
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

An Empirical Study of Release Note Production and
Usage in Practice

Tingting Bi, Xin Xia, David Lo, John Grundy and Thomas Zimmermann

Abstract—The release note is one of the most important software artifacts that serves as a communication bridge between
development teams and users. Release notes contain a set of crucial information, such as descriptions of enhancements,
improvements, potential issues, development, evolution, testing, and maintenance of projects throughout the whole development life
cycle. A comprehensive understanding of the characteristics of release notes and how to best document one for different targeted
users would be highly beneficial. However, the release note is often neglected and has not to date been systematically investigated by
researchers. In this paper, we conducted a descriptive case study to investigate release note production and usage in practice. We first
performed a large scale empirical study of 32,425 release notes in 1,000 GitHub projects to understand the characteristics of
real-world release notes, and eight categories of information identified that are normally documented in release notes. We then
conducted interviews with 15 professionals and an online survey with 314 respondents to investigate their opinions on release notes in
practice. Our results show that both release note producers and users consider that well-formed release notes impact software
activities (e.g., software evolution) positively. We summarised 27 statements about release notes grouped into eight topics based on
participants’ opinions. Our study uncovers significant discrepancies between release note producers and users in perceiving release
notes. Based on these findings, we provide a set of release note production and usage guidelines for practitioners and highlight future
research directions.

Index Terms—Release Note, Software Documentation, Empirical Study

F

1 INTRODUCTION

R ELEASE engineering focuses on building a pipeline to
transform project requirements into an integrated, com-

piled, packed, and tested product [1]. In this process, the re-
lease note is an essential artifact that informs users about vital
project changes from one version to another [2]. It serves as
a critical means of interaction between development teams
and users. The information in release notes (e.g., significant
enhancements, changes, improvements, and risks) typically
is related to a set of software activities spanning the whole
development life cycle [3]. A comprehensive understanding
of release notes (e.g., who produces release notes, who uses
release notes, and the structure and information in release
notes) would be helpful to guide more effective production
and usage and better support related software activities [4]
[5].

Release notes can be documented in different ways based
on various projects, as there is no accepted standardization
for documenting release notes [6]. Each release note should
be targeted for different users who can effectively and
efficiently take advantage of the information [7] [8]. For ex-
ample, documenting new features or changes of systems in
release notes helps keep end-users informed on what is new

• Tingting Bi, Xin Xia, and John Grundy are with the Faculty of Informa-
tion Technology, Monash University, Melbourne, Australia.
E-mail: {tingting.bi, xin.xia, john.grundy}@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: {davidlo}@smu.edu.sg

• Thomas Zimmermann is with Microsoft Research, Redmond, WA, USA.
E-mail: {tzimmer}@microsoft.com

• Xin Xia is the corresponding author.

Manuscript received ;

in a version; however, it is challenging to keep the release
notes balanced between being sufficiently informative and
not too lengthy. In addition, producing release notes is also
a collaborative task and varies depending on the different
stakeholders involved [9].

In this work, the definition we are using for a “re-
lease note” is a formal document distributed with software
projects and delivered to users when an update is released.
Release note information may vary greatly in focus and
detail, depending on the software application domains,
release note producers, and target release note users. We
target release notes in GitHub projects that describe key
changes made to features and the code in a release, with
information intended for use by developers and a few end-
users. However, compared to other formal software arti-
facts, such as requirement documents and the source code,
or informal software artifacts, such as developer mailing
lists [10]), release notes in GitHub projects have not yet been
systematically investigated. Moreover, even though docu-
menting release notes is critical for software development,
development teams and users often neglect them [11]. There
is limited evidence that captures and shares information
via release notes in real-world organizations. A vague and
imprecise release note will likely lead to inadequate con-
siderations of current development. Incomplete or incorrect
information in release notes will be problematic to users
who need to accurately follow project development details.
Producing quality release notes in software development is
thus a critical task.

Existing works have only investigated release notes on
a small scale and do not present a comprehensive under-
standing of the characteristics of release notes in practice
[12] [3], and some studies did not involve realistic opinions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

of diverse stakeholders towards understanding on release
notes [6] [13]. Some key issues are yet not investigated,
including:

• Poor understanding of release notes: the process
of producing release notes has not yet been sys-
tematically investigated. For example, who produces
release notes, and what information should be in-
cluded in a release note regarding different software
domains.

• Discrepancies between release producers and users
in perceiving release notes: opinions of release note
producers and users might be different. Release notes
are not only for end-users but also contain rich
information on design decisions and detailed project
changes, which can facilitate internal developers to
conduct various software activities better [14]. As
such, incomplete input and specifications from inter-
nal users can result in inadequate or failed releases
for project updates [15] [16].

• Improperly linking release notes to other software
artifacts and activities: release notes contain a set of
information on a project closely related to require-
ments changes, design decisions, and risk assess-
ments. However, release notes are not sufficiently
related to other software artifacts (e.g., requirements,
design rationale, and bug reports) and software ac-
tivities (e.g., testing). One potential reason is the lack
of effective release note documentation and manage-
ment ways.

These issues motivated us to investigate release note
production and usage in practice systematically. Analysis
and characterization of release notes would shed light on
release notes production and usage effectively in practice.

• A large scale empirical study: we analyzed and
characterized 32,425 release notes and relevant data
of 1,000 GitHub projects. For example, the number
of release note producers and the information con-
tained in release notes regarding different software
domains. The results show that the information in
release notes can be classified into eight main cate-
gories, which span the whole software development
cycle. The most frequently documented information
is related to Issues fixed and New features.

• Interviews and one online survey with profession-
als: we gathered professionals’ opinions on release
notes. For example, testers perceive release notes as
a rich source of information to test software projects,
whereas architects picture release notes as key mile-
stones about the evolution of projects. We identified
that there are significant discrepancies between re-
lease note producers and users. For instance, most
release note producers perceive non-functional re-
quirements are important for documenting, but users
expect new feature related information to be well
documented.

• Associated release notes with software activities: we
investigated how the information in release notes im-
pacts various software activities (e.g., software evo-
lution). We also summarized the factors that would

affect release note usage in practice. For example,
projects that adopt agile development methods often
do not produce release notes properly, or the release
notes are not consistent and low quality.

To make the process and results of this study easy to
follow, we classified "stakeholders" into two distinct types:
Release Note Producer and Release Note User. For exam-
ple, the internal stakeholders, such as testers and developers
of projects, are identified as "Release Note Users" if they use
release notes of their own projects but do not create them.
The key contributions of this work include:

• A better understanding of the characteristics and
documented information in release notes.

• Key differences in perspectives of release notes be-
tween release note producers and users in practice.

• A catalog of eight empirically-justified topics from
professionals that can help organizations and practi-
tioners produce or use release notes effectively.

• A set of guidelines for effectively producing and us-
ing release notes, including what information should
be included in release notes regarding different soft-
ware domains and activities.

The rest of this paper is organized as follows: Section 2
describes key related works and compares those works on
release note investigation to our work. Section 3 presents
the details of the case study setup process. Section 4 shows
the results of this study. Section 5 discusses and explains the
results and implications of our study. Section 6 discusses
the threats to validity. Finally, Section 7 concludes this study
and outlines key future research directions.

2 RELATED WORK

Several research studies propose approaches and tools to
produce and use release notes. In this section, we compare
our work with other works from two aspects: (1) production
and usage of release notes in practice; and (2) the key
research gaps that our work aims to address.

2.1 Production and usage of release notes in practice
Moreno et al. [3] proposed a method (i.e., ARENA) to gen-
erate release notes automatically. ARENA extracts changes
from the source code, and then the authors summarized and
integrated these code changes with information extracted
from software repositories to generate complete release
notes. Four empirical studies were then performed to eval-
uate the performance of ARENA regarding completeness,
importance, and usefulness of the generated release notes.
The results show that ARENA-generated release notes are
good approximations of the ones manually produced by
developers. The authors also conducted an empirical study
that targeted the analysis of the contents and characteristics
of 990 release notes belonging to 55 open source projects.
Their results show that 17 types of information are docu-
mented in release notes. The most frequent item included in
a release note is related to bug fixes. The process and results
of their empirical study are similar to the "What" aspect
of Stage 1 (see Section 4.1.2) in this work. However, our
empirical study analyzed the information in release notes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

regarding different software domains and at a much larger
scale. We also analyzed the granularity of the information
(e.g., at the class level) in release notes for major and minor
releases. In addition, we provided an analysis of release
notes systematically from the "Who" aspect to better under-
stand the characteristics of release notes (see the results in
Section 4.1.1).

Abebe et al. [12] presented an empirical study to in-
vestigate what information is documented in release notes.
The authors manually analyzed 85 release notes across
15 different software systems. Their results show that six
information types are identified in release notes: title, sys-
tem overview, resource requirements, installation, address
issues, and caveats. In addition, nine different factors are
found to better understand the likelihood of an issue being
listed in the release notes. The authors then applied machine
learning techniques to predict and suggest the issues listed
in release notes automatically. The authors identified the
information types provided in major and minor release
notes that differ from system to system. This idea motivated
us to investigate release notes of major and minor releases.
Their work observed that release notes are mainly written
for users who would not read through the source code of the
software systems, and only 30% of the release notes have
additional information for developers. In contrast, as the
release notes we selected were from GitHub projects, 71.5%
release notes of our analysis are developer-targeted.

