However, nowadays, with the rapid development of open
source software (OSS), library reuse has became a very common practice
as more and more third-party libraries are available to be downloaded and
reused [1, 8, 24]. For example, a recent work concluded that in the world of
open-source Java development, high reuse rate is not a theoretical possibility
but rather a practical reality [8]. Moreover, the availability of reusable func-
tionality, which is a necessary prerequisite for library reuse to occur, is well-
established in Java platform. In addition, the costs of developing and maintain-
ing reusable libraries were considered as an investment during the software de-
velopment in the 1990s [11]. Today, many well-maintained library repositories,
which target to different programming languages, have been built to help de-
velopers easily reuse code. For example, NPM 1, Maven2, RubyGems3, Packag-
ist4, PyPI 5 are respectively library managers/hosts for JavaScript, Java, Ruby,
PHP, and Python. We observed that these repositories are growing rapidly.

1 Nodejs, https://www.npmjs.com
2 Maven, https://maven.apache.org
3 RubyGems, https://rubygems.org
4 Packagist, https://packagist.org
5 PyPI, https://pypi.python.org/pypi

https://www.npmjs.com
https://maven.apache.org
https://rubygems.org
https://packagist.org
https://pypi.python.org/pypi

Why Reinventing the Wheels? 3

For example, in 2010, Sonatype reported that Maven Central contained over
260,000 Maven libraries6. By the end of 2018, the number of unique Maven
libraries has reached 3,356,473, which is 12 times larger than it was in 2010.
The growth of these open source libraries indicates that developers are more
willing to share code. Since such bountiful supply of libraries is not likely to
happen without sufficient demand from developers, this tendency suggests a
growing demand for code reuse with libraries as well.

In recent literatures, some empirical studies have investigated code reuse
in third-party libraries. For example, Mojica et al. [18] conducted a large-
scale empirical study based on more than 200,000 free Android apps across
all 30 app categories in Google Play. They found that while library reuse is
prevalent in mobile apps, those apps also inherit the disadvantages of reuse,
such as increased dependencies. They suggested that more research is needed
to analyze this negative impact. Zaimi et al. [34] investigated the reuse of
third-party libraries in five well-known open-source software projects: i.e., dr
Java, Findbugs, ArgoUML, jFreeChart and Mogwai. The results of their study
suggest that OSS projects heavily reuse third-party libraries. However, reuse
decisions are not frequently revisited, and there is no clear evidence that reuse
decisions are quality-driven. Although the above studies have provided insights
into third-party library reuse, the reasons why developers reuse third-party
libraries are still unclear.

Moreover, some researchers have noticed the opposite phenomenon, i.e.,
developers re-implement the behavior of an existing library [10, 26]. Kawrykow
et al. [10] proposed a code similarity detection approach that identifies cases
of code re-implementation in software projects. To improve the accuracy of
Kawrykow et al.’s approach, Sun et al. [26] proposed a graph-based approach
to detect code re-implementations. However, the reasons why developers re-
implement code instead of using third-party library have not been investigated
in the literature.

To fill the gaps left by the above-mentioned lines of work and deepen our
understanding of the reasons behind the phenomena of library reuse and re-
implementation, we conducted this empirical study with the aims to help soft-
ware researchers and practitioners better understand the factors that develop-
ers are concerned with when reusing code. This understanding can then be used
to improve existing library and API recommendation tools (e.g., [28, 23, 19, 7])
by putting developers concerns as design criteria. Moreover, library developers
can benefit from understanding key concerns that library users voiced when
choosing between library reuse or re-implementation. This understanding helps
to further improve the quality of the library.

In this work, we focus on two scenarios of library reuse and re-
implementation, (1) replacing self-implemented code with an external library,
(2) replacing an imported external library with self-implemented code. Our
study investigates the following research questions:

6 Statistics for the Maven Repository, https://search.maven.org/stats

https://search.maven.org/stats

4 Bowen Xu et al.

RQ1 Why do developers replace their self-implemented method with an ex-
ternal library method?

RQ2 Why do developers replace an external library method with their self-
implemented code?

RQ3 Under what circumstances do developers prefer to reuse or re-implement
code?

To answer the above research questions, we conducted two types of surveys
and performed a manual qualitative analysis on commit logs:

Individual Survey. We surveyed developers who have experienced either of
the following scenarios to get insights on their rationales: (1) A developer
who replaced a self-implemented method by calling a method from a third-
party library (library reuse); (2) A developer who replaced a method call
to a third-party library method with a self-implemented method (library re-
implementation). To identify real-world instances of the above scenarios, we
analyzed commits in Java and Python repositories from multiple sources (e.g.,
F-Droid7 and GitHub8). We wrote a script to automatically identify likely
cases of library reuse and re-implementation. From these cases, we manually
examined their correctness. Finally, for library reuse, we obtained 183 instances
across 133 repositories. For code re-implementation, we obtained 82 instances
across 75 repositories.

We built a customized survey for each of the identified true instances and
sent it to the corresponding developer (who made the commit) to ask for the
reasons behind the code reuse or code re-implementation. Finally, we received
36 responses out of 139 contacted developers (i.e., response rate: 25.9%) for
the individual survey of library reuse, and 13 responses out of 71 contacted
developers (i.e., response rate: 18.3%) for the individual survey of code re-
implementation .

Open Survey. We also conducted an open survey to get inputs from other
developers. In the open survey, we first collected demographic of our respon-
dents, i.e., educational attainment, preferred programming language, role in
project and software development experience. Next, we asked them questions
about library reuse and code re-implementation. We disseminated this open
survey in several online communities through Reddit. We also sent the open
survey to some of our colleagues, who work as software engineering researchers
or developers. Finally, we received 56 responses from the open survey. For more
details, please refer to Section 2.4.

Commit Log Analysis. During our manual validation on the code reuse and
re-implementation candidates, we noticed that some developers mentioned the
rationales why they performed such operations. Thus, we also considered these
commit messages as supplementary information.

This work makes the following contributions:

7 F-Droid, https://f-droid.org
8 Github, https://github.com

https://f-droid.org
https://github.com

Why Reinventing the Wheels? 5

– We empirically analyzed a large number of concrete cases in which devel-
opers replaced their own implementation with an external library method
or vice versa. The manual analysis took months to complete and we re-
leased our manually curated dataset publicly to benefit other researchers:
https://github.com/swatlab/reuse_reimpl.

– We qualitatively investigated the reasons behind the library reuse and re-
implementation phenomena. We found that developers prefer to reuse well-
maintained, tested, and easy-to-use code. However, they may switch from
code reuse to self-implementations if the reused code is only a small part of
the third-party library, deprecated, or involves complicated dependencies.

– We made suggestions for improving the current code recommendation tech-
niques, which should be tailored according to users’ preferences, detect
external code that is similar to a part of users’ code (to avoid duplicate/re-
implementation), group similar recommendations for developers to com-
pare and select the one they prefer, as well as avoid recommending code
from poor quality libraries.

The remainder of this paper is structured as follows. In Section 2,
we describe the design of our empirical study. In Section 3, we present the
results of our study. In Section 4.2, we discuss the threats to validity of our
study. In Section 5, we discuss related works. In Section 6, we conclude this
paper and discuss about future works.

2 Case Study Design

The main goal of this study is to understand why developers switch from
their self-implemented code to an external library with the same functionality
and the other way around. In practice, developers often reuse a whole library
method and/or re-implement an existing method. Thus, in this paper, we de-
tect library reuses and re-implementations at the method level. In the following
subsections, we elaborate the design of our case study, including the data col-
lection process, the detection approaches for the above phenomena, and the
design of our surveys, which are used to address our research questions. Figure
1 shows an overview of our data collection and analysis approaches.

2.1 Data Collection

We chose two representative programming languages: Java and Python. Java
is a representative for statically-typed language, while Python is a representa-
tive for dynamically-typed language. Both languages are extensively used for
software development and possess a large developer base. We believe that de-
velopers of libraries written in either of these languages can provide us insights
in understanding the phenomena of library reuse and re-implementation. To
study Java applications, we collect data from Android repositories that were

https://github.com/swatlab/reuse_reimpl

6 Bowen Xu et al.

Manual
validation

Open survey

Identify removed
methods

Identify added
methods

Calculate
relative distanceCommit logs

Code reuse
survey

Code re-impl
survey

Commit message
analysis

Krutz et al.’s
dataset [9]

GitHub

F-Droid Detection of code reuse & re-implementation

RQ1
to

 RQ3

Fig. 1: Overview of our data collection and analysis approaches.

maintained on F-Droid9 as of August 2017 and that were used by Krutz et
al. [13]. In this work, we only considered repositories that are version controlled
by Git. After removing redundant repositories in both F-Droid and Krutz et
al.’s datasets, we obtained 1,732 unique Android repositories. To study Python
applications, we wrote a crawler to collect repositories from GitHub using the
GitHub API10. To avoid toy projects (i.e., projects that are self-developed,
unoriginal, or have a very short history), we referred to Abdalkareem et al.’s
work [1] to filter our subject repositories based on the following criteria: se-
lected repositories must be mainly written in Python, were not forked, contain
at least 20 commits, and were developed by at least two developers. In the end,
we obtained 4,461 unique Python repository.

2.2 Detection of Library Reuse

We assume that if a pair of removed and added method invocations is located
“close” to each other (i.e., there are zero or only a few lines between the two
methods in a patch), it is likely to be the case that a developer replaced her
own method with an external library method. We refer to this case as library
reuse. In the rest of this section, we elaborate more on our detection steps.

2.2.1 Identification of Removed Methods

For each studied application, we cloned its Git repository. Then, we used
the git show command to extract the patch of each commit, from which
we identified whether there is any method implementation that was removed
and the invocation of the method was also removed. To detect a removed
method, we first used the following regular expressions to look for any method
declarations in the removed lines (i.e., lines starting with “-”) in the patch.
In case of Java, we used the following regular expression:

9 F-Droid, https://f-droid.org/
10 Github API, https://developer.github.com/v3

https://f-droid.org/
https://developer.github.com/v3

Why Reinventing the Wheels? 7

(?:(?:public|private|protected|static|final|native|

synchronized|abstract|transient)+\s)+(?:[\$_\w\<\>\[\]]*)\s+

([\$_\w]+)\(([^\)]*)\)?\\s*\{?[^\}]*\}?

In case of Python, we used the following regular expression.

def\s+?(\w+?)\s*\((.+)

Python developers may write a “method” without a class, which is called a
function. A developer can reuse or re-implement code either in a method or a
function. In this paper, we do not specifically distinguish between methods or
functions in Python because they have the same effect and will not affect our
case study results. When we mention a “method” in Python, it may also mean
a function. Libraries in Python are called modules. To simplify our expressions,
we refer to Python modules as “libraries” in the rest of the paper.