Several empirical studies have conducted software doc-
umentation and software history investigation, and the re-
sults show that release note is an important artifact and
plays a vital role in various software activities. For example,
Tsay et al. [6] built a release history database of release notes
for getting a broad picture of the open-source landscape. The
authors standardized and inserted data into a release note
database, which can help researchers and developers study
and model the release engineering process in greater depth.
Yu [17] conducted a keyword-based approach to mine logs
and release notes to extract useful software maintenance and
evolution information. For each changelog and release note,
the author defined a mathematical framework to present,
interpret, and associate the data with bug-fixing activities.
Then the author incorporated or updated activities in the
development of the new version. The results show that
applying keyword-based text mining techniques to mine
the changes described in release notes can help developers
conduct maintenance and evolution activities. Codoban et
al. [18] presented an empirical study on motivations and
reasons that developers have of examining software history.
The authors firstly conducted interviews with 14 develop-
ers. They then deployed a survey to quantify and extent the
interview findings. The findings show that software history
tools are ill-suited and can not provide explicit support for
developers’ needs from the history of releases. Fischer et
al. [19] proposed an approach to build a SQL database of
release notes that combines versions and bug report data.
The approach can be used for building a software evolution
analysis framework. Michlmayr et al. [13] performed an
exploratory study to investigate the understanding of re-
leases in practice and release management problems in Free
and Open Source Software (FOSS). The authors interviewed
20 developers from various projects, and the interviews

include a set of questions about release management. The re-
sults show that release managers in small and large projects
play a vastly different role even when they essentially have
the same responsibility.

2.2 Research gaps
While the research listed in Section 2.1 can be valuable for
understanding release notes in practice, some gaps exist that
have not yet been investigated in the literature. A compre-
hensive understanding of the characteristics of release notes
and real opinions from professionals would provide better
and more tailored support for producing and using release
notes. We try to fill some of these gaps in this work. Table
1 compares the key-related works with our work from four
perspectives:

• Methodology – what methods have the previous key
research studies used to investigate release notes as
compared to our work.

• Results – what were the goals and achievements of
the previous key research studies compared to ours
related to release note investigation.

• Software artifacts – what artifacts related to release
notes were analyzed in the studies.

• Software activities – what were the relevant soft-
ware activities that could benefit from better doc-
umentation of release notes. For example, software
maintenance is an activity of modifying the project
after it has been delivered to the customers for im-
proving the project. Software evolution is triggered
by chaining customer and user requirements [20].

3 STUDY DESIGN

We first describe the process of releasing and producing
release notes in GitHub projects in Section 3.1. To under-
stand release note production and usage in practice, we then
specify the goals and research questions in Section 3.2. The
precise units of this study are presented in Section 3.3.

3.1 The process of releasing and producing release
notes in GitHub projects
In this study, we focus on investigating release notes in
open source projects, and we particularly target GitHub,
which is one of the most important development platforms.
Accordingly, the release notes we collected are mostly de-
livered to other software developers and some to end-users.
GitHub allows users to release and manage a repository that
includes creating, editing, and deleting a release along with
an associated release note and binary links1. Despite the
features and functions provided by GitHub, some projects
may also follow their own specialized process for releasing
and producing release notes. For example, the Visual Studio
Code project not only updates the GitHub repository, but
also uses a dedicated Wiki to manage the iteration plans of
released projects2. However, in this study, we only focused
on the release notes documented in GitHub projects, and

1. https://desktop.github.com/release-notes/
2. https://github.com/microsoft/vscode/wiki/Iteration-Plans

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

TABLE 1
Comparison of the key works with our work.

Work Result Methodology Software artifact Software activity
Moreno et al. [3] (1) Generate release note automat-

ically; (2) Investigate the informa-
tion contained in 990 release notes.

(1) Apply tools to extract changes
of source code and libraries, ex-
tract the textual information of
repositories, and combine the
changes and textual information
to general release notes; (2) Empir-
ical studies to evaluate the perfor-
mance of these generated release
notes.

990 release
notes, source
codes, libraries,
documents related
to architecture,
requirements, and
licenses

Software documen-
tation and software
evolution

Abebe et al. [12] (1) Identify the information in 85
release notes of 15 projects and
suggest (predict) the issues that
should be listed in the release
notes; (2) Identify the difference
in release note contents between
major and minor releases.

(1) Manually analyze the 85 re-
lease notes; (2) Machine learning
to predict the issues that should be
listed in release notes.

85 release notes Software mainte-
nance

Fischer et al. [19] Extract bugs and release data to
analyze software evolution.

Manually construct a Release His-
tory Database.

Bug reports and
source code

Software evolution

Phillips et al. [21] Extract information to understand
group decision-making processes
by analyzing release notes.

Semi-structured interviews. Source code Traceability and
software evolution

Klepper et al. [22] Generate targeted and informative
release notes.

Apply a stakeholder targeted de-
livery model.

Requirement docu-
ments

Software mainte-
nance

Our work (1) Investigate the characteristics
of release notes and their con-
tents in real-world release notes of
GitHub projects (i.e., from "who"
and "what" aspects); (2) Under-
stand how do release note pro-
ducers and users perceive release
notes, and what gaps exist be-
tween them.

A large scale empirical study, in-
terviews, and online surveys.

(1) 32,425
release notes of
GitHub projects,
other relevant
information (i.e.,
domain of the
projects and timing
of release note
documentation);
(2) Qualitative data
(i.e., textual and
audio information)
collected in the
interviews and
surveys

Software devel-
opment, design,
testing, evolution,
traceability,
and software
documentation

any referenced data sources and outside links were not
studied.

Developers collaborate in developing projects and con-
tributing software artifacts [23], but the collaboration ap-
proaches may vary from project to project. Before we con-
ducted this study, we exchanged dozens of emails with
several developers from different GitHub projects to discuss
the process of releasing and producing release notes of their
projects. In the following section, we describe the general
process of releasing and producing release notes in GitHub
projects. We present an example, which includes the key
information about a new release and its release note of the
Visual Studio Code project in GitHub.

• As shown in Fig. 1, one of the contributors, i.e.,
annotation (1), is in charge of releasing new versions
and its release notes (the main release note producer).

• As shown in Fig. 2, the new releases and its re-
lease notes are based on the submitted commits,
i.e., annotation (2). For example, there are 1,440
commits contributed to V1.39 and its release notes.
Each contributor, i.e., annotation (3), is in charge
of summarizing their own "release notes" to report
the features and changes they have built. Then the
main release note producer collects information that

the other contributors summarized to produce the
formal release notes.

In summary, the general process of producing release
notes in GitHub is that each contributor is in charge of
producing their release notes (based one the commits),
and one of contributors collects all relevant information to
produce a formal release note. We term the contributors who
release new versions and release notes as the release note
producers (i.e., annotation (1) and (3)).

3.2 Goals and research questions
Release notes should be periodically delivered to users to
inform them about incremental updates of software projects.
However, even though the release note is an important
software artifact, there is a lack of a widely accepted and
systematic understanding of what a release note is. To get
a broad oversight on release notes, we prepared a research
protocol to define key research questions. We initially identi-
fied seven concerns about release note production and usage
in practice (see Table 2). These concerns include several
primary considerations, e.g., what information is typically
documented in release notes.

We decided to conduct a descriptive case study [24] that
uses mixed qualitative and quantitative approaches to sys-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

Fig. 1. V1.39 and its release note of the Visual Studio Code project in
GitHub. Annotation (1) indicates the main producer of the release and
the release note.

Fig. 2. Commits and contributors for V1.39 and its release note. Annota-
tion (2) shows the number of commits related to V1.39 and the release
note. Annotation (3) shows the contributors to V1.39 and the release
note.

tematically analyze and portray release notes. We applied
the Goal/Question/Metric (GQM) approach [25], which fo-
cuses on specific goals, and traced the goals from analyzing
the data, and finally provide a framework for interpreting
the data in terms of the goals. To be specific, we analyze
and characterize the information in release notes of GitHub
projects, and we interview and survey the opinions from the
professionals who produce and use release notes. This is for
the purpose of understanding the characteristics of release
notes from the point of view of release note producers and
users in the context of release note production and usage in
practice. The metrics applied (for each RQ) in this work are
listed in Table 9 to 11 of Appendix.

Based on seven key concerns summarised in Table 2,
we defined two main RQs, and the answers to the RQs
can be mapped to the goals of this study. A comprehensive
understanding of release notes in practice, including who is
involved in the release note production and what informa-
tion is included in release notes (RQ1). What considerations
professionals have of release notes (RQ2.1). What discrep-
ancies exist between release note producers and users on
perceiving release notes, and how might we address the
discrepancies (RQ2.2).

RQ1: Who produces release notes, and what information
is included in release notes? - (C1, C2, and C3)

RQ2: How do release note producers and users perceive
release notes? - (C1 to C7)

RQ2.1: What are the typical considerations release note
producers and users have of release notes?

RQ2.2: What are significant discrepancies between
release note producers and users in perceiving release
notes?

TABLE 2
Concerns about release note production and usage in practice.

ID Concerns about release note production and usage

C1 What information is included in release notes, and how are
they structured?

C2 Who produces release notes?
C3 Who uses release notes?

C4 What software activities benefit from the information con-
tained in release notes?

C5 What are the relationships between release notes and other
software artifacts?

C6 What are the limitations of release note production and
usage in practice?

C7 Do release notes effectively help users during software
development in practice?

3.3 Case study approach and process

To answer the RQs listed in Section 3.2, we conducted
a descriptive case study to investigate release notes. An
overview of the process in this case study is shown in
Fig. 3. The descriptive case study3 consists of three stages.
Stage 1: A large scale empirical study on release notes
of GitHub projects (in Section 3.3.1); Stage 2: Interviews
with professionals on how do they perceive release notes
in practice (in Section 3.3.2); and Stage 3: An online survey
for confirming and extending the conclusions about release
notes derived from Stage 1 and Stage 2 (in Section 3.3.3).

3.3.1 Stage 1: A large scale empirical study on release
notes

One of the key goals of this study is to understand the
characteristics of release notes (i.e., RQ1). We targeted open-
source projects and collected release notes from GitHub-
hosted projects.

Data collection: To make sure that the GitHub projects
we investigated are non-trivial, we defined three criteria for
project selection: (1) the project was launched at least two
years ago and is active (i.e., the software is working and
the repository of the project is continually being updated);
(2) the number of release notes in the project is more than
20; and (3) the project is contributed to by more than 20
contributors (i.e., committers). We used the search function
provided by GitHub to target the projects with 6,000 or
more stars, and the number of stars of a repository works
like an easily accessible and reliable proxy to its popularity
[26]. We got 3,142 projects and randomly selected 1,000
projects which meet the selection criteria. We did not include
the projects in the Documentation domain, as this domain
generally corresponds to books, tutorials, and source code
examples (e.g., examples of Java design patterns). In addi-
tion, we excluded the projects, which follow a same pattern
to generate release notes to ensure the data we collected are
valid (i.e., the release notes are not potentially produced by
bots4).

We finally collected 32,425 release notes and other the
related information of the selected projects. The collected
data items of Stage 1 are shown in Table 9 of Appendix.

3. The ethics approval number of this work from Monash University
is 23040-40257.

4. https://github.com/apps/conventional-release-bot

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

of the study.pdf of the study.pdf of the study.pdf

Stage 1: A large scale empirical
study on release notes

Release Note
Production and

Usage in Practice

C1: What informantion is included in release notes?
C2: Who documents release note?
C3:
C4:
...
C8:

Release note
producers and

users' perspectives
on release notes in

practice

Outcome: Categories of
documented information and

charateristics of release notes

Concerns

GitHub
projects

Release notes of
selected projects

Stage 2: Interview Stage 3: Online survey

Characteristics and
documented

information in release
notes

Qualitative data
collected from
open-ended
interviews

Qualitative Data
collected from online
surveys

Key considerations about
release notes from

professionals' opinions

Outcome: 1. Discrepancies of understanding
release notes between release note producers and

uses. 2. Key considerations on release notes

Statements on
release notes from

professionals

Project selection
criteria

Scores on the statements
from release note producers

and users' perspectives

Fig. 3. Overview of the methodology.

Data analysis: As shown in Table 9 of Appendix, we
used descriptive statistics to analyze the quantitative data
items (i.e., D1-D3, D5, and D6). We analyzed data item D4 to
classify the selected projects into five domains. The detailed
data analysis of D4 is shown in Section 4.1.2. We applied a
bottom-up method (i.e., Constant Comparison) to analyze
the qualitative data (i.e., D6) to generate the topics of infor-
mation documented in release notes. Bottom-up approaches
are suitable for specific domain knowledge concepts when
there are no predefined and existing concepts in that domain
[27].

We first performed a pilot data labeling exercise by
randomly selecting 150 release notes from 10 projects to
mitigate personal bias in the labeling. In the formal data
labeling, we invited another Ph.D. candidate, who spe-
cializes in software engineering, to label the information
documented in release notes. All the collected release notes
were manually labeled by two annotators (i.e., the first
author and the Ph.D. candidate). Any disagreements on a
labeled release note were discussed and confirmed with the
second author. To facilitate the manual labeling, we used
MAXQDA5 (a tool for qualitative data analysis) to label the
information of release notes into categories. The process of
Constant Comparison comprises two steps: (1) Open coding
splits the qualitative data into categories. The first author
and the Ph.D. candidate separately coded the same release
notes of the selected 500 projects to generate categories, and
then they checked the categories that were coded by each
other. We identified the categories through refinement and

5. https://www.maxqda.com/

integration of the concepts generated in the open coding. (2)
Axis coding was then executed by the first author and the
Ph.D. candidate. They individually coded half of the release
notes of remaining projects. All coding results were then
confirmed by the second author. By the end of the labeling,
we made a final reliability test and calculated Cohen’s
kappa reliability coefficient for categorizing the release notes
between the two annotators, and the value is 0.81. This
indicates a strong agreement between the two annotators.
The coding results are shown in Table 5 of Section 4.1.2.

Among the selected 1,000 projects, it is possible that
many projects use their specified ways (outside GitHub)
for documenting release notes (see Section 3.1). Conse-
quently, the release notes we collected from these projects (in
GitHub) might contain incomplete information. To ensure
the validity of the collected data, we conducted another
round of manual check on the selected projects and their
release notes. Specifically, we analyzed a representative
sample size, and we used a sample size calculator to cal-
culate how many projects should be checked. We set the
error margin as 3% and the confidence level as 95% [28].
The calculation result shows that we should randomly select
and check 516 out of the 1,000 projects and their release
notes. The result of the manual check shows that 9 projects
(i.e., 1.7% of the selected projects) explicitly mention that
they document official release notes outside of GitHub.
In addition, we compared the release notes documented
in GitHub with official release notes documented outside
GitHub for the same release, and we noticed that official re-
lease notes are documented with more detailed descriptions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

and rationale for key changes. However, in this work, we
classified the information in release notes into a relatively
higher level (see Table 5). Based on the above, we believe our
findings that are derived only from analysis of information
on GitHub remains valid.

3.3.2 Stage 2: Interviews
The purpose of the interview was to understand how pro-
fessionals perceive release notes. This section presents the
process of the interview.

Data collection: We prepared a set of questions [29] to
interview professionals: (1) Demographic questions about
the background and the work experience of the intervie-
wees; (2) 15 specific questions extended from the seven
concerns (listed in Table 2) to interview professionals about
their opinions and considerations on release note produc-
tion and usage in practice. These questions cover a set of
software activities, including software design, coding, and
maintenance. We also discussed the results of Stage 1 with
the interviewees.

We invited professionals from our networks in the soft-
ware industry who are working full time in different roles
and functions (e.g., developers and architects) to partici-
pate in the interviews. We used the snowballing sampling
method to invite professionals who participated and willing
to take an interview from their contacts to get us more
samples [30]. We sent 20 formal invitations to invite po-
tential interviewees, and 15 interviewees finally agreed to
participate in the interviews from ten IT companies in dif-
ferent software domains worldwide. During the interviews,
we asked their experience in release note production and
usage, and the interviewees identified themselves as release
note producers or users based on their work experience. A
summary of the background information of the interviewees
is shown in Table 14 of Appendix. After conducting all
the interviews, we transcribed the audio answers of each
interview into a text file. The detailed extracted data items
are presented in Table 10 of Appendix.

Data analysis: Similar to Stage 1, we applied descriptive
statistics to analyze the quantitative data item (i.e., D8)
and Constant Comparison method to analyze qualitative
data to generate topics and statements of the interview
contents (i.e., D8). The data analysis methods are shown in
Table 10 of Appendix. To reduce personal bias in qualitative
data analysis of interview contents, the first author and the
invited Ph.D. candidate separately analyzed and coded the
qualitative data to generate the topics and statements of the
interview contents. Any inconsistencies in the coding results
were cross-examined by multiple authors. After completing
the data analysis and labeling process, multiple authors
discussed disagreements to reach a common consensus. The
overall Kappa value of the data analysis is 0.82. Eventually,
based on the results of Stage 1 and the interviews, we got
27 statements grouped into eight topics shown in Table 8 of
Section 4.2.1.

3.3.3 Stage 3: Online survey
According to the guidelines for selecting empirical methods
in software engineering research [31] [32], surveys aim to
"collect quantitative but subjective data and objective data such
as demographic information, for example, a subject’s age and

educational level." The purpose of the online survey in this
work was to confirm the results of Stage 1 and the state-
ments made by the interviewees (i.e., Stage 2) with more
participants.

Data extraction: We adopted Non-Probabilistic Sam-
pling methods [33], i.e., convenience sampling and snowball
sampling, to invite participants. The target participants of
the online survey were those who have experience produc-
ing and using release notes in practice. We followed two
steps to invite participants:

• We invited potential participants from the selected
GitHub projects of Stage 1 who are from various
countries worldwide. We received 108 responses out
of 1,715 sent emails (i.e., 6.3%).

• We invited professionals within our social network
from various countries and IT companies and asked
their help to disseminate our survey. The IT com-
panies include Microsoft, Alibaba, Baidu, Google,
Huawei, Hengtian, and other small to large compa-
nies worldwide. By following this strategy, we got
206 responses out of 1,000 emails sent.

In total, we received 314 valid survey responses. The par-
ticipants’ professional experience varies from 0.5 to 14 years,
with an average of 5.8 years. The top two countries where
the participants reside are China and Australia. Participants
were expected to score statements (see Table 8) about release
notes according to the "Agreement Level" (Strong Agree,
Agree, Neutral, Disagree, and Strong Disagree).

The use of Likert scales to construct surveys has a long
history [34]. The Likert scales are intended to map individu-
als’ perceptions and attitudes, which are inherently difficult
to measure. However, the use of the Likert scales leave
researchers unsure about whether some participants select
the most time-efficient opinion. In this study, the "Neutral"
option in the online survey could be the most time-efficient
option for participants, i.e., they do not need to commit an
opinion one way or the other for a question. However, we
wanted respondents to have an option to express that they
did not have a preference or view regarding a particular
statement.

We asked participants about their roles and functions
in development, and we started the online survey with an
optional question "Are you a release note producer or users?"
that divides the questionnaire into two sections for Release
Note Producer and Release Note user. The participants
can also provide comments and rationale supporting their
options. Our questionnaire can be found in the following
links6.