For Android applications, if a removed method declaration is located at
line Ldcl (and we assume the method ends at line Ldcl + N where N > 1),
to decide whether the whole method implementation was removed as well,
we matched curly bracket pairs (i.e., {}) in Ldcl and its subsequent removed
lines (i.e., [Ldcl + 1, Ldcl + N] | N ≥ 1). Once each of the left curly brackets
(from Ldcl to Ldcl+N) can be matched to a corresponding right curly bracket,
we consider that the whole method implementation is removed. If the right
counterparts of some left curly brackets have not been found and we meet a
non removed line (context line i.e., line starting with a white space, or added
line i.e., line starting with “+”), we consider that this method is not fully
removed. For Python applications, if a removed method declaration is located
at line Ldcl, we look whether the consecutive removed lines followed by Ldcl

(i.e., [Ldcl + 1, Ldcl + N] | N > 1) have more indentation than Ldcl. If yes,
and if Ldcl + N + 1 is not an added line, we consider that the method is fully
removed. If Ldcl + N + 1 is an added line, and if it has less indentation than
Ldcl, we also consider that the method is fully removed.

For the fully removed methods, we then examined whether their corre-
sponding invocations (method invocations with the same method name and
number of parameters) were also removed. If so, we save the line numbers
of the removed invocations into a set Setdel. We will later manually validate
whether each of these removed invocations corresponds to a completely re-
moved method, which will be described in Section 2.2.4.

Example 1. In the commit 9d0ca05 of the FBReader project11, a method
(getString() of Class HtmlToStringReader) was fully deleted from lines 124
to 126 from the old revision of the file HtmlToString.java12 (as shown in Fig-
ure 2). Also, the invocation of this method was removed at line 69 (as shown
in Figure 3).

11 https://github.com/geometer/FBReaderJ/commit/9d0ca05
12 https://github.com/geometer/FBReaderJ/commit/9d0ca05#

diff-111c3f193c58d04aed7c19db835db11b

https://github.com/geometer/FBReaderJ/commit/9d0ca05
https://github.com/geometer/FBReaderJ/commit/9d0ca05#diff-111c3f193c58d04aed7c19db835db11b
https://github.com/geometer/FBReaderJ/commit/9d0ca05#diff-111c3f193c58d04aed7c19db835db11b

8 Bowen Xu et al.

124 - public String getString() {

125 - return new String(myBuffer.toString().trim.toCharArrya());

126 - }

Fig. 2: The removed implementation of the method getString() in the com-
mit 9d0ca05 of FBReader.

22 + import android.text.Html;

...

...

69 - result = myHtmlToStringReader.getString();

62 + result = Html.fromHtml(new String(contentArray)).toString();

Fig. 3: The removed invocation of the method getString() and the added
invocation of the method toString() in the commit 9d0ca05 of FBReader.

2.2.2 Identification of Imported Methods

For Android apps, we identified newly imported classes by looking for this
pattern (import external.library.class;) from the added lines (i.e., lines
starting with “+”) in the patch. For Python apps, we considered all module
importing patterns mentioned in [22] to identify newly imported classes from
the added lines, i.e.,

import (.+?) as (.+)

import (.+?)

from (.+?) import .+ as (.+)

from .+? import (.+?)

Then, for each imported class, we sought for the invocation of the class’s
static method (method directly invoked by the class) and its instance method
(method invoked by an instantiated object of the class). We saved the line
number of the added method invocations into a set Setadd.

Example 2. In the same file of Example 1, an external class (android.
text.Html) was imported at line 22 in the new revision. A static
method of the class (result = Html.fromHtml(newString(contentArray)

).toString();) was invoked at line 62 (as shown in Figure 3).

2.2.3 Calculation of Relative Distance

To decide whether a pair of removed and added methods is reasonably close to
each other, we calculate its “relative distance” as follows. For each unique pair
of Ldel (∈ Setdel) and Ladd (∈ Setadd), we designed the following heuristic to
calculate their relative distance.

Why Reinventing the Wheels? 9

In the unified diff format [5] (which is the default output of the git show

command), if one line is replaced by another line, the patch will output a
removed line followed by an added line.

- // the old method invocation

+ // the new method invocation

Given a pair of removed (Ldel) and added (Ladd) lines in commit C, we
first calculated the position of Ldel in its block of consecutive deleted lines
(Blockdel) as well as the position of Ladd in its block of consecutive added
lines (Blockadd). If Ldel is the ith line in Blockdel and Ladd is the jth line in
Blockadd, we calculated the relative distance between Ldel and Ladd as:

Distrelative = j − i + Linesinbetween

Where Linesinbetween denotes the number of lines that are between
Blockdel and Blockadd but do not belong to the two code blocks. Ideally,
developers should replace their own method invocation with an external one
at the same place. However, they may sometimes remove comments, white
space, or log printing lines after Ldel or add these kinds of lines before Ladd.
Thus, even in case that Ladd cannot be perfectly matched to Ldel’s position
(i.e., Distrelative = 0), they can still be a pair of the replacement from a self-
implemented method to a library method. There is a trade-off between the
detection’s precision and recall performance when choosing different values of
the threshold Distrelative. Larger relative distance can yield more candidates,
but the precision will be relatively lower (which will also increase the difficulty
of our manual validation, see Section 2.2.4); while smaller relative distance can
achieve a higher precision, but may miss certain good candidates. To evaluate
the sensitivity of the relative distance value, we set Distrelative as 5, 10, and
15, respectively. We found that when this value is 10 or 15, not much new
results were detected, but the number of false positives increases significantly.
Thus, we choose to set the threshold for the relative distance Distrelative to
5. In case that developers removed a white space or comment line (Lwhite)
prior to the deleted method invocation, and added the replacement library
method before Lwhite, Distrelative would be negative. To successfully detect
these cases, we adjust our criterion of the relative distance as |Distrelative| < 5.

In this heuristic, we did not directly compare the line number of Ldel in
C’s parent (Cˆ) with the number of Ladd in C because the code above these
lines may be heavily changed, which can result in a large offset between Ldel

in Cˆ and Ladd in C.

Example 3. In Examples 1 and 2, the removed invocation is the second line
in a consecutive deletion block (i.e., i = 2), while the added invocation is the
first line in a consecutive addition block (i.e., j = 1). Since there is no line
between the deletion and addition blocks (Linesinbetween = 0), we calculate
the relative distance as: Distrelative = 1− 2 + 0 = −1.

10 Bowen Xu et al.

2.2.4 Manual Validation

Following the above steps, we detected a total of 19,221 pairs of Android
library reuse candidates and 40,927 pairs of Python library reuse candi-
dates. For each candidate, we outputted its commit ID, line numbers of the
pair of deleted and added method invocations, as well as the fully qualified
class to which the added method belongs to. Then, we manually removed
the candidates where the class of the added method belongs to the cur-
rent application (app). We could not automate this step because the name
of the app may not be contained in its class package names. For exam-
ple, in the commit 515907013 of the chanu app, the FileUtils.copyStream

method was replaced by the IoUtils.copyStream method, which belongs to
com.nostra13.universalimageloader.utils.IoUtils. Although the new
class’s package name does not contain “chanu”, we found that it was also im-
plemented by chanu’s developers. After this preliminary filtering, we retained
391 pairs of Android candidates and 167 pairs of Python candidates.

To further filter out false positives, two of the authors manually examined
the remaining candidates separately. For a given candidate, the two authors
(1) read the commit message and checked whether the committer mentioned
that their own method was replaced by an external method (this is not a nec-
essary condition but it can help us confirm the correctness of a candidate); (2)
verified whether the removed method was implemented by one of the project
developers and whether the added method was implemented by external de-
velopers; (3) semantically compared the functionalities between the removed
and added methods (we only include the results where the removed added
methods have an identical functionality). To identify the ownership (i.e., who
wrote a specific piece of code) of a removed or added method, the best way
would be to directly ask the developers themselves. However, this is not fea-
sible because there are too many subject methods and only a few developers
may answer this question. Instead, in Step 2, for a given removed method in
a commit, we read the commit message and checked whether developers men-
tioned that the method is self-implemented or taken from an external source.
If the ownership cannot be determined, we searched for the commit in which
the method was introduced for the first time. We read the commit message
and checked whether developers mentioned that the method was copied from
another project. We also read the source code to find organization informa-
tion and searched the method on the Internet, checking whether the method
is similar to code written in past projects. For example, if the namespace (or
naming pattern) of the method is different from the whole project, we will
investigate where the method was originally from. If we could not find any
evidence showing that the method was taken from an external source, we con-
sidered the method to be self-implemented. For an added method, besides the
aforementioned checks, we also checked the name of the package the method

13 https://github.com/grzegorznittner/chanu/commit/5159070#

diff-015d116ababf2863b74874b6ba078cfeR365

https://github.com/grzegorznittner/chanu/commit/5159070#diff-015d116ababf2863b74874b6ba078cfeR365
https://github.com/grzegorznittner/chanu/commit/5159070#diff-015d116ababf2863b74874b6ba078cfeR365

Why Reinventing the Wheels? 11

belongs to. If the name does not follow the naming style of other packages in
the project, we performed an online search and checked whether the package is
taken from another project. Example 4 shows how we performed our manual
validation.

After labeling cases that satisfy the conditions 2 and 3 above, the authors
compared their results. They discussed on each discrepancy until a consensus
was achieved. They also removed all duplicate cases in a commit (e.g., in
the commit 6752f2d of the Twidere-Android app, we found 36 identical cases
where a customized method used to convert string to digit was replaced by an
external method for the same purpose). Finally, for Android, we obtained
128 cases of library reuse, which were performed by 79 developers
and are distributed in 71 apps; for Python, we obtained 65 cases
of library reuse, which were performed by 60 developers and are
distributed in 62 apps.

Example 4. In the commit message of Example 3, the committer men-
tioned: “android.text.Html instead of own html parser”. The removed and
added methods are both used to parse an HTML string. In addition, the
class of the added method is from an Android official API14, which was not
implemented by developers of the FBReader app.

2.3 Detection of Re-implementations

Similar to the heuristic we used in Section 2.2, we assume that in an app,
if there is a pair of removed and added method invocations located “close”
to each other, where the removed method was imported from elsewhere and
the added method is implemented by a developer of the app, it is likely to be
the case that the developer replaced an external library method by her own
implementation. We refer to this case as library re-implementation.

We used the same approach as described in Section 2.2 to identify such
pairs of removed and added methods. In a commit, for any newly implemented
method, we saved its line number into the set Setadd. For any removed method
invocation, if the library the method belongs to is also removed, we saved the
line number of the invocation and the library the method belongs to, into the
set Setdel. From the detected results, we calculated the relative distance (see
Section 2.2.3) between each unique pair of deleted and added methods, i.e.,
the relative distance between any Ldel (∈ Setdel) and any Ladd (∈ Setadd). We
used the same threshold to filter candidates: |Distrelative| < 5.

We detected a total of 2,835 pairs of Android candidates and 43,823 pairs
of Python candidates on library re-implementation. We performed a manual
validation on these candidates. For each candidate, we outputted its commit
ID, line numbers of the pair of deleted and added method invocations, as well
as the fully qualified class to which the removed method belongs. We first

14 https://developer.android.com/reference/android/text/Html.html

https://developer.android.com/reference/android/text/Html.html

12 Bowen Xu et al.

33 - import com.koushikdutta.urlimageviewhelper.UrlImageViewHelper;

...

...

145 - UrlImageViewHelper.setUrlDrawable(image,

getImage(json.getJSONObject("actor")));

143 + m_ctx.getImageLoader().setImage(image,

getImage(json.getJSONObject("actor")));

Fig. 4: The removal of a package import and setUrlDrawable() method in-
vocation as well as the addition of setImage() method invocation in commit
5d1e7e8 of Impeller.

manually removed the candidates where the class of the removed method be-
longs to the current app. As a result, 83 pairs of Android candidates and 73
pairs of Python candidates remained. As we have mentioned in Section 2.2.4,
not all incorrect candidates can be eliminated automatically because some
self-implemented classes cannot be simply identified from their names, e.g.,
isoparser can either be a library on PyPI15, or a self-implemented class. For
each of the remaining candidates, two of the authors performed a manual
inspection separately with the following steps: (1) read the commit message
and check whether the committer mentioned that they removed an external
method and implemented an equivalent one themselves; (2) verify whether the
added method was implemented by one of the project authors and whether
the removed method was implemented by external developers; (3) semanti-
cally compare the functionalities between the added and removed methods (to
understand the functionality of the removed method, we may perform an on-
line search). They resolved any discrepancies through an in-person discussion
on each pair and then removed duplicate cases. Finally, for Android, we
found 34 cases of library re-implementation, which were performed
by 32 developers and are distributed in 30 apps; for Python, we
found 48 cases of library re-implementation, which were performed
by 47 developers and are distributed in 45 apps.

Example 5. Figure 4 shows an example in the commit 5d1e7e8 of

the Impeller project16. The invocation of the method setUrlDrawable,
which belongs to the class com.koushikdutta.urlimageviewhelper.

UrlImageViewHelper, was removed from the file src/eu/e43/impeller/

ActivityAdapter.java. This method was invoked at line 145 in the old
revision. In the same file, a method setImage was invoked instead at line
143 in the new revision. This method was newly implemented in the file
src/eu/e43/impeller/ImageLoader.java. Through a manual inspection, we
found that both setUrlDrawable and setImage are used for loading an image
into an object. The removed class belongs to another Android library17, which

15 https://pypi.python.org/pypi/isoparser
16 https://github.com/erincandescent/Impeller/commit/5d1e7e8
17 https://github.com/koush/UrlImageViewHelper

https://pypi.python.org/pypi/isoparser
https://github.com/erincandescent/Impeller/commit/5d1e7e8
https://github.com/koush/UrlImageViewHelper

Why Reinventing the Wheels? 13

was not implemented by developers of Impeller. We also learnt the motivation
of this change from the commit message: “change from UrlImageViewHelper
to a custom implementation ...”. Thus, we believe that this is a valid case of
library re-implementation.

2.4 Survey

We now provide detailed information about the surveys that were conducted.

2.4.1 Survey on Library Reuse

To understand why developers used an external library to replace their self-
implemented methods, we designed a survey on Google Forms and distributed
it (via emails) to the developers who performed the library reuse detected in
Section 2.2. We encouraged these developers to answer the questions in a free-
form text (except for Questions 3 and 7 presented below). At the same time,
we also provided the surveyed developers with a few answer options for some
questions (where they could make multiple choices). To mitigate biases, we
randomly generated the order of the options for each multiple choice question.
Thus, our participants may not receive the options with the same order as
shown below. Before asking questions, we showed each participant the code
snippet(s) where she replaced her own implemented method by an external
library method. The questions asked in our survey are as follows.

1. What is (are) the reason (s) why you did not use the library method in the
first place?
This is a required question, for which, we provided the following options
to our participants:
– I did not know how to use this library method (or I found that the

library method was hard to use).
– I was not aware of this library when I implemented the code.
– The required library method had not been introduced yet at the mo-

ment of my implementation.
– Other.

This question along with Question 2 can provide us direct reasons why
developers switched from their own implementation to an external library.
If library reuse is developers’ ultimate purpose, the answers can provide us
with ideas that could help prevent from such a “switch”, which can save
developers’ time and efforts. We selected these options because Robillard et
al. [10] and Sun et al. [26] indicated that developers may not reuse existing
libraries because they are not aware of them. Sun et al. [26] argued that
the lack of familiarity with relevant libraries would also lead developers to
re-implement existing code. We encouraged participants to provide other
possible reasons in a free-form text.

14 Bowen Xu et al.

2. Why did you replace your code with this library method?
This is a required question, for which, we provided the following options:
– Because I want to have a more efficient implementation.
– Because the library method is more reliable.
– I want my code to be more easily tested.
– I want to maintain my code more easily.
– Other.

These options are inspired by the results of Abdalkareem et al.’s study [1]
on the code reuse of JavaScript packages. They found that developers tend
to believe that open source libraries are well implemented, tested, reliable,
and easy to maintain. We encouraged participants to provide other possible
reasons in a free-form text.

3. Do you actively search for library reuse opportunities (i.e., code that can
be replaced by library methods)?
This is a required question, for which we only allow a binary answer (i.e.,
Yes or No). If the answer is “Yes”, we then ask the participant Question 4;
otherwise, we jump to Question 6. This question, along with Questions 4 to
6, can let us know whether developers performed a search for library reuse
at the early stage of their development, by which means they did such a
search, otherwise, why they did not actively search for library reuse.

4. When do you start looking for library reuse opportunities?
Participants can answer this question in a free-form text.

5. How do you perform such search?
Participants can answer this question in a free-form text. Then, we ask
them Question 7.

6. Why don’t you search such opportunities?
Participants can answer this question in a free-form text, after which we
ask them Question 7.

7. Do you find it challenging to look for library reuse opportunities?
This is a required question, for which we only allow a binary answer (i.e.,
Yes or No). The answer to this question can help us understand whether
a better code recommendation approach is needed.

8. Which criteria do you consider when replacing a piece of your own code
with a corresponding library implementation?
Participants can answer this question with free-form text. The answer to
this question can help us understand developers’ requirements when reusing
code, thereby help in improving the current library recommendation strate-
gies.

Why Reinventing the Wheels? 15

2.4.2 Survey on Library Re-implementation

To investigate the reasons why developers gave up on an existing external li-
brary and choose to implement their own method, we designed another survey
targeted to the developers who performed such operations. We first showed
our participants the code snippets of the library re-implementation that they
made. We then asked them the following questions. As in the survey of library
reuse, we encouraged our participants to answer the questions in a free-form
text (except for Question 3, which requires a binary answer). For some ques-
tions, we provided our participants with multiple-choice options, which are
mostly inspired from previous studies. For this survey, we also randomly gen-
erated the order of the options for each multiple choice question in order to
mitigate any potential biases.

1. What is(are) the reason(s) why you use the library method in the first
place?
This is a required question, for which we provided these options to our
participants:
Because I thought that
– this library was easy to use.
– this library was well tested.
– this library was well maintained.
– this library had a good performance.
– using this library can increase our productivity.
– the license of this library was compatible with my project.
– other.

Although we expect that some developers prefer reusing code, this question
alongside Question 2 can provide us with the reasons why developers did
the opposite. The answers may point us to the weaknesses of the current
libraries and provide ideas to improve the current code recommendation
systems. We select these options based on two previous studies. Piccioni et
al. [21] found that usability is an important factor that developers consider
when choosing a library, e.g., accurate and complete documentation. In
addition, Abdalkareem et al. [1] observed that developers prefer libraries
that have good testability, maintainability, performance, and license com-
patibility. We encouraged participants to provide other possible reasons in
a free-form text.

2. Why did you replace this library method with the self-implemented method?
This is a required question, for which we provided these options:
Because I need to:
– increase the security level.
– improve performance.
– replace this deprecated library.
– fix incompatibilities induced by this library method during the evolu-

tion of my project.
– reduce the size of my project (or a simpler solution).

16 Bowen Xu et al.

– reduce the dependency overhead involved by this library method.
– make my code more flexible.
– avoid license issues.
– other.

These options are mostly inspired by the study of Abdalkareem et al. [1],
who found that developers are often worried about some potential weak-
nesses in their imported libraries, such as security, performance, depen-
dency overhead, and license issues. Moreover, Kawrykow et al. [10] in-
dicated that “APIs sometimes evolve in a backward-compatible fashion,
without any element being annotated as deprecated”. Also, to reduce the
size and increase the flexibility of a project, developers may choose to give
up on an existing library method and implement an equivalent method
themselves [3]. We encouraged participants to provide other possible rea-
sons in a free-form text.

3. Did the above self-implemented code meet your expectation?
This is a required question, which only accepts a binary answer (Yes/No).
We assume that some developers may want to avoid problems, such as com-
plex dependencies (when they choose to reimplement a library method).
Once there is a new library that better fit their requirements, they might
perform library reuse again.

4. Under what circumstances would you choose an external library method
rather than implement one by yourself?
We ask this and the subsequent question because it can help to improve
the current library recommendation systems if we understand the circum-
stances when developers switch from an external method to their own
implementation and the other way around.
Participants can answer this question in a free-form text.

5. Under what circumstances would you choose to implement a method by
yourself rather than seek an external library?
Participants can answer this question in a free-form text.

2.4.3 Open Survey

Our library reuse and re-implementations surveys target 207 Android and
Python developers (after removing duplicate ones). According to Singer et
al.’s study [25], the response rate in questionnaire-based software engineering
surveys is rather low, i.e., around 5%. To obtain more opinions from the devel-
opment communities, we also designed an open survey, which is based on the
surveys described in Sections 2.4.1 and 2.4.2 with some additional questions
as shown below:

– Background questions (all questions are required):
1. Educational attainment
2. Preferred programming language

Why Reinventing the Wheels? 17

3. Role in project
4. Software development experience (time period in years)

– Preliminary questions on library reuse:
1. Do you think that replacing a self-implemented code with a library

method is a common phenomenon in development?
2. Have you ever replaced a self-implemented code with a library method?