Data analysis: The analyzed data items are shown in
Table 11 of Appendix. We analyzed the distributions of
responses (in the Likert scale) from the participants (i.e.,
D9 and D10) and compared the distributions of the two
groups (i.e., Release Note Producers vs. Release Note users)
using Effect Size. The full results of the online surveys are
shown in Section 4.2.2. We analyzed comments (i.e., D11)
and described some of them in Section 4.2.2.

6. https://forms.gle/xULKydpakT1Kc59T8 (English version)
https://www.wjx.cn/jq/54361171.aspx (Chinese version)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 3
Statistical information of the selected GitHub projects.

Statistic Mean Min Max
project size 3,786,517 1,276,812 9,876,812
project star 7,198 6,003 15,909
team size 220 98 1,902

TABLE 4
Distribution of release notes in the selected projects.

Number of release notes Number of projects
20-100 238
100-200 276
200-300 471
300-400 15

4 RESULTS

We describe the results of the large scale empirical study
(to answer to RQ1) in Section 4.1. The results of profes-
sionals’ opinions on release notes are shown in Section 4.2.1
(to answer RQ2.1). The discrepancies between release note
producer and users are presented in Section 4.2.2 (to answer
RQ2.2).

4.1 Results of RQ1: Who produces release notes, and
what information is included in release notes?
We report the results of RQ1 in this section. For statistical
information about the 1,000 selected GitHub projects, we
recorded: (1) Project size (i.e., the number of source code
lines); (2) Popularity (i.e., stars of projects); and (3) Team
size (i.e., how many contributors to the projects). We present
the detailed results in Table 3. In addition, for the collected
release notes, we made a tally of the distribution regarding
release notes in the GitHub projects, and results show that
the collected release notes are distributed (i.e., the collected
release notes are not only from a few projects), for example,
238 projects have 20 - 100 release notes (see Table 4). We
then extracted and analyzed the relevant information to
answer RQ1 from two perspectives: the "Who" and "What",
respectively.

4.1.1 Who produces release notes
As we described in Section 3.1, for a new release, each con-
tributor documents (i.e., release note producers) their own
"release notes", and then, one of the contributors collects
individual’s release notes for producing a formal release
note.

Investigating the statistical information of how many
producers are involved in contributing to release notes
could help understand the process of release note produc-
tion. We counted the number of the contributors (i.e., com-
mitters) of each release and their commits. The statistical
results are summarised in Fig. 4. These indicate:

1) For each GitHub project, on average, there are six (6)
main release note producers who lead collecting
information for release note production (e.g., the
annotation (1) of Fig. 1). The main release note
producers vary between releases (see Fig. 4 (a)). 17
release note producers (e.g., annotation (3) of Fig. 1),

for release notes.pdf for release notes.pdf for release
notes.pdf

(a)

0

2

4

6

8

10

12

14

16

Main release note producers /
each GitHub project

(b)

0

50

100

150

200

250

300

350

400

Contributors /
each GitHub project

(c)

0

5

10

15

20

25

30

35

Release note producers involved /
each release note

Fig. 4. Distribution of release note producers. We report box-plots to
show the min, max, and average number of release note producers and
contributors of each project.

on average, are involved in contributing to a release
and its release note (see Fig. 4 (c)); 220 contributors,
on average, are involved in contributing to a GitHub
project (see Fig. 4 (b)).

2) In our sample, we labeled 4,343 release notes for
major releases. If a release is tagged as a major
release, we labeled its release note as a major release
note. For the releases without any tags, we labeled
their release notes as minor. 37 commits, on average,
contribute a major release and its release note. 8
commits, on average, contribute to a minor release
and its release note of each project.

3) The average number of commits that the main
release note producers submitted is 97, which is
4.4 times higher than the number of commits that
other release note producers (18 commits) submit
for each project. One potential reason is that the
main release note producers are core contributors
(e.g., architects) of the projects. They are in charge
of driving the projects forward. Identifying main
release note producers and building an effective
personalization strategy (i.e., establishing a collabo-
rative network between core release note producers
and other contributors) could be beneficial for infor-
mation sharing, software development, and artifact
documentation.

As release notes comprise the information related to
new features, changes, and issues spanning the whole de-
velopment life cycle, it is a vital artifact to development.
The quality of release notes depends, among others, on
its producers. The statistical results above could help to
understand the process of release note production and some
characteristics of release notes (i.e., who produces release
notes of GitHub projects). However, it is unclear how release
note producers choose the features and changes they use to
summarize a release note adequately. It is unclear how the
main release note producers document the release notes by
selecting and grouping the critical information for release
note users. These uncertainties motivated us to interview
professionals and conduct surveys to better understand
their opinions and experience of release note production and
usage.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

TABLE 5
The categories of the documented information in release notes.

Category Description Example Percentage

Issues fixed Information about what issues have
been fixed.

Example 1: "Fix possible ESP8285 flash problem by updating
Flash Chip Mode to DOUT during web upload" - web fixed

79.3%
Example 2: "Fix boot loop when selecting module Sonoff 4CH
or Sonoff Touch on non ESP8285 hardware" - hardware fixed
Example 3: "Fix client not working caused by reconnecting"
- network fixed
Example 4: "Fix firewalls for OpenStack" - firewall issue fixed
Example 5: "Fix the HTTP response code when downloading
URLs" - broken link fixed
Example 6: "Revert fix connection issues with withings API
by switching to a maintained codebase" - API issues fixed
Example 7: "Compiler: handle negative length in code frame
repeat" - compiler issues fixed

New features Information about new features and
functions that are newly added into the
systems.

Example: “The v1.1 release brings many new features since
the last stable one. It is focused on two major themes, which
are showing workload resources and user experience redesign”

55.1%

System
internal
changes

Information about internal changes of
the systems, including changes of
high-level design (e.g., component
changes), low-level design (i.e.,
methods/instance
variables/deprecated class added,
renamed, and removed), and other
changes (i.e., libraries/APIs).

Example 1: "Not that when use as a route component in
vue-router, these properties will be ignored because async
components are resolved upfront before the route navigation
happens. You also need to update vue-router to 2.4.0+ if
you wish yo use the new syntax for route components" -
Component level changes

25.1%

Example 2: "Remove the unnecessary newline and unused
vars" - Event removal
Example 3: "Added the third parameter column for Table’s
row click event" - event addition

Non-functional
requirements

Information about a set of quality
attributes of systems (for example,
security and performance).

Example 1: "Significant kube-proxy performance improve-
ments for non UDP ports" - non functional requirement
improvement

10.3%

Example 2: This release will be supported from
ESP8266/Arduino library core version pre-2.6.0 due to
reported security and stability on previous core version - non
functional requirement issues solving
Example 3: "Vue congig. performance now defaults to false
due to this impact on dev mode performance. Only turn it
on when you need it" - potential problem of non-functional
requirements

Documentation
update

Information about updated software
artifacts, e.g., architecture documents.

Example 1: "Significant change: upgrades calico/canal for
security vulnerability" - architecture documentation update 9.5%Example 2: "Existing Calico user on clusters that were created
prior to kops 1.8.0 need to be updated for the new "Default-
Deny" behavior for Kubernetes Network Policies" - policy
document update
Example 3: "Move kops-controller to use a yaml configuration
file" - configuration documents update
Example 4: "Lots of documentation have been polished"
- other software artifact update

Configuration Information about installation, hard-
ware, and network requirements to run
the software.

Example: "For initial configuration this release supports web-
server based WifiManager or serial based command interfact
only. Support for WPS and SmartConfig has been removed"

2.8%

Required fur-
ther actions

Information about further actions if us-
ing the software.

Example: "Required action: Please ensure you have backed up
you data before upgrading"

2.1%

Refactoring
and reuse

Information about components or the
software refactoring.

Example: "Refactor instance group/rolling-update code" 1.9%

4.1.2 What information is included in release notes

Documenting release notes is a process to accommodate the
domain-specific characteristics of the project. The informa-
tion contained in release notes is context-dependent for each
project and not directly generalized to the entire software
[35] [36]. In this work, we only considered release notes of
regular releases (i.e., major and minor releases). In contrast,
we did not include release notes for beta, pre-release, or
alpha releases, as we found those releases normally have no
release notes, or the release notes are often very shot and
not informative [37].

We analyzed D4 and D6 data items shown in Table
9 of Appendix, and we focus on the correlation between
the project domain and the information documented in
release notes. GitHub does not include information about
the domain of a project, but according to Borges et al. [26],
the domains of GitHub projects could be classified into
six domains (i.e., Application Software, System Software, Web
Libraries and Frameworks, Non-web Libraries and Frameworks,
Software Tools, and Documentation) [37]. To identify the do-
mains of the selected projects, two annotators (i.e., the first
author and the invited Ph.D. candidate) manually checked

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

the domains of the selected projects. Specifically, the first
author and the Ph.D. candidate labeled half of the selected
projects independently. They then cross-checked the results
that were labeled by each other, and any disagreements
were discussed and resolved with the help of the second
author. We carried out a reliability test for the domain la-
beling between two annotators, which is 0.80. This means a
strong agreement between the two annotators regarding the
domain classification. Please note that we did not include
the projects in the Documentation domain, as this domain
generally corresponds to books, tutorials, and source code
examples (see Section 3.3.1).