– Library reuse questions:
If participants answer yes to the preliminary question #2, we will ask them
the following questions:
1. Why didn’t you use the library method in the first place? (participants

can answer this in a free-form text)
2. Did any of the following factors play a role in your decision to not use

the library method? (we provided the same options as Question 1 in
2.4.1)

3. Why did you replace your code with this library method? (participants
can answer this in a free-form text)

4. Did any of the following factors play a role in your decision to replace
your code with this library method? (we provided the same options as
Question 2 in 2.4.1)

– Preliminary questions on library re-implementation (all ques-
tions are required):
1. Do you think that replacing an external library method with your own

code is a common phenomenon in development?
2. Have you ever replaced an external library method with your own code?

– Library re-implementation questions:
If participants answer yes to the above preliminary question #2, we will
ask them the following questions:
1. What is(are) the reason(s) why you used the library method in the first

place? (participants can answer this in a free-form text)
2. Did any of the following factors play a role in your decision to use the

library in the first place? (we provided the same options as Question 1
in Section 2.4.2)

3. Why did you replace this library method with the self-implemented
method? (participants can answer this in a free-form text)

4. Did any of the following factors play a role in your decision to replace
this library method with the self-implemented method? (we provided
the same options as Question 2 in Section 2.4.2)

– General questions (not required):
We ask the same questions as Questions 4 and 5 in Section 2.4.2.

We published the open survey on some development online communities,
such as Python community at Reddit18, Android community at Reddit19, De-
veloper community at Reddit20. We also invited some of our colleagues, who

18 https://www.reddit.com/r/Python
19 https://www.reddit.com/r/Android
20 https://www.reddit.com/r/developer

https://www.reddit.com/r/Python
https://www.reddit.com/r/Android
https://www.reddit.com/r/developer

18 Bowen Xu et al.

work as software engineering researchers or developers, to participate in this
survey.

Since the library reuse and re-implementation surveys will be sent to indi-
vidual developers, to distinguish them from the open survey, in the rest of the
paper, we will refer to each of them respectively as “individual survey” and
“open survey”.

2.4.4 Analysis on Survey Responses

In general, there are two types of questions in our surveys, multiple-choice
questions and open-ended questions. For answering the multiple-choice ques-
tion, we analyzed the distribution of answers. For open-ended questions, we
applied card sorting to interpret the answers. In detail, two of the authors
independently aggregated similar answers, and then extracted key sentences
from them. Next, we discussed together to condense the answers into key find-
ings. Finally, we summarized all findings and discuss their implications for
practitioners and researchers. For the latter, we compare our findings with the
capabilities of the state-of-the-art tools (e.g., library recommendation tools)
and recommend desired features for future work.

2.5 Analysis on Commit Messages

In our manual validation on the library reuse and re-implementation candi-
dates, from some commit messages, we read the motivations why the code
authors performed these operations. These commit messages can be used as
supplementary information for our analysis since not all developers will answer
our survey questions.

We extracted commit messages from each of the validated library reuse
and re-implementation cases. Two of the authors independently classified the
motivations extracted from the commits. One commit may contain more than
one motivation, such as to improve reliability and performance. For the com-
mits where we cannot extract any useful information related to this study, we
put them in the category “unknown”.

We then compared our classification results. We discussed on each discrep-
ancy until reaching an agreement.

3 Case Study Results

From the library reuse surveys, we received 15 responses out of the 79 con-
tacted Android developers (i.e., response rate: 19%); and 21 responses out of
the 60 contacted Python developers (i.e., response rate: 35%). From the code
re-implementation surveys, we received 4 responses out of the 31 contacted
Android developers (i.e., response rate: 12.9%); and 9 responses out of the 40

Why Reinventing the Wheels? 19

contacted Python developers (i.e., response rate: 22.5%). Most of our partic-
ipants answered all the non-required questions in free-form texts. For library
reuse, only 3 out of 15 Android developers (20%) and 2 out of 21 Python de-
velopers (9.5%) did not answer these questions. For code re-implementation,
only 1 out of 4 Android developers (25%) and 1 out of 9 Python developers
(11.1%) did not answer these questions.

In addition, we received 56 responses from the open survey. Table 1 shows
the background information of our survey participants. Based on the responses,
most of our participants (83.9%) have received higher education. Python
(42.9%), Java (14.3%), PHP (10.7%), and JavaScript (8.9%) are their most
favorite programming languages. Most participants are working as develop-
ers (73.2%) and a few of them are working as project managers, architects,
and algorithm engineers (17.9%). Regarding the development experience, most
participants have more than 3 years of experience, 32.1% of them have worked
for more than 5 years, 12.5% have worked for 4-5 years, and 17.9% have worked
for 3-4 years.

Figure 5 shows answers of the preliminary questions of the open survey.
69.6% of the participants think that replacing a self-implemented code with a
library method is a common phenomenon, and 83.9% of them acknowledge this
phenomenon in practice. Regarding the phenomenon where developers replace
an external library method with their self-implemented code, only 39.3% of
the participants think that this is common in development. However, 76.8%
of them acknowledge that they have performed this in practice.

In the rest of this section, we will show the other results obtained from the
individual and open surveys, and discuss their implications in addressing our
three research questions. As aforementioned, since not all contacted develop-
ers participated in our surveys, we also use the extracted commit messages as
additional source of information for our analysis. Since there are some over-
lapped questions between the two kinds of surveys, in the rest of this section,
we will combine the results for the identical questions.

3.1 (RQ1) Why do developers replace their self-implemented method with an
external library method?

Table 2 shows the options chosen by our participants for the first three ques-
tions in the library reuse survey (refer to Section 2.4.1). Our first research
question investigates the reason why developers did not use a library method
in the first place but use it later to replace their own code. 46% of the partici-
pants vote that they were not aware of that method; implying that developers
would not reinvent the wheel if they know a library that serves their purpose.
This reason is particularly voted by Android (47%) and open (50%) survey par-
ticipants, while only 30% Python participants vote for this reason. Although
we expect that Android developers often program with an IDE (which may
come with a code recommendation system), they still have difficulties to find
an appropriate library. Many of the current code recommendation techniques,

20 Bowen Xu et al.

Table 1: Answers to background questions of the open survey

(a) Education attainment

Education Number Percentage

Bachelor 2 3.6%
Master 4 7.1%
Doctorate 20 35.7%
University without degree 12 21.4%
Secondary school 11 19.6%
Professional degree 3 5.4%
Prefer not to answer 4 7.1%

(b) Preferred programming language

Language Number Percentage

Python 24 42.9%
Java 8 14.3%
PHP 6 10.7%
JavaScript 5 8.9%
C# 6 10.7%
C 1 1.8%
C++ 1 1.8%
Swift 2 3.6%
Other 3 5.4%

(c) Role in project

Role Number Percentage

Developer 41 73.2%
Project manager 3 5.4%
Architect 3 5.4%
Algorithm engineer 4 7.1%
Other 5 8.9%

(d) Development experience

Experience Number Percentage

Less than a year 3 5.4%
1-2 years 8 14.3%
2-3 years 10 17.9%
3-4 years 10 17.9%
4-5 years 7 12.5%
More than 5 years 18 32.1%

such as [28], make recommendations based on the relationships of existing
libraries in a project. Few of these techniques can semantically understand
developers’ need about their ongoing code and none of them can actively seek
for appropriate libraries online (i.e., in order to minimize the chance of missing
any useful libraries). Designers and researchers of future code recommenda-
tion systems should realize these problems and improve their techniques along
these directions. In addition, 14% developers acknowledge that they did not
know how to use the library in the first place. Some participants further ex-
plain that “the library was badly documented”. This result suggests that
library vendors should improve the readability of their documen-

Why Reinventing the Wheels? 21

69.6%

14.3%

16.1%

Yes No I don't know

(a) Do you think that replacing a self-
implemented code with a library method
is a common phenomenon in development?

83.9%

16.1%

Yes No

(b) Have you ever replaced a self-
implemented code with a library method?

39.3%

33.9%

26.8%

Yes No I don't know

(c) Do you think that replacing an exter-
nal library method with your own code is a
common phenomenon in development?

76.8%

23.2%

Yes No

(d) Have you ever replaced an external li-
brary method with your own code?

Fig. 5: Answers of the preliminary questions of the open survey

tation. Furthermore, many current library recommendation techniques, such
as [27, 29], rely on text analysis. These techniques cannot work well with badly
or non-documented libraries. Better approaches, such as semantic source code
analysis, need to be proposed. In addition, 28% participants said that the
required library method has not been introduced at that time. As discussed
above, if a code recommendation system can actively look for appropriate li-
braries online, once such libraries are available, the system can recommend
them to the developers; allowing them to switch early from using their own
implementations to reusing code before their project becoming overly complex.
From comments of the participants, we learned other reasons as follows: evo-

22 Bowen Xu et al.

Table 2: Answers to Questions 1-3 of the library reuse survey (for each ques-
tion, we calculated the percentage of the answers to a specific option over the
total number of answers)

(a) What is(are) the reason(s) why you did not use the library method in the first place?

Reason Android Python Open

I did not know how to use it 0 1 (1%) 15 (13%)
I was not aware of it 8 (7%) 7 (6%) 38 (33%)
It had not been introduced 6 (5%) 8 (7%) 18 (16%)
Other 3 (3%) 7 (6%) 5 (4%)

(b) Why did you replace your code with this library method?

Reason Android Python Open

Efficiency 4 (3%) 4 (3%) 25 (18%)
Reliability 2 (1%) 10 (7%) 23 (16%)
Testability 4 (3%) 5 (4%) 21 (15%)
Maintainability 12 (9%) 15 (11%) 0
Other 3 (2%) 5 (4%) 7 (5%)

(c) Do you actively search for library reuse opportunities?

Reason Android Python Open

Yes 11 (13%) 17 (20%) 37 (45%)
No 4 (5%) 4 (5%) 10 (12%)

lution of the project (“quick prototyping”, “the required complexity climbed”,
“required functionality was simple in the first phase of development”, “there
was no need when the original method was created”) and work transfer from
one developer to another (“(the) original code was implemented before I joined
the project”, “this code was already introduced when I initially started working
on the project ... I realized it (the self-implemented code) could be removed with
a function provided by the Android APIs instead”).