As described in Section 3.3.1, we (i.e., the first author
and the Ph.D. candidate) classified the 32,425 release notes
into eight main categories. Table 5 shows the classified
categories, brief descriptions, representative examples, and
percentages. Note that a release note can include multi-
ple information categories; as such, the total percentage
of all categories is greater than 100%. Information related
to Issues fixed (i.e., 79.3% of the release notes) and New
features categories (i.e., 55.1% of the release notes) is the
most documented in the release notes. These two categories
are significantly larger than other categories. Issues fixed
category includes several sub-categories (e.g., web fixes and
hardware fixes), which describe various tasks during the
development. New features category describes the new
features and functions, which are newly added into the
projects. System internal changes category ranks the third
most common documented information (i.e., 25.1% of the
release notes), which includes several sub-categories, e.g.,
component level changes, event removal, event addition, li-
brary, and API changes). Non-functional requirements cat-
egory ranks the fourth (10.3%) most common documented
information in release notes, and the most documented
non-functional requirements are performance and security
related. The Documentation update category accounts for
9.5% in all the release notes. This was divided into four
sub-categories: architecture documentation update, policy
update, configuration files changes, and other software
artifacts update. Much smaller numbers of release notes
document Configuration information, which accounts for
2.8% of the release notes, and this category is about software
installation and user notifications. The final categories are
Required further actions and Refactoring operation cate-
gories, which account for 2.1% and 1.9% of the release notes,
respectively. For Required further actions category, we
found several release notes of 11 projects that set up a poll to
get users’ feedback about the new releases. The percentages
of categories in Table 5 indicate that the information related
to Issues fixed and New features categories has priorities
to be documented in the release notes. We also found that
release notes in GitHub projects are quite long, and most of
the release notes tend to document a set of issues and bugs
that have been fixed.

In addition, we classified and analyzed the information
in release notes regarding different domains. The results of
this analysis are shown in Table 6. The second column shows
the top three documented information categories and their
percentages in the five domains. We observe that the most
documented information category varies from domain to
domain. For example, for Application Software and Sys-

TABLE 6
Information categories in release notes of different domains. We

reported the top three documented categories that documented in
release notes in the five domains.

Domain Top three categories

Application Software
New features - 65.7%
Issue fixed- 65.3%
System internal changes - 39.4%

System Software
New features - 89.7%
Issue fixed - 67. 3%
System internal changes - 34.5%

Web-libraries and
Framework

Issue fixed - 65.7%
New features- 23.4%
Configuration - 7.8%

Non-web Libraries and
Framework

Issues fixed - 79.7%
New features - 65.3%
System internal changes - 23.1%

Software Tools
Issue fixed - 65.7%
System internal changes - 36.3%
New features - 31.4%

tem Software domains, the most documented information
category is related to New features. A potential reason is
that projects in these two domains provide a range of func-
tionalities for end-users (e.g., MS Word and Google Doc),
which need to be frequently changed and documented. The
most documented information category in the release notes
of Web-libraries and Framework, Non-web Libraries and
Framework, and Software Tools domains is all related to
Issues fixed. A potential reason is that most users of projects
in these domains tend to be developers, who are more likely
to know lower-level information related to new releases.

To investigate the granularity of information in the re-
lease notes at different abstraction levels for the major and
minor releases, we analyzed the 4,343 release notes of major
releases and randomly selected 4,050 release notes of minor
releases. We then coded the information into four types:
"System level", "Package level", "Class level", and "Cannot
be specified". The results are shown in Table 7. The results
indicate that information at "Class level" (41.5%) is the most
documented in the minor releases, e.g., information vari-
ables and objects. Information is classified into the package
level is related to the communications between packages
or the changes to packages. The information is classified
into "System level" (40.5%) is mostly in major releases,
for example, information about architecture patterns and
models. This is reasonable in that the focus of software
design normally starts from the high (e.g., system and
package) level and shifts to a lower (e.g., class) level when
the software is refined, implemented, and refactored. We
also listed one category of information in Table 7 that can not
be specified, for example, the method information highly
related to project contexts is difficult to classify. In addition,
we observe that 71.5% of the information in release notes
of GitHub projects is developer-oriented and technical, i.e.,
those who would read through the source code of projects.

As we discussed in Section 2, some key prior works have
investigated and categorized the contents of release notes.
For example, Abebe et al. identified six different information
types that exist in 85 release notes [12]. Their content cate-
gories include tiles, an overview of the system, recourse re-
quirement, installation, addressed issues, and caveat. These

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

TABLE 7
Information at the abstraction level in release notes. We reported the

results of the documented information at abstraction levels (i.e., system,
package, class levels) in release notes for major and minor releases.

Abstraction
level

Description Main
release

Minor
release

System
level

Information documented at
the system level or system
architecture

40.5% 14.5%

Package
level

Information documented at
the package level

34.7% 33.2%

Class level Information documented at
the class level, for exam-
ple, fixed issues of class in-
stances names

13.0% 41.5%

Cannot be
specified

Information is closely re-
lated to projects that hard to
specified (e.g., a method)

11.8% 10.8%

categories are relatively high-level. The potential reason is
that release notes collected from the projects (e.g., Dropbox
and Firefox) are targeted more towards the software end-
users. We focused on the release notes in GitHub projects
that are more likely about the detailed changes about the
projects, such as the specific bugs that have been fixed. As
such, the categories of their work and ours have significant
differences. Moreno et al. identified 17 different types (e.g.,
changes to documents and files) from 990 release notes [3].
Some categories of their work are similar to ours, but their
work focuses on a finer level of granularity. The categories
they summarised are the foundation for the Change Extrac-
tors usage (i.e., capture changes to the source code, libraries,
documentation, and license). There are some overlaps be-
tween their 17 categories and ours, such as New Features
and Issues Fixed. However, we classified the information
into a relatively higher level, for example, we classified all
changes, including source code changes (e.g., methods and
instances changes), libraries changes, architectural changes
into the System internal changes category (see Table 5).

Regarding our empirical study of analyzing release
notes, there are a set of significant differences between our
work to these prior works:

• We investigated release notes at a much larger scale
(i.e., 32,425 release notes). This provides a more com-
prehensive understanding of release note character-
istics in GitHub projects.

• We investigated the general process of release note
production (e.g., how many release note producers)
in GitHub projects.

• We analyzed the information in release notes at the
abstraction levels for major and minor releases.

• We analyzed the information contained in release
note for major and minor releases in different soft-
ware domains.

Project size, popularity (i.e., stars), and team size of the
projects (see Table 3) have an effect on the productivity of
software activities [38]. Based on the results of RQ1 (the
"who" and "what"), the information contained in release
notes vary from project to project, from domain to domain.
Our statistical analysis results were based on the projects

in the range described in Table 3, and being more aware
of the factors impacting release note production and usage,
practitioners could produce and exploit more effectively.

Key findings of RQ1
Who: There are many release note producers (i.e., con-
tributors) who document release notes in GitHub projects.
There are usually main release note producers who play
critical roles and are more influential in project develop-
ment [39]. Building an effective personalization strategy
between the core release note producers and other con-
tributors would help information sharing, artifact docu-
mentation, and software development.
What: Release notes contain rich and important informa-
tion, which spans the whole development life cycle. The
information in release notes for major and minor releases
is significantly different, and the information in release
notes of various domains is also dissimilar.

4.2 Results of RQ2: How do release note producers
and users perceive release notes?
We describe the results of the interviews and the online
survey in this section. The results of what common consider-
ations professionals hold of understanding release notes are
shown in Section 4.2.1. The discrepancies between release
note producers and users in perceiving release notes are
presented in Section 4.2.2.

4.2.1 Results of RQ2.1: What are the typical considerations
release note producers and users have of release notes?
We conducted interviews with professionals, and we asked
them a set of open-ended questions about release note
production and usage. During the interviews, eight in-
terviewees identified themselves as primarily release note
producers (i.e., I1, I2, I4, I10, I11, I13, I14, and I15); the rest of
the interviewees identified themselves as release note users.
The detailed background information of the interviewees is
listed in Table 14 of Appendix.

We concluded eight topics based on the results of Stage
1 and the interviews, and each topic includes several state-
ments (see Table 8). We linked interviewees’ considerations
to the survey responses by referring to survey statements.
We numbered the statements in order (S1 through S27) and
we annotated the statements with statistically significant
differences as [Sx], which means Statement x has a statisti-
cally significant difference between Release Note Producer
and Release Note User that is confirmed by the participants
of the online survey.

Topic 1: Human and organizational factors involve-
ment. Human and organizational factors are vital for soft-
ware development, for example, the project organization,
the size of the development team, and challenges in commu-
nicating with users. Such factors impact the effectiveness of
software activities as well as software documentation. Five
(5) interviewees (release note producers) said that produc-
ing release notes is normally done by several core contrib-
utors to the projects (e.g., architects and project managers)
[S1]. A consequence of this is that other internal developers
might not be aware of the detailed contents of release note
documentation and associated development activities [S3].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

TABLE 8
Survey results. Green cells represent statistically significant differences between Release Note Producer and Release Note User. Blue cells

indicate where Release note producer agrees more. Orange cells indicate where Release note users agree more. The number in the Likert
Distribution column indicates the size of each group. The bars in the Likert distributions from left to right are: Strongly Disagree (1 score), Disagree

(2 scores), Neutral (3 scores), Agree (4 scores), Strongly Agree (5 scores).