Regarding why developers replaced their own implementation with a li-
brary method, our provided options, improving reliability, development effi-
ciency, testability, and maintainability, received equally important votes (i.e.,
25%, 24%, 22%, and 20% votes respectively). This result is inline with the
finding of Abdalkareem et al. [1]. Although nobody directly voted for “having
a better maintainability” in the open survey, some participants left comments
in-line with this reason: “more elegant code”, “my implementation is hard
to maintain”, “... better class readability and less code to maintain”, etc. By
analyzing participants’ comments, we observed other reasons: improving secu-
rity (“for security consideration”), performance (“see if I could achieve better
performance”), obtaining additional features (“library method sometimes does
more”, “it (the library) was more robust and feature complete”), permission
or license issues (“the new method doesn’t require RECORD AUDIO permis-
sion, and the need for that had a frequent complaint from users”). In addition,
some developers trust external libraries more than their own code: “I think the

Why Reinventing the Wheels? 23

developer who can publish (this) library must be more senior than me”, “my
code lacks verification”, “... (the library) is peer reviewed”, “the library is of
higher quality”, “(it) depends, if the one is a common (library) and from a
well known organization (I) will use it”. This result suggests that library
recommendation systems should extract and show reviews, quality
assessment, and organization information to developers, and prior-
itize code written by well-reputed organizations.

From the result of both individual and open surveys, we find that most
participants have actively sought for library reuse opportunities. Some par-
ticipants look for such opportunities more proactively (“at the beginning of a
new feature”, “all the time”), others wait until their code is too complex (“the
pure implementation starts getting hard to manage”, “whenever it feels like
what I’m doing could be part of a separate project”), when they face problems
(“when bugs appear”, “when my implementation is becoming a mess”), or when
they realize that someone else has implemented the same functionality (“when
the implementation feels like somebody should already have written that”). De-
velopers may also conditionally seek for library reuse, when “... (having had)
a clear picture in mind how and in which direction the project will evolve” or
“... (doing) complex repetitive, boring tasks”. Moreover, we notice some in-
teresting reasons why developers do not actively seek for library reuse. Some
developers only want to have a challenge (“I think I can do it”). Some de-
velopers do not want to increase dependency complexity (“depending on third
parties is more work for simple things”). Some developers do not need to seek
library reuse for a small-scale project (“the project is a spare-time project, and
I don’t have spare time to do such code-maintenance activities unless essential
to immediate progress.”, “if it ain’t broke, don’t fix it? This is a hobby project
in minimal maintenance mode”). Some others have confidence in themselves
and/or do not prioritize the practice of library reuse (“I didn’t think about it
in the first place”, “I know when I need a library and in this case I will look
for one. I will not scan my code thinking about which part can be replaced by
library code.”). However, all of the developers eventually replaced their own
code with a library method; indicating that library recommendation would be
helpful even if developers did not think so initially.

21 out of 36 participants, who answered Question 6 of the individual sur-
vey, do not think that searching for library reuse opportunities is challenging.
Regarding the way of searching for a library reuse opportunity, using general-
purpose search engines (especially Google) is the first choice for 19 out of
22 participants who answered Question 5 of the individual survey. 11 partici-
pants searched from general code bases or forums (including GitHub, GitLab,
StackOverflow, and Hack News21). 4 participants searched from language spe-
cific websites (including Android Arsenal22 and PyPI). 2 participants searched
from the documents of Android and Python standard library. Nobody has men-
tioned the use of any library or code recommendation tool. Only one partici-

21 https://news.ycombinator.com
22 https://android-arsenal.com

https://news.ycombinator.com
https://android-arsenal.com

24 Bowen Xu et al.

29%

21%

21%

16%

5%

5%

3%Remove obsolete permission

Reliability

Testability

Performance

Not aware of the lib before

Use standard lib

Additional features

0 3 6 9

Fig. 6: Motivations identified from the messages of the commits where library
reuse occurred

pant used her newsletters to find library reuse opportunities. Although library
recommendation techniques have been proposed and improved for many years,
in this work, we do not find an empirical evidence to support the fact that
developers have used these techniques to successfully find libraries they need.
There is still a gap between the practices of code search and recommendation.

In the last question of the library reuse survey, we ignored some vague
answers such as “good code quality”, and learned the criteria that developers
use to replace their own code with an external library code. 22 out of 34 par-
ticipants look whether the library is well maintained and tested (“well main-
tained”, “well tested”, “whether it is actively developed”, “update cadence e.g.,
how many commit in the last 6 months”). 9 participants look for the reputa-
tion of the library (“popular library”, “respected developers”, “widely adopted”,
“used by other projects”, “exposure on Stack Overflow”). 4 participants look
for the readability of code and documentation (“documentation”, “readabil-
ity”, “clearness of code”). 4 participants look for the stability (“does it have a
stable API?”). 3 look for the size or complexity of the library (“complexity of
code”, “conciseness”). 3 look for license compatibility (“license clauses of li-
brary”, “forkability”). 2 look for the difficulty to integrate the library into their
project (“it needs to fit in to my existing API and be close to a net zero code
change”, “does it require only few changes to be integrated in my project?”).

From the above results, we learned that, when taking decisions to replace
a self-implemented method with an equivalent library method, criteria may
vary according to circumstances. A tutorial video, which is recommended by
a participant, on “designing and evaluating reusable components” [33] can be
useful when taking such decisions. To summarize this, we would like to cite
a participant’s comment: “Is out implementation, out of all potential imple-
mentations out there, worth keeping, and will getting rid of ours for a more
maintained/supported version be worth it. In other words, if we get rid of our
implementation, but the cost is adding 3-4+ dependencies to use a different
one, it may not be worth it; it needs to be evaluated on a case-by-case basis.”

Figure 6 shows the motivations that we identify from the commit messages
where library reuse occurred. We ignored 132 out of the 170 messages, in
which we cannot identify any useful information regarding the motivation of
switching to library reuse. All of the identified motivations are either expected

Why Reinventing the Wheels? 25

Table 3: Answers to Questions 1 and 2 of the library re-implementation survey
(for each question, we calculated the percentage of the answers to a specific
option over the total number of answers)

(a) What is(are) the reason(s) why you use the library method in the first place?

Reason Android Python Open

Testability 1 (1%) 4 (2%) 19 (12%)
License compatibility 0 2 (1%) 15 (9%)
Usability 1 (1%) 5 (3%) 34 (21%)
Performance 0 1 (1%) 18 (11%)
Productivity 0 3 (2%) 28 (17%)
Maintainability 1 (1%) 3 (2%) 24 (15%)
Other 2 (1%) 2 (1%) 1 (1%)

(b) Why did you replace this library method with a self-implemented method?

Reason Android Python Open

Better performance 0 3 (2%) 16 (11%)
Reduce dependency 0 4 (3%) 26 (18%)
Better security 0 0 5 (3%)
Fix incompatibility 0 1 (1%) 12 (8%)
Simplicity 0 3 (2%) 23 (16%)
Avoid license issues 0 0 8 (5%)
Replace deprecated lib. 0 1 (1%) 12 (8%)
Flexibility 2 (1%) 1 (1%) 25 (17%)
Other 2 (1%) 2 (1%) 0

when we designed the survey or mentioned by survey participants as well. In
general, this result is consistent with our observations from the survey result.

In general, developers replace their self-implemented method with an exter-
nal library method because they were initially not aware of the library or the
library had not been introduced. After realizing that there is a well main-
tained and tested library that meets their requirement, they later used the
library method to replace their own implementation.

3.2 (RQ2) Why do developers replace an external library method with their
self-implemented code?

Table 3 shows the options chosen by our participants for the first two
questions in the library re-implementation survey (refer to Section 2.4.2). As
we only receive 4 responses from the Android survey, in the following analyses,
we will not discuss the reason why Android developers do not choose some of
the options.

Our participants used an external library method in the first place because
they think the library is easy to use (25%), can increase development pro-
ductivity (19%), and is well maintained (18%). Although the library method
was eventually discarded, this result implies that an easy-to-use library can

26 Bowen Xu et al.

41%

18%

18%

8%

8%

5%

3%Switch to standard lib

Remove obsolete lib

Performance

Simplicity

Reliability

Flexibility

Remove dependency

0 5 10 15

Fig. 7: Motivations identified from the messages of the commits where library
re-implementations occurred

attract developers to adopt it; if a library is hard to use, developers may find it
easier to implement the library’s functionalities. Therefore, if library ven-
dors expect their code to be well-adopted, ease-of-use would be an
important criterion to take into account. From participants’ comments,
we learned other reasons, i.e., “it is the recommended method for Android”,
“I was mistakenly under the impression it was part of the Python standard
library”).

Regarding why developers replaced the first adopted library method and
switch to implement their own method, reducing dependency (21%), improv-
ing flexibility (19%), and having a simpler solution (18%), are voted as the
three most popular reasons. Some participants further explained: “FYI super
old project, we wanted to reduce dependencies when possible”, “(I) didn’t need
to wrestle a 800 pound gorilla to do a simple few things”, “I only needed one
function so I didn’t want to have a full library”, “down the road, the client
needed more specific features of which the library did not provide nor expose”,
“(I) can’t easily refactor across library boundaries”. Library vendors should
also make their products more flexible and easy to modify with-
out introducing too much complexity in the configuration process.
Moreover, given two libraries that provide a similar functionality,
many developers are likely to prefer the light-weighted one. Thus,
library vendors should take this into account when making and maintaining
their products. Moreover, from the comments, we realize that “bug in library”
can also make developers switch to their own implementations.

12 out of 13 participants who answered Question 3 of the library re-
implementation survey thought that their self-implementations meet their
expectation. However, in their comments, some participants also discussed
potential drawbacks of their self-implementations, including: additional im-
plementation efforts (“it took longer (time) to write it myself”), additional
maintenance efforts (“if using a library, no need to maintain it”), lower re-
liability (“(the self-implementation has) the potential for introducing bugs”),
and lower performance (“I might not be an expert on how to do thing properly.
Specialized libraries will surely do better.”).

Why Reinventing the Wheels? 27

47%

18%

11%

8%

8%

3%

3%

3%Infrastructure development

Agile development

I can hardly implement it myself

The lib is easy to use

The lib can improve development efficiency

My solution becomes complex

The lib is standard, reputated, or well maintained

Any case

0 5 10 15

(a) Under which circumstances do you prefer to reuse code?

18%

16%

16%

16%

13%

13%

4%

2%

2%never
I develop a critial module

Existing libs' licenses are not compatible
Exising libs are hard to use or learn

I can easily implement it myself
I don't know any lib that can do my job

I want a light and simple solution
Quality of existing libs is not good enough

I need high flexibility

0 2 4 6 8

(b) Under which circumstances do you prefer to implement code yourself?

Fig. 8: Answers to the general questions

Figure 7 shows the library re-implementations’ motivations that we iden-
tified from the commit messages where the re-implementations’ occurred. We
ignored 47 out of 81 commit messages where no useful information can be ex-
tracted about the motivation of library re-implementations. Among the iden-
tified motivations, removing dependency is mentioned most of the time. Par-
ticularly, two committers said that they removed the dependency because it
was “only used once”. Other motivations, such as making the code more flex-
ible, more reliable, simpler, and more performant, are also mentioned in the
analyzed commit messages. Similar to the survey participants’ comments, re-
moving obsolete libraries as well as implementing their own solution based on
standard libraries could also be the reasons why developers discarded external
libraries. In general, this result is consistent with what we obtained from the
surveys.

Developers replace an external library with their own implementation be-
cause they tend to choose an easy-to-use library method in the first place.
Once they realize that the used library method is only a small part of the
library, and the library dependencies are too complicated, or the library
method becomes deprecated, they may switch to replace the library with their
own code. Library vendors should make their code flexible and lightweight.

28 Bowen Xu et al.

3.3 (RQ3) Under what circumstances do developers prefer to reuse or
re-implement code?

In RQ3, we want to investigate developers’ preference towards library reuse
and library re-implementation in a more general context.

We collected and card sorted the answers of the last two questions in the
library re-implementation and open surveys (refer to Sections 2.4.2 and 2.4.4).
Figure 8 depicts the circumstances under which developers prefer to reuse code.
Nearly half of the participants (47%) prefer to reuse an existing code in any
case. A participant’s answer can explain this well: “this (reusing code) is my
first choice. I don’t usually self-implement something unless I’m confident that
a pre-existing solution doesn’t exist or a pre-existing solution doesn’t suit my
needs”. For the developers who actively seek for library reuse opportunities,
some of them analyze the quality (whether it is well maintained, reputable,
or a part of the standard library) of a library before adopting it; some others
judge whether a library is easy to use or can improve development efficiency.
Even though previous studies advocated that library reuse can reduce the cost
in development and maintenance, improve development efficiency and product
performance [8, 17, 2, 1], some developers do not consider it until after their
code becomes too complex or when they can hardly implement what they
want. This result suggests that not all developers seek for library
reuse opportunities at all times. A library recommendation system,
which suggests a qualified library satisfying developers’ requirement,
can help them improve development efficiency and avoid reinventing
the wheel. From the answers of this question, we also learned that some
developers prefer library reuse, especially in the case of agile development or
infrastructure development.

Regarding the circumstances under which developers prefer to implement
code themselves, “requiring higher flexibility of code” is mentioned most of the
time. Indeed, publicly available libraries are designed for general developers. If
a developer expects to fully customize a functionality, she may have to imple-
ment it herself. Another strong reason that pushes developers to implement
their own code is when they cannot find any library that satisfies their require-
ment. If a functionality is easy to implement, such as a “quick and dirty work”
mentioned by a participant, developers do not need to reuse code. Under these
circumstances, library reuse does not have much advantage. Moreover, we also
observed that developers prefer implementing code themselves because they
find that existing libraries are not easy-to-use and/or understand, not sim-
ple or lightweight enough, or have incompatible license with their project. To
deal with these problems, code recommendation systems can recommend more
than one library, showing their characteristics (e.g., size, dependencies, user
rating, license, team information), and allow developers to choose the most
appropriate one.

Why Reinventing the Wheels? 29

Half of our survey participants prefer to reuse code at all times. However,
developers may also want to make their own implementations if they need
a higher code flexibility.

4 Discussion

The following subsections summarize our findings and their implications to
practitioners and researchers, and acknowledge some threats to validity.

4.1 Implications

In general, we observed that developers replaced their self-implemented
method with an external library method because they were initially unaware
of the library or the library had not been introduced. After realizing that there
is a well-maintained and tested library that meets their requirement, they later
used the library method to replace their self-implemented method. Moreover,
developers replaced an external library method with their self-implemented
method because they tend to choose an easy-to-use library method in the first
place. Once they realize that the used library method is only a small part of the
library, the library dependencies are too complicated, or the library method is
deprecated, they may replace the library method with their self-implemented
method.

According to our results, if library vendors want their product to be more
widely used, we suggest them to improve library documentation, make the
library easy-to-use, and reduce the size and complexity of the library. An
IDE with library recommendation systems can help developers to seek library
reuse opportunities, thereby preventing them from re-inventing the wheel. For
any industrial project, developers should always actively seek library reuse
opportunities, especially if their self-implemented code are becoming overly
complex to maintain. Another suggestion to developers is that either decision
(reusing code or implementing it themselves) should be carefully considered at
the beginning of project development. Once a piece of code is deeply integrated
and interacted with other parts of the project, the cost of replacing it would
be tremendous.

Moreover, code recommendation systems can also help developers find and
adopt code or library they need. A number of code recommendation techniques
have been proposed in the literature (see Section 5.1 for details). The current
code recommendation techniques often make recommendations based on the
relationships of existing libraries in a project, library usage history, and some
semantic features. Comparing our findings with capabilities of these tools we
find that such tools do not help in the following circumstances:

1. In our library reuse survey, nearly half of our participants acknowledged
that they were not aware of the library they eventually adopted at the

30 Bowen Xu et al.

time of their implementations. In practice, recommendation tools require
the capability to search for solutions in the Internet. Such capability would
minimize the chance of missing any libraries that might be useful for de-
velopers.

2. Developers may want to reuse a library they have used or reused in another
project, which needs a recommendation tool that can record and analyze
developers code usage, reuse or programming preference.

3. According to our survey results, before applying an external library, devel-
opers often want to know whether the library is produced by well-reputed
team, whether it is well documented, easy-to-use, and flexible enough. In
addition, developers do not explicitly receive the characteristics of the li-
brary from the recommendation results. However, most current code recom-
mendation systems do not group similar recommendations for developers
to compare and select the one they prefer.

4. The current recommendation systems only yield “positive” results but de-
velopers may also want to be aware of “negative” results, i.e., the libraries
they should not use.

5. The current recommendation systems do not consider open source license
compatibilities, which cannot help developers to avoid license violations.

Based on the above weaknesses, we suggest that the current library rec-
ommendation techniques could be improved from the following aspects (which
we believe to be interesting directions for future work):

– Tailored recommendation: Since developers may have their own preference
of reusing libraries, the system can study and collect users’ preference be-
fore giving them suggestions. For example, the system can analyze all ex-
ternal libraries used by a developer in her current and past projects, use
machine-learning algorithms to classify these libraries according to the do-
main or requirement of this developer, and use these information to make
better recommendations.

– Detection of similar solution: The system can search for a piece of code that
has similar functionality to a part of the project (e.g., a method, class, mod-
ule). An early suggestion of library reuse potential can prevent developers
from reinventing the wheel. Earlier approaches (e.g., [10, 26]) have already
been capable of detecting re-implementation of a piece of library code if the
library has already been used in the project. However, developers might
also want to prevent re-implementations of the code from unused libraries.
In such case, semantic analysis and clone detection techniques can help to
search similar code snippets. A deep-learning based framework introduced
by Wei et al. [31] can potentially be leveraged to achieve this.

– Grouped recommendations: The system can group similar recommenda-
tions for developers to compare and select the library they prefer. In such
a group, the system can further rank the the recommendations based on
their number of users, reviews, and documentation quality.

– Display of libraries’ characteristics: This can help to quickly assess the
quality of a library. As aforementioned, when there are multiple candi-

Why Reinventing the Wheels? 31

dates, the system can also use this information to rank the recommenda-
tions. For example, when a developer wants to install a plugin from Eclipse
Marketplace, a summary of the plugin will be provided. Likewise, when a
developer imports a new external library, the recommendation system can
popup a summary window, showing characteristics of the library.

– Disrecommendation: As we have learned, replacing a deprecated or inactive
library is one of the reasons why developers switched from library reuse
to reimplementation. If an imported library is deprecated, obsolete, badly
rated, or inactively maintained, a library recommendation tool may want
to suggest developers to replace the library with an alternative library.
For example, a disrecommendation system can scan all imported external
libraries and connect to the libraries’ website, checking whether any library
is deprecated or out of maintenance. If so, the system will warn developers
to avoid this library and provide detailed reasons on why they should do so.
A future recommendation systems may also predict deprecation or future
issues (more generally) with some libraries and pro-actively recommend
alternatives.

– License compatibility suggestion: To help software organizations avoid li-
cense violations, library recommendations tools can also detect the license
of the recommended library, comparing it with the license of developers’
home project, checking whether the recommended library can be legally
imported.

Based on our findings, we provide several concrete improvements to existing
works in Section 5.3. Furthermore, to allow replication and verification of our
study, a replication package is publicly available to interested researchers23.
Moreover, we point out several directions to extend our study. First, the state-
of-the-art clone detection tool can potentially be applied to identify more
instances of library reuse and re-implementation. Second, more diverse data
sources can be considered, such as GitLab, BitBucket, and SourceForge. Third,
more types of program languages can be analyzed, such as JavaScript which
is the most commonly used programming language at the time of writing24.

4.2 Threats to Validity

There are several threats that may potentially affect the validity of our study.
In this section, we discuss the threats to validity of our study by following the
guidelines for case study research [32].

Threats to construct validity are concerned with the relationship between the-
ory and observation. We designed some heuristics to detect real world cases
of code reuse and code re-implementation. However, the heuristics cannot de-
tect all possible cases. For example, a developer could potentially replace her

23 Replication package, https://github.com/XBWer/Why-Reinventing-the-Wheel.
24 Stack Overflow Survey, https://insights.stackoverflow.com/survey/2019#

technology.

https://github.com/XBWer/Why-Reinventing-the-Wheel
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology

32 Bowen Xu et al.

self-implemented code with a method from an already imported library in the
project. Unfortunately, she did not realize that the method of the library can
fulfill her requirement in the first place. Our heuristics did not cover the above
case because it will yield a lot of false positives, which will require a lot of time
to validate. Our current heuristics alone costed several months of validation.
Moreover, the goal of this study is not to find all possible cases of code reuse
and code re-implementation. Instead, we aim to provide empirical evidences
on these two phenomena. Although researchers, such as [10, 26], have dis-
cussed these phenomena in previous works, nobody has shown any real world
example. We aim to understand the reasons why developers replaced their
self-implemented code with an external library and the other way around by
collecting real world examples.