Likert Distributions P-values Effect Size
Producer Overall User Overall Producers Producers

Topic Statement (98) Score (210) Score vs. Users Users

T1. Human and
organizational
factors
involvement

Building a personalization strategy could be helpful for release note producing. S1 4.09 4.10 0.751 -0.01
Core developers involved in documenting release notes are also critical for software development. S2 4.14 4.01 0.056 0.13

Not clear of my responsibilities aligned in documenting release notes. S3 3.53 3.87 0.000 -0.34

The effectiveness of producing release notes is slow. S4 3.71 3.56 0.232 0.15

T2. Tool usage General management tools to manage and produce release notes are helpful. S5 4.11 3.93 0.138 0.094
An automatic tool is needed for producing release notes effectively. S6 3.45 3.78 0.120 -0.18

T3. Key
information
and documenting
styles

Information related to issues fixed, such as bug fixed information, should be made more clear. S7 3.20 4.04 0.000 -0.84

Non-functional requirements are important and needed to included in release notes. S8 4.04 3.38 0.000 0.66

Release notes provide the historical guidance of projects (e.g., software evolution). S9 3.98 3.80 0.148 0.18
Collecting (searching) key information to produce (use) release notes is timing-consuming. S10 4.05 3.92 0.266 0.13

Potential issues (risks) of current projects should be included in release notes. S11 3.98 3.91 0.266 0.07
The documentation style (e.g., the length of release notes and users targeted) for release notes is critical. S12 4.18 4.16 0.947 0.02

T4. Software
requirements

Closely relate release notes with certain incremental requirements of projects. S13 3.59 3.75 0.282 -0.16

Include expecting release updates (coming requirements for the next release). S14 4.03 3.30 0.000 0.73

Release notes could facilitate internal users to discuss key requirement changes of projects. S15 4.06 3.32 0.000 0.74

T5. Software
design

Information in release notes can facilitate to trace design decisions and rationale, and vice versa. S16 3.98 3.67 0.108 0.31
Significant architectural changes can be found in release notes of major releases. S17 3.94 3.66 0.306 0.147

Release notes could provide users with an official description of the design decisions. S18 3.85 3.39 0.000 0.28

Information in release notes could help software refactoring and re-architecting. S19 3.85 3.75 0.090 0.10

T6. Software
testing

Release notes benefit and are highly related to software testing activity. S20 3.45 3.78 0.001 -0.33

Testers engaged later will cost more time and efforts of releases and producing release notes. S21 4.02 3.80 0.241 0.22

Release notes with unclear descriptions of issues are limited in helping the test team. S22 3.01 3.89 0.000 -0.88

T7. Software
evolution

Information in release notes indicates how projects have evolved. S23 3.74 3.70 0.995 0.04

Release notes help internal release note user to be aware of the risk (debt) exists of the projects. S24 4.02 3.40 0.000 0.62

Information of major release notes would be useful for understanding software architecture evolution. S25 4.01 3.82 0.166 0.19

T8. Software
artifacts

The agile development process impacts the quality of release notes. S26 3.91 3.76 0.063 0.15
Establishing traceability between other software artifacts and release notes. S27 3.71 3.65 0.072 0.06

Two (2) interviewees (release note producers) mentioned
that collecting complete and detailed information of all
changes, features, and functionalities is quite challenging
and time-consuming. In [3], Moreno et al. also reported that
participants explained the time needed for creating a release
note between four and eight hours. Two (2) interviewees
(i.e., release note producers) mentioned that release note
producers vary between releases (i.e, not always certain
people who document release notes). Three (3) interviewees
(two release note producers and one user) mentioned that
being aware of the process of release note production would
give a clue to the hierarchy of developers in software devel-
opment, and it is important to be clear "who knows what"
[S4].

As results shown in Section 4.1.1, 17 contributors, on
average, are involved in release note production for each
release. However, the interviewees’ feedback shows that the
current information-sharing hinders producing and using
release notes effectively. One promising way to improve
the productivity of development and artifact documentation
is to identify the core developers and to build effective
communication and organizational strategy. This would fa-
cilitate better information sharing for documentation and
positively impact development [S2][S5]. For example:

• "Update the milestones tab on release tracking spreadsheet.
Check milestones tab of release template for how to. This
will ideally be ready at least two weeks prior to the
start of the cycle, with feedback received from key
stakeholders (QA, RelEng, RelMan) prior to wider
publishing."

• "It is the need for the release manager to email the
release-drivers list prior to the creation of the builds (ide-
ally shortly after the decision is made to go forward with
the release) to notify all stakeholders of the forthcoming
release. Also, the release manager should verify that the
rollout percentages in Balrog and Google Play for the
current release are set as expected (taking into account
any blocking quality issues) to avoid unexpected fallback
versions when the new release ships. Finally, if there are
security fixes being included in the release, email abillings
(or whoever from the security team handles CVEs and
security advisories) to ensure that they are aware of the
bugs being fixed."

• "The details of how a release plan created depend greatly
on the size and composition of a team."

Topic 2: Tool usage for release note production and
management. As discussed in Section 2.1, some works have
developed tools that can be used for (semi) automatically
producing release notes. However, our interviews found no
participants that have adopted such tools (e.g., ARENA [3])
for automatically producing release notes. Seven (7) inter-
viewees mentioned that they applied basic text management
tools (e.g., issue trackers and Wikis) to help them keep track
of changes for producing and managing release notes [S6].
However, they also mentioned that they still need to spend
considerable manual effort creating the release note text
from these sources. Three (3) interviewees (two release note
producers and one release note user) mentioned that de-
veloping tools for automatically documenting release notes
would be promising. For example, tools for finding what

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

information should be documented in release notes, and
linking software artifacts to release notes would be useful
for making release notes more informative [S5]. Examples:

• "With the right process and tools, we can significantly
increase the usefulness of release notes and leverage them
to create happier customers. We can view this as a “release
notes maturity model” with increasing sophistication of
release notes leading to increased quality."

• "If you use any issue-tracking system or a product man-
agement tool such as all-in-one product management
platform Hygger.io, you may definitely apply it to generate
your Release Notes."

Topic 3: Key information in release notes and general
documenting styles. We identified six statements within
this topic, such as interviewees’ common considerations
on key information needed, general documenting styles,
and information collection considerations. Eleven (11) in-
terviewees (six release note producers and five release note
users) mentioned that information on "New features" in
new releases is the most important to them. However, they
also said that the descriptions of this type of information
should be improved, and they could often not get enough
and detailed descriptions about the new features [S7].
Three (3) interviewees (all release note users) mentioned
that sometimes it is changeling to find key information,
which is currently scattered in release notes. Four (4) inter-
viewees (all release note users) mentioned that risk manage-
ment is a key activity for project releases, and they expect
information about evolution (e.g., historical information)
and potential risk issues to be in release notes [S8]. How-
ever, they did not extract much-related information when
reading the most current release notes [S9][S11]. Five (5)
interviewees (release note producers) considered that they
normally follow a pattern of documenting release notes,
and almost every release note has similar writing styles.
Even though they realize that such documenting styles
might hinder the release note usage, collecting information
is time-consuming and would take them around six hours
on average [S10][S12]. Furthermore, fourteen (14) intervie-
wees (seven release note producers and seven release note
users) mentioned the importance of clear writing and well-
organized release notes (e.g., having appropriate length
release notes that are not too long or short, and release notes
that are better targeted to their users) [S12] [40] [41].

• "Bug fixes and performance improvements is com-
pletely meaningless. What was fixed? How will perfor-
mance improve? Where along the user experience can we
expect improvements?"

• "Release notes can be a great way to increase customer sat-
isfaction and confidence as well as attract new customers.
However, most information on release notes treat as
an afterthought, something that just has to be done in
order for the version to ship. This leads to a deliverable is
barely informative at best."

• "Nobody likes to read a descriptive information.
Keep it bullet points separated to make it easily under-
standable. If required you can add a line or two for a better
explanation."

• "It is really tedious when I did release notes docu-
ments, and I usually spent a couple of hours on it."

Topic 4: Release notes and software requirements.
Iterations of releases allow developers to change and add
requirements to products. At a high level of abstraction,
release planning and documentation could be described as
selecting an optimal subset of realization requirements in a
particular release. Release planning is where requirements
engineering for market-driven software product develop-
ment addresses the market perspective. The requirements
embodied in releases determine what users can get from
the new releases [42]. Release notes contain rich infor-
mation about the new and implemented requirements of
the projects. We identified three statements of this topic.
Eight (8) interviewees (four release note producers and four
release note users) mentioned that there exists a close rela-
tionship between information documented in release notes
and iterative requirements of projects [S13]. For example,
a set of software requirements may be included in the next
release, but it is necessary to select a part of the requirements
to implement. Five (5) interviewees (all release note users)
stated that they expect more information about new func-
tions in release notes of coming releases, and with these they
can take actions and discuss with other developers before
changes are introduced [S14] [S15].

• "You already know how to prepare a product specification,
how to build great plans and strategies using smart
road maps, prioritize tasks and objectives, create product
requirements document (PRD) and so on and so forth.
It’s time to pay some attention to one more document –
Release Notes."

• "I’m simply including a list of features that they’ve
requested which were implemented in the current
release, along with the descriptions from the require-
ments documents."

• "Another release problem occurs when someone who
doesn’t actually know what’s going on decides to
release the software. Deb, a QA manager, found herself
in a tough spot. Development had turned over part of the
software, and her team had finished preliminary planning
and exploratory testing."

Topic 5: Release notes and software design. The
changes between releases usually involve multiple design
decisions [43]. Software designers have to make changes in
a product over time based on the requirements. The release
note is one of the high-level software artifacts that can
highlight the significant changes between releases. These
changes are highly related to software design decisions, e.g.,
adding new functions. We identified four key statements of
this topic. Eight (8) interviewees (five release note producers
and three release note users) said that release notes should
be a rich source for capturing high-level design decisions
and rationale that can be used for software re-architecting,
refactoring, and reuse [S16]. Four (4) interviewees (all re-
lease note users) mentioned that focus on release notes of
major releases would help extract significant architectural
changes [S17], and such information could help avoid ar-
chitectural erosion [S19]. Three (3) interviewees (all release
note users) mentioned that release notes facilitate some
other internal users (e.g., developers or clients) to discuss
significant design decisions [S18]. Example statements:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

• "Release note as a retrospective review of the project
and architecture evolution."