Threats to internal validity are concerned with the factors that may affect a
dependent variable and were not considered in the study. In our surveys, we
provided options for participants to answer some of the questions. These op-
tions are inspired by previous studies, such as [1] and [21]. However, to mitigate
biases led by these pre-defined options, we always encouraged our participants
to use their own words to answer the questions. As a result, we obtained some
valuable information from the answers in the free-form text, which were not
pre-defined within the options. Our surveys received a higher response rate
than the average rate in software engineering research surveys [25]. One of the
reasons is that our survey invitation provides some information that are spe-
cific to the target survey respondent (including their name, project name, tar-
get commit, target lines of code, and how the library reuse/re-implementations
were performed). This specific information increases the chance of contacted
developers responding to our email compared to emails with only generic con-
tents. Another reason is that we sent a reminder to developers if we did not
receive their response after a week, and another one after a month if we still
did not receive their response.

Threats to conclusion validity are concerned with the relationship between
the treatment and the outcome. This threat mainly derives from our man-
ual validation of code reuse and code re-implementation. During this process,
we need to identify whether an added method comes from a third-party li-
brary or was implemented by developers themselves. In order to minimize
this threat, two of the authors independently validated each of the cases de-
tected by the heuristics. They then compared their results and resolved each
of the conflicts. The whole process took several months. Through individ-
ual surveys, a portion of our detected cases was confirmed by developers.
However, we can hardly guarantee the correctness of other validated cases.
For example, a developer may copy code from a library to her project and
later replaced the copied code with another library code. Thus, none of the
code was implemented by the developer herself. On the other hand, we card
sorted some textual information, such as the free-form text answers from sur-
veys or commit messages. The card sorting classification results were verified
and discussed between the authors. However, as any other taxonomic stud-

Why Reinventing the Wheels? 33

ies, we cannot guarantee a 100% accuracy on our classification results. We
publish our classification result along with the analyzed commit messages on-
line: https://github.com/swatlab/reuse_reimpl. Due to privacy reasons,
we cannot publish all the details of our survey answers. Future replications
are welcome to validate our work.

Threats to external validity are concerned with the generalizability of our re-
sults. In this work, we studied code reuse and re-implementation phenom-
ena in two programming languages: Java and Python. We mined data from
1,732 Android repositories and 4,461 Python repositories. Java and Python are
representatives for statically-typed and dynamically-typed languages, respec-
tively. Both languages are popular for software development. Nevertheless,
replicating our work for other programming languages (such as C++, C#,
and JavaScript) is required to broaden our understanding of the phenomenon.
There are 109 developers participating in our survey. This number is as large
as many prior studies that also performed surveys to better understand a cer-
tain software engineering phenomenon [1, 14, 9]. Still, our survey respondents’
feedback may not represent the opinions of all developers. We do not view our
work as a one-off work, but one of many to fully understand library reuse and
re-implementation. We welcome future studies to extend and/or replicate our
study with different participants and datasets. In this study, we only consid-
ered code reuse and re-implementation from libraries because, according to the
rapid growth of OSS libraries in the recent years, we believe that library reuse
is one of the main ways in which developers reuse code. Still, the reasons why
developers reuse code from other sources, such as frameworks or knowledge
sharing platforms (e.g., Stack Overflow), are also worthy for investigation. We
encourage researchers to investigate this direction in the future.

5 Related Work

5.1 Library Reuse

Library reuse has been researched since the 90s. In 1992, Krueger [12] sur-
veyed different approaches to software reuse and provided several insights to
library reuse. First, the author claimed that the major challenge to implement
large libraries of reusable components is to find concise abstractions. Better
abstraction can improve the reuse rate. Although we focus on open source
applications in our work, our results show that removing dependency is the
most important reason behind developers’ decision to replace a library with a
self-implementation. Second, the author mentioned that library implementor
must provide specifications that succinctly describe component behavior. It
corroborates our conclusion that display of libraries’ characteristics can help
to quickly assess the quality of a library. Third, another challenge of library
reuse is that developer must take time to study and understand how to use the
library. We also found that the ease to use is the main reason behind devel-
opers’ decision to use an external library method in the first place. Different

https://github.com/swatlab/reuse_reimpl

34 Bowen Xu et al.

from Krueger’s work, Kim and Stohr [11] surveyed software reuse in practice
and provided several technical and non-technical factors that need to be con-
sidered. First, the cost of developing and maintaining reusable libraries are
considered as an investment during the software development. This issue has
been well addressed because of the rapid development of open source libraries
nowadays. Our study shows that no need to develop and maintain becomes an
important factor that motivate library reuse. Second, the nature of program
languages are related to library reuse. For example, the advent of Java provides
a new and potentially source of reusable software resources making it possible
to create distributed object-oriented applications that function independently
of particular operating systems or hardware platforms. In this sense, Java can
better support the concept of widespread software reusability. Research works
in the 90s mainly discussed internal library reuse, i.e., developers need to de-
sign, develop and maintain libraries by themselves. Thus, the corresponding
costs are considered. However, we focus on the external library reuse, i.e.,
developers use third-party library and no need to develop and maintain by
themselves.

In the recent decade, with the rapid growth of open source software (OSS),
many studies have shown that library reuse is a very common practice in
many different programming communities (e.g., Java [8], JavaScript [1], and
Android [24, 18]). However, only a few of works paid attention on the rea-
son behind library reuse. Emerging package management platforms, such as
Node Package Manager (NPM), are introduced to facilitate code sharing. Ab-
dalkareem et al. [1] analyzed more than 230,000 NPM packages and 38,000
JavaScript applications. They observed that trivial package reuse is common
and is increasing in popularity in the Node.js community. They conducted a
survey with 88 Node.js developers and observed that trivial packages are widely
used because developers assumed these packages to be well implemented and
tested. To empirically verify this assumption, they validated the most cited
reasons and drawbacks on the trivial package reuse. They found that only 45%
of the studied trivial packages contain test code, despite the fact that trivial
packages were expected to be “deployment tested”. Additionally, they found
that 12% of the studied trivial packages have more than 20 dependencies.
Hence, developers should be careful in choosing to use trivial packages.

Our study complements those studies in several ways. Firstly, all of the
above related works either only focused on one programming language or too
general while we investigated multiple popular program languages with dif-
ferent naturals (i.e., Java and Python). Second, although a few of the above
related works investigated why developers reuse an external library to replace
their self-implemented code, none of them collect real world cases and surveyed
developers for the reasons behind. In this work, we focused on the instances
where developers initially self-implement a piece of code and then replace the
code by using a third-party library. We manually identified the cases of library
reuse in two different programming languages and utilized a qualitative anal-
ysis to understand why developers do not use a library in the first place and
what challenges they encounter when choosing to use a library. Additionally,

Why Reinventing the Wheels? 35

we also conducted an open survey to investigate the main factors that influence
developers’ decision on whether they should reuse a library or not.

5.2 Code Re-implementation

Nowadays, library reuse is a common practice. However, libraries were not
always used by developers. In particular, developers at times re-implement
the behavior of an existing library.

Kawrykow et al. [10] assumed some reasons for code re-implementation,
e.g., developers are not familiar with the library, they are not aware of all
the functionalities, or they got lost in a huge collection of APIs. The authors
argued that imitating API code represents an ineffective usage of libraries as
such re-implementation is not necessary, and the existence of imitated codes
creates maintenance burden. To detect cases of code re-implementation, they
developed a technique which extends code similarity detection techniques with
new matching relations between abstractions of the code re-implementation
and library methods. 405 actual cases of potentially suboptimal API usage
are detected within 10 open source Java systems. The overall precision of the
approach is 31% and the average per-system precision is 21%. To improve
the accuracy of Kawrykow et al.’s approach [10], Sun et al. [26] proposed
a graph-based approach to detect code re-implementations. They used trace
subsumption relation of data dependency graphs to characterize the similarity
between self-implemented code and library code. Their approach detected 313
code re-implementation cases with higher average precision, i.e., 82%, for the
same dataset.

Above works are based on the assumption that code re-implementation
happens because developers did not find suitable library or API to reuse.
However, there was no study that has empirically investigated the reasons
why developers re-invent the wheel. To fill this gap, we detected cases where
developers replace a library code with its equivalent self-implemented code
and then surveyed the corresponding developers to understand their reasons
in doing so. We find that developers replace an external library with their own
implementation because they tend to choose an easy-to-use library method
in the first place. Once they realize that the reused code is only a small part
of the library, the library’s dependencies are too complicated, or the library
becomes deprecated, they may switch to replace the library with their own
code.

5.3 Library Recommendation

Nowadays, a large amount of code is available to be downloaded and used,
e.g., third-party libraries with APIs. However, developers are often unaware of
suitable code to be used for their projects and might miss these opportunities.
Code recommendation techniques are introduced to alleviate this problem.

36 Bowen Xu et al.

Recommend a code for a given project. Thung et al. [28] proposed
an approach LibRec to automatically recommends libraries to developers for
a particular project. LibRec takes as input a set of libraries that a project
currently uses, and recommends other libraries that are likely to be relevant.
LibRec combines association rule mining and collaborative filtering. The asso-
ciation rule mining component extracts libraries that are commonly used to-
gether and then rates each of the libraries based on their likelihood to appear
together with the currently used libraries. The collaborative filtering compo-
nent works on the assumption that similar projects are likely to share similar
third-party libraries and then rates each of the libraries based on how many of
the top-N most similar projects use it. Based on our findings, LibRec can be
improved in several ways. First, recommending libraries by simply considering
used libraries may not be sufficient. This is especially true at the beginning of
a project. At that time, developers may not be aware of many usable libraries
for their project. Thus, only a limited number of libraries are likely to be
used. Corresponding to our second suggestion (detection of similar solution),
we should not only consider libraries that has been used in the project, but we
should also consider existing self-implementation to better prevent developers
from reinventing the wheel.

Different than LibRec, Ouni et al. [20] proposed a search-based approach
LibFinder to recommend potentially useful libraries. They consider the library
recommendation problem as a multi-objective optimization problem. A multi-
objective search-based algorithm is applied to find a trade-off among three
objectives : 1) maximizing co-usage between a candidate library and the ac-
tual libraries used by a given system, 2) maximizing the semantic similarity
between a candidate library and the source code of the system, and 3) mini-
mizing the number of recommended libraries. It is worthwhile to mention that
LibFinder achieves a better performance by detecting the semantic similarity
between a library and the code of the system, which is consistent with our
second suggestion (detection of similar solution). However, LibFinder can still
be improved by performing a deeper analysis on the development preference
i.e., corresponding to our first suggestion (tailored recommendation). For ex-
ample, if most of the libraries used in the project are developed for large data
processing, it indicates that the project need to handle large data. Thus, the
recommended libraries should also be equipped with such capability.

Recommend a code for a given query. Rahman et al. [23] proposed
an API recommendation approach RACK that recommends a list of rele-
vant APIs for a given natural language query by leveraging the crowdsourced
knowledge in Stack Overflow. They found that Stack Overflow might be a
potential source for code search keywords and APIs. At least two APIs are
used in each of the accepted answers in Stack Overflow, and about 65% of
the API classes from the core packages are used in those answers. Also, titles
from Stack Overflow’s questions are a major source for code search keywords.
Based on above findings, they proposed a two-step approach: (a) construct
token-API mapping database, and (b) recommend relevant APIs for a search
query. In step (a), they extracted tokens in a question’s title and map the APIs

Why Reinventing the Wheels? 37

in the corresponding accepted answer. In step (b), they employed two heuris-
tics (i.e., Keyword-API Co-occurrence and Keyword-Keyword Coherence) to
collect candidate APIs given a query and then used two metrics (i.e., API Like-
lihood and API Coherence) to estimate the relevance of the candidate APIs for
the given query. Lastly, a ranked list of the candidates are obtained and top-K
APIs from the list are returned for recommendation. Different from Rahman et
al.’s work, Gu et al. [7] proposed a deep learning based approach DeepAPI to
recommend API usage sequences for a given natural language query. DeepAPI
adapts a neural language model named RNN Encoder-Decoder. It encodes a
word sequence (i.e., user query) into a fixed-length context vector and gen-
erates an API sequence based on the context vector. They also augmented
the RNN Encoder-Decoder by considering the importance of individual APIs.
The advantages of DeepAPI is that it does not rely on information retrieval
techniques, which makes it different from other code search techniques (e.g.,
[16, 15]). Based on our findings, both RACK and DeepAPI can be improved
by profiling library, i.e., corresponding to our fourth suggestion (display of
APIs’ characteristics). RACK considers all APIs mentioned in 172,043 Stack
Overflow questions and DeepAPI collects APIs from 442,928 Java projects
from GitHub without any further filtering based on characteristics. However,
the developers’ opinion towards APIs can be collected from Stack Overflow
or other API review boards, e.g., [30]. We believe that a display of APIs
characteristics can help to quickly assess the quality of APIs. Gao et al. [4]
studied the problem of recommending suitable APIs that satisfy users’ need
for mashup creation. They proposed a manifold ranking framework for API
recommendation. First, they categorized existing mashups into functionally
similar clusters. Then, they recommended APIs for each mashup cluster using
manifold ranking algorithm. Three factors are taken into consideration: (1)
APIs that are in functionally similar mashups, (2) popularity of APIs, and (3)
similarity between APIs. Different than RACK and DeepAPI, APIs’ popular-
ity is considered. To some extent, it supports our suggestion that analysis of
libraries’ (or APIs’) characteristics can improve reuse rate. In summary, our
suggestions outline five potential directions to further improve existing code
recommendation systems.

6 Conclusion

In this work, we explored the reasons behind two opposite developer behav-
iors, i.e., library reuse and code re-implementation. To achieve this goal, we
identified real world instances from multiple sources and then performed two
types of surveys, i.e., individual survey and open survey. Moreover, we also
performed a manual qualitative analysis on commit logs as a supplement.
Our experiment results show that, the reason why developer replace their
self-implemented method with an external library method is mainly because
they were initially not aware of the library or the library had not been intro-
duced. Once they find a well maintained and tested library that meets their

38 Bowen Xu et al.

requirement, they reuse it. The reasons why developer re-implement code by
themselves are mainly because the used library method is only a small part
of the library, the library dependencies are too complicated, or the library
method becomes deprecated. Besides, we also provided five aspects that could
be helpful to improve the current code recommendation systems. In the fu-
ture, we plan to further improve existing library recommendation approaches
by taking into consideration the multiple factors that we discovered in this
work, e.g., usability, complexity of the external code. In addition, we will also
investigate whether the state-of-the-art clone detection tools are able to detect
similarity between self-implemented code and external code.

References

1. Abdalkareem R, Nourry O, Wehaibi S, Mujahid S, Shihab E (2017) Why
do developers use trivial packages? an empirical case study on npm. In:
11th Joint Meeting on Foundations of Software Engineering, ACM, pp
385–395

2. Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity
in object-oriented systems. Communications of the ACM 39(10):104–116

3. Blog of Jos de Jong (2017) The Art of Creating Simple
but Flexible APIs. http://josdejong.com/blog/2014/10/18/

the-art-of-creating-simple-but-flexible-apis/, online; Accessed
Nov 14th, 2017

4. Gao W, Chen L, Wu J, Gao H (2015) Manifold-learning based api recom-
mendation for mashup creation. In: 22nd IEEE International Conference
on Web Services, IEEE, pp 432–439

5. GNU (2017) Unified diff format. http://www.gnu.org/software/

diffutils/manual/html_node/Unified-Format.html, online; Accessed
September 14, 2017

6. Griss ML (1993) Software reuse: From library to factory. IBM systems
journal 32(4):548–566

7. Gu X, Zhang H, Zhang D, Kim S (2016) Deep api learning. In: 24th
International Symposium on Foundations of Software Engineering, ACM,
pp 631–642

8. Heinemann L, Deissenboeck F, Gleirscher M, Hummel B, Irlbeck M (2011)
On the extent and nature of software reuse in open source java projects. In:
13th International Conference on Software Reuse, Springer, pp 207–222

9. Iivari J (1996) Why are case tools not used? Communications of the ACM
39(10):94–103

10. Kawrykow D, Robillard MP (2009) Improving api usage through auto-
matic detection of redundant code. In: 24th International Conference on
Automated Software Engineering, IEEE, pp 111–122

11. Kim Y, Stohr EA (1998) Software reuse: survey and research directions.
Journal of Management Information Systems 14(4):113–147

http://josdejong.com/blog/2014/10/18/the-art-of-creating-simple-but-flexible-apis/
http://josdejong.com/blog/2014/10/18/the-art-of-creating-simple-but-flexible-apis/
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

Why Reinventing the Wheels? 39

12. Krueger CW (1992) Software reuse. ACM Computing Surveys 24(2):131–
183

13. Krutz DE, Mirakhorli M, Malachowsky SA, Ruiz A, Peterson J, Filipski
A, Smith J (2015) A dataset of open-source android applications. In: 12th
Working Conference on Mining Software Repositories, IEEE, pp 522–525

14. Lethbridge TC (2000) Priorities for the education and training of software
engineers. Journal of Systems and Software 53(1):53–71

15. Lv F, Zhang H, Lou Jg, Wang S, Zhang D, Zhao J (2015) Codehow: Effec-
tive code search based on api understanding and extended boolean model
(e). In: 30th International Conference on Automated Software Engineer-
ing, IEEE, pp 260–270

16. McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio:
finding relevant functions and their usage. In: 33rd International Confer-
ence on Software Engineering, ACM, pp 111–120

17. Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study
of software reuse vs. defect-density and stability. In: 26th international
conference on software engineering, IEEE Computer Society, pp 282–292

18. Mojica IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2014)
A large-scale empirical study on software reuse in mobile apps. IEEE soft-
ware 31(2):78–86

19. Nguyen AT, Hilton M, Codoban M, Nguyen HA, Mast L, Rademacher
E, Nguyen TN, Dig D (2016) Api code recommendation using statistical
learning from fine-grained changes. In: 24th International Symposium on
Foundations of Software Engineering, ACM, pp 511–522

20. Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017)
Search-based software library recommendation using multi-objective opti-
mization. Information and Software Technology 83:55–75

21. Piccioni M, Furia CA, Meyer B (2013) An empirical study of api usability.
In: 7th International Symposium on Empirical Software Engineering and
Measurement, IEEE, pp 5–14

22. PythonModule (2018) Python official documentation on modules. https:
//docs.python.org/2/tutorial/modules.html, online; Accessed March
29th, 2018

23. Rahman MM, Roy CK, Lo D (2016) Rack: Automatic api recommenda-
tion using crowdsourced knowledge. In: 23rd International Conference on
Software Analysis, Evolution, and Reengineering, IEEE, vol 1, pp 349–359

24. Ruiz IJM, Nagappan M, Adams B, Hassan AE (2012) Understanding reuse
in the android market. In: 20th International Conference on Program Com-
prehension, IEEE, pp 113–122

25. Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collec-
tion for field studies. In: Guide to Advanced Empirical Software Engineer-
ing, Springer, pp 9–34

26. Sun C, Khoo SC, Zhang SJ (2011) Graph-based detection of library api
imitations. In: 27th IEEE International Conference on Software Mainte-
nance, IEEE, pp 183–192

https://docs.python.org/2/tutorial/modu les.html
https://docs.python.org/2/tutorial/modu les.html

40 Bowen Xu et al.

27. Thung F (2016) Api recommendation system for software development.
In: 31st International Conference on Automated Software Engineering, pp
896–899

28. Thung F, Lo D, Lawall J (2013) Automated library recommendation. In:
20th Working Conference on Reverse Engineering, IEEE, pp 182–191

29. Thung F, Wang S, Lo D, Lawall J (2013) Automatic recommendation of
api methods from feature requests. In: 28th International Conference on
Automated Software Engineering, IEEE Press, pp 290–300

30. Uddin G, Khomh F (2017) Automatic summarization of api reviews. In:
Automated Software Engineering (ASE), 2017 32nd IEEE/ACM Interna-
tional Conference on, IEEE, pp 159–170

31. Wei H, Li M (2017) Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code.
In: 26th International Joint Conference on Artificial Intelligence, pp 3034–
3040

32. Yin RK (2002) Case Study Research: Design and Methods - Third Edition,
3rd edn. SAGE Publications

33. YouTube video (2004) Designing and Evaluating Reusable Compo-
nents. https://www.youtube.com/watch?v=ZQ5_u8Lgvyk, online; Ac-
cessed March 29th, 2018

34. Zaimi A, Ampatzoglou A, Triantafyllidou N, Chatzigeorgiou A, Mavridis
A, Chaikalis T, Deligiannis I, Sfetsos P, Stamelos I (2015) An empirical
study on the reuse of third-party libraries in open-source software devel-
opment. In: 7th Balkan Conference on Informatics Conference, ACM, p 4

https://www.youtube.com/watch?v=ZQ5_u8Lgvyk

	Introduction
	Case Study Design
	Case Study Results
	Discussion
	Related Work
	Conclusion