• "Release notes serve as a great “source of truth” (at least at
a high level) for what has changed. Sales and marketing
teams can use release notes as a resource for when they
talk to customers and plan new content. The very
practice of writing release notes as a team can improve
communication and get more team members aligned on
the release. Support teams can reference release notes, or
point customers directly to them, as they receive questions
or feedback about the product."

Topic 6: Release notes and software testing. Three
statements were identified related to this topic. Five (5)
interviewees (two release note producers and three release
note users) mentioned that release notes are supposed to be
helpful for software testing, as release notes contain a set
of issue fixing information. Testers could better understand
issue fixed information in release notes that will positively
influence testing [S20][S21]. However, four (4) intervie-
wees (release note users) mentioned that although release
notes may contain issues fixing information, some users
(e.g., end-users) would not be interested in which bugs have
been fixed. One interviewee (release note user) claimed that
for internal release note users (e.g., testers), the documented
issue fixing information in current release notes is useful.
However, they also commented that the way organizing
the related information (e.g., linking to the issue tracking
system) should be improved [S22]. Example statements:

• "It’s better to keep track of all development activities right
from the beginning. Don’t aim to prepare the notes at the
very end because you’ll surely miss something. Release
notes have separate sections for testing activity and a
set of stakeholders. Based on and working with your target
audience you’ll need to work out which bits of information
to include, and which can be omitted."

• "Good release testing practices often lead to smoother, more
regular releases. Since testers excel at exploratory and
confirmatory testing, release testing is a place that
testers can directly contribute their skills to releases. "

Topic 7: Release note and software evolution. Develop-
ers undertake a great variety of software activities to accom-
plish new versions of projects. Software projects evolve, but
the original design decisions and rationale could be scat-
tered and lost. Release notes could be a data source, which
supports understanding software evolution. We identified
three statements in this topic. Four (4) interviewees (release
note producers) mentioned that extracting information in
release notes would be a guideline for understanding soft-
ware’s change history and how it evolved [S23]. However,
three (3) interviewees (two release note producers and one
release note user) also stated that release notes should be
improved regarding the description of major release notes

[S24] [S25]. Example statements:

• "Internal Release Note is for company’s own use and
mostly prepared for the Software Testing Team and define
for the next releases. External Release Note is for
Customer and End Users containing information about
latest production release."

• "Release Notes tell your product’s story. As your product
evolves over time, having a historical log of these
changes, improvements, and fixes helps tell your
product’s story. Release notes are a celebration of your
team’s work and the evolution of your product’s growth.
A good change log or set of release notes can be your
product’s historical diary."

Topic 8: Release note and other software artifacts. A set
of software artifacts is produced during the software devel-
opment, and there is a close relationship between various
software artifacts. Three (3) interviewees (all release note
producers) stated that documenting release notes for agile
development is quite challenging. The potential reason is
that a set of unstructured information produced during de-
velopment, and documenting and tracing key information
for release note production is time-consuming and difficult.
Four (4) interviewees (all release note producers) mentioned
that projects adopt agile methods or small companies could
not produce release notes very well, and few software arti-
facts are available for referring to when documenting release
notes [S26]. Seven (7) interviewees (release note producers)
highlighted the importance of other software artifacts for
release note production. Establishing traceability between
other software artifacts (e.g., source code) and release notes
would be helpful for software development [S27], e.g.,
enriching requirement documents and architecture docu-
ments. Example statements:

• "You could also include specific links to other documen-
tation or issues in your issue tracker as well. The goal
here is to include enough information to stakeholders so
they can be knowledgeable about what changes are
coming up."

• "Smaller groups might be able to do more informal,
lightweight plans while larger enterprise groups need
formal documentation and approvals. The details of how
a release plan is created depends greatly on the size and
composition of a team."

• "A single release pipeline can be linked to multiple
artifact sources, of which one is the primary source. In
this case, when you create a release, you specify individual
versions for each of these sources."

Key findings for RQ2.1
We summarized a catalog of eight empirically-justified
topics that highlight release note producers and users’ key
opinions. The summarized topics and statements about
release notes are related to a set of software activities that
can shed light on ways to produce and use release notes
more effectively.

4.2.2 Results of RQ2.2: What are significant discrepancies
between release note producers and users in perceiving
release notes?
We conducted an online survey and invited participants
to score and confirm the 27 statements. Participants were
classified into two groups: Release Note Producer and
Release Note User, and we also identified the roles of
the participants, i.e., architects, developers, team managers,
testers, and operators (see Fig. 5). Our results show that
most participants are involved in software development

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

of online survey.pdf of online survey.pdf of online
survey.pdf

6

165

3

37 5
68

17

13

0 00%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Architect Developer Team manager Tester Operator

Release note producers Release note users

Fig. 5. Main tasks and functions of the participants in the online survey.

and design (283 out of 314, 90.1%). Architects account for
69.3% (i.e., 68 out of 98) of the Release Note Producers, and
developers account for the largest group of the Release Note
Users. Most of the participants are from GitHub projects
and industrial IT companies. As such, the participants are
mainly from technical backgrounds, and few end-users are
included.

The results of the online survey are summarised in
Table 8. We analyzed the Likert scale "Agreement" to each
statement, and P-value is applied to test the discrepancies
between the two groups (i.e., Release Note Producer and Re-
lease Note User) whether the differences in the "agreement"
for each statement are statistically significant differences
between the two groups at a 95% confidence level. The re-
sults show that nine statements with statistically significant
discrepancies between the two groups are highlighted with
Green colored cells.

The Effect Size quantifies the difference between Release
Note Producer and Release Note User, and the values of
Effect Size are shown in the last column of Table 8. For
example, the mean score of S3 for release note producers is
3.53, whereas the mean source for release note users is 3.87;
as a consequence, the effect size is 3.53 - 3.87 = - 0.34, which
means release note users agree this statement more. We use
a blue color to indicate the former group (i.e., Release Note
Producer) is more likely to agree with the statement, and
orange color indicates the latter group (i.e., Release Note
User) is more likely to agree with the statement.

Based on the results of Effect Size, the Release Note
Producer group is more likely to agree with five statements
with statistically significant difference. The Release Note
User group tends to agree more with four statements. We
interpret the statements, which show the statistically signifi-
cant difference between Release Note Producers and Release
Note Users. We applied "3" to present "agree" and "7" to
denote "disagree" of each statement with comments provided
by the participants in Table 12 and 13 of Appendix.

1. Release Note Producer group is more likely to agree
with the following statements.

• Release note producers are more likely to focus on
non-functional requirements [S8].

• Release note producers would like to map release
notes to a set of requirements of projects [S14].

• Release note producers emphasize the high-level
information (e.g., major changes) that need to be
documented in release notes [S15].

• Release note producers consider that release notes
are a rich source of design decisions [S18].

• Release note producers consider that release notes
can help internal release note users to be more aware
of the risks for projects [S24].

2. Release Note User group is more likely to agree with
the following statements.

• Some internal release note users are not clear on how
to align documenting and using release notes [S3].

• Release note users expect detailed descriptions of
new features, but the information is not well doc-
umented in most current release notes [S7].

• Release note users consider that release notes con-
tains too much bug-fixing information, which is sup-
posed to be helpful for testing [S20]. However,
they consider the way of documenting such related
information should be improved [S22].

Moreover, the agreements without significant statisti-
cally difference confirm that the importance of release note
production and usage in practice. Such statements help
understand the characteristics of release notes, and being
aware of the statements with scores of average 4 or higher
also would facilitate release note production and usage
effectively in practice, for example:

• Release note producers tend to be the core devel-
opers (architects, team managers, and core testers)
in software development, and identifying the core
developers and building an effective personalization
strategy is beneficial for documenting release notes
and other software activities [S1][S2].

• Documenting style is critical for producing quality
release notes [S12].

In addition, we found that several statements with more
comments are also worth to be paid attention, for example,

• The release note plays an important role to facilitate
software evolution (with 31 comments) [S23].

• Clear structured and the writing styles of release note
documentation are vital (with 20 comments) [S12].

Key findings for RQ2.2
Several significant discrepancies exist between Release
Note Producers and Release Note Users in perceiving
release notes, and being aware of the common consider-
ations (statements) and the discrepancies would help fill
the gaps between them.

5 DISCUSSION

We interpret the results and discuss the implications for
researchers and practitioners in this section.

5.1 Implications for researchers
Release note production and management tools. The re-
sults of RQ1 (the "What") show that various information
could be included in release notes (e.g., the new features

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

and improvements made of projects). However, based on
the results of the interviews and the online survey, partic-
ipants stated the information in release notes is currently
scattered and not well structured, and the information
tends to be described vaguely. Consequently, release notes
sometimes provide limited help to release note users. To
improve the effectiveness of release note management and
production, some interviewees mentioned that they applied
management tools (i.e., Wikis and issue trackers). Besides
these basic management tools, researchers could consider
developing new tools and employing new methods, such as
automatically extracting more comprehensive information
from software artifacts to document release notes. As we
described in Section 2, there have been several attempts
to develop tools for (semi) automatically producing release
notes [3]. Interviewees and participants mentioned that they
almost never used such tools. We encourage researchers
to investigate the relationships between release notes and
other software artifacts and develop novel and practical
tools to automatically document release notes. They could
look into ways to better classify and structure the infor-
mation in release notes and automatically link it to other
software artifacts.

The discrepancies between release note producers and
users in perceiving release notes. The release note is a
key software artifact in practice to provide an overview of
new and changed features of releases for users. However,
based on the results of RQ2.2, we found that a considerable
gap exists between release note producers and users in
perceiving release notes (see Table 8). Few works to date
investigate the impact of release notes on software activities
and how to fill the gaps regarding producing and using
release notes. For example, a better understanding of what
information could be included targeting different users and
domains would be beneficial for release note production. In
addition, addressing current gaps helps internal release note
users better collaborate, e.g., sharing key information about
artifacts during development.

Assessment of release note quality. Release note qual-
ity is important for usage in practice. However, there are
no standards or guidelines for documenting release notes.
Based on the results of RQ1, much of the information in
release notes are not documented very clearly and poorly
structured (e.g., bugs fixed and documentation updated). In
addition, the results of RQ2 show that the importance of re-
lease note quality and current quality needs to be improved
(i.e., four interviewees and 56 participants of the survey
mentioned). Our findings of RQ1 and RQ2 show that a set of
factors can be considered to produce quality release notes.
For example, projects domains, relevant software activities,
and targeted users. As such, a guideline with those factors
for assessing and producing release notes would be helpful.

5.2 Implication for practitioners

Core developers in software development and documen-
tation. Based on the results of RQ1 ("Who"), we found
that there are many contributors who are involved in con-
tributing release notes in GitHub projects, but only sev-
eral contributors (i.e., six, on average, of a project) who
lead the formal release note production. These core release

note producers normally differ between releases. As we
discussed in Section 4.1.1, these core release note producers
are more likely to be core developers of the projects. In
addition, based on the interviews’ results, five intervie-
wees mentioned that release note documentation normally
takes place between core developers of the projects (e.g.,
architects or project managers). As such, identifying these
core contributors, especially in open source projects, would
help improve the collecting and sharing of key information
of design decisions that impact development and software
documentation (e.g., release note documentation).

Difficulties of release note usage in practice. We iden-
tified a set of key information that is included in release
notes regarding different software domains (see Table 6).
For example, users of Application and Software System
domains would like to know more about new features
instead of the changes made to source code, while users of
Web-libraries and Framework domain would like to know
about issue related information. However, based on the
results of our interviews and the online survey, participants
stated that it is often difficult to find useful information.
We suggest that practitioners need to make release notes
more focused to their target users. For example, to be clearer
about the purposes of releases and ensure that documented
information is appropriate regarding the domains.

Release notes and software evolution. The results of
RQ1 show that information in release notes for major and
minor releases is significantly different. For example, the
information in the major release notes would help to under-
stand the process and evolution of the projects (e.g., system
level information). In addition, the results of RQ2 confirm
that documenting release notes is one of ways to effectively
communicate changes and enhancements between all team
members. Release notes explain what changes are in the
latest version, and this can improve development efficiency
by providing all necessary information in advance. Another
important benefit is that new developers can more easily
track the main changes a project has undergone to under-
stand the project and its development process and evolution
more quickly. However, a lack of or insufficient release notes
(e.g., agile projects) can hinder the refactoring of projects
and understanding of software evolution.

Design decisions included in release notes. Release
management is the process of planning what, when, and
how to release, and the time horizon of planning is dictated
by internal and external factors. Based on the results of
RQ2.2, 26 participants (release note producers) said that they
would select a set of important information in the release
notes and they prefer the information is at the package
and system level. This information indicates the design
decisions, trade-offs, and optimal solutions for projects. As
such, investigating the information in release notes would
provide a rich source of how design decisions have been
made to projects.

A general guideline for producing and using release
notes. To more effectively produce and use release notes,
based on the results of RQ1 and RQ2 for both researchers
and practitioners, we propose the following general guide-
lines. This list is not meant to exhaustive. As we discussed
in Section 1, the ways to produce release notes can also vary
from project to project. Therefore, there may be additional

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

guidelines on how to produce and use release notes depends
on project sizes, contents, and domains.

• Who writes release notes: projects appear to have
multiple people contributing to release note author-
ing and contents, but a small number of main release
note producers. These main release note producers
play a key role in the development team of decid-
ing when a release note should be produced, what
goes into the release note, collecting this information
from other developers, and authoring the bulk of
the release note. Projects should carefully identify
these key developers responsible for its release notes,
potentially different developers for main vs. minor
release notes, and how they will work with other de-
velopers to gather required release note information.

• The information in release notes: release note pro-
ducers need to carefully consider the project domains
and targeted users when producing the release notes.
For example, in the Application and System Software
domains (e.g., Google doc), including New features
related information in release notes would be useful
for users (see Table 6).

• Using tools to manage and produce release notes:
release note producers might consider using man-
agement tools to improve the productivity of pro-
ducing release notes and make release notes more
organized. This may include tools to support semi-
automated production of release notes and may in-
clude external information management tools such
as Wikis for richer release note information capture
and management. In addition, more closely linking
release notes with other software artifacts would also
be a way to improve the productivity of producing
release notes as well as release note usage. Traceabil-
ity link discovery tools may assist with this.

• Writing styles of release notes: release note pro-
ducers need to make the included information clear,
logical, fit to the purpose of release note users, and
they might also consider the length of release notes
and granularity of the contained information. For
example, documenting key System and Package level
information for major releases. Class level informa-
tion would instead be documented in release notes
for minor releases (see Table 7).

• Engaging with core internal release note users:
release note production should include other devel-
opers (e.g., developers and testers) for their opinions.
Release notes are not only for outside end-users but
also vital for internal users. Release note producers
can consider to document the information that would
benefit various software activities for different inter-
nal users (see results of Section 4.2.1).

6 THREATS TO VALIDITY

We use the guidelines in [44] to discuss key threats to the
validity in this work.

Internal validity focuses on factors that may influence
the validity of the results. A threat in Stage 1 (i.e., the
empirical study) is that we may not include a representative
data set of release notes for analysis, as we applied three

criteria to filter GitHub projects with 6,000 stars. Moreover,
some GitHub projects use their specialized ways to produce
and manage release notes outside GitHub, but we only
included the release notes that were documented in GitHub.
To mitigate threats, we randomly selected 1,000 projects that
met the selective criteria and included 32, 424 release notes
to analyze. It is possible that this filtering omitted release
notes of both small projects and outside data sources. More
release notes from various size projects and information
from external data sources are required to be included for
a better and more comprehensive analysis. We leave this as
future work. The other key threat of Stage 1 is that if we
correctly label and encode the data. To mitigate this threat,
we employed a descriptive statistics method to present the
results. For data labeling and encoding, we conducted a
pilot analysis to ensure all authors reached agreement on
the data labeling and encoding used. The first author and
another Ph.D. candidate then used MAXQDA for the formal
data labeling and encoding, and the second author of this
paper reviewed the labeling and encoding results. This
partially reduces the threat of bias in our qualitative data
analysis, though this threat still exists.

Construct validity reflects what extent the research
questions and the methodology are appropriately used in
a study. The main threat to this validity in our study is
whether the data we analyzed and coded can answer the
research questions. Before we performed this case study,
we prepared a research protocol to identify the potential
research questions and appropriate ways to collect and
analyze the data to mitigate this threat. Additionally, two
annotators (i.e., the first author and the Ph.D. candidate)
analyzed and coded the collected data independently, and
the second authors reviewed their results to reduce any
personal bias from the data analysis. One threat exists in
Stage 3 (i.e., our online survey) in our use of the "Neutral"
option on the Likert scale. Participants could choose this
middle option to easily opt out of a question. However, as
shown in Table 8, the "Neutral" option was rarely used, and
we checked the results of the online surveys to verify that
if this Neutral option was not considered, the results have
no significant difference to the current reported ones. An
alternative is to use a bipolar scale [32] without the "Neutral"
option (i.e., Strongly Disagree, Disagree, Slightly Disagree,
Slightly Agree, Agree, and Strongly Agree) that can convert
the respondent answers into a bipolar statement.

External validity concerns the generality of the study
results in other settings. This depends on the sampling
methods we employed and representativeness of the data
used. A threat in Stage 1 is that if the release notes we
collected are representative. To reduce this threat, we used
a large number of representative GitHub repositories and
extracted a large number of release notes to analyze. One
threat exists in Stage 2 is that if the interviewees who partic-
ipated in this study could be representative. To mitigate this
threat, we conducted the interviews with 15 professionals
who work at different companies, domains, and countries.
In addition, the participants who were involved in the
online survey worldwide. Further studies with more release
notes, interviewees, and survey participants would need to
be done to demonstrate the generality of our results to other
projects and more participants.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

Reliability refers to whether the study gets the same
results when other researchers repeat it. The threats to the
replicability of this study are the applied data collection and
analysis methods. To mitigate the threats, we have described
each step of this work explicitly. By making explicit the
process of data collection and analysis of this study (see
Section 3.3), we believe that this study can be replicated.

7 CONCLUSION AND FUTURE WORK

We report a study to understand and characterize release
notes. Our main findings are that various information is
documented in release notes that can be classified into eight
topics. A number of contributors are intensively involved
in producing release notes, and some of contributors play
a key role in information sharing during development. The
production information of release notes for major and minor
releases regarding different domains are significantly differ-
ent (see Table 6). 27 statements concluded from release note
producers and users’ considerations of perceiving release
notes, and the discrepancies between them were identified.
Both release note producers and users confirmed that the
release note is a vital artifact of software development. The
information in release notes could be extracted and used to
enrich other software artifacts and trace various software
activities. For example, "Software internal changes" related
information can help to better support understanding soft-
ware evolution and enriching architecture documents.

We see several promising research directions: (1) Com-
paring release notes among open source projects, commer-
cial projects, and Apps. We plan to investigate the char-
acteristics of release notes of different venues and iden-
tify the differences of release notes usage. (2) Studying
the interactions between release notes and other software
artifacts, e.g., differences and similarities between "Read
me" files and release notes. (3) Developing new tools that
could greatly help improve release note production and
usage, e.g., generating release note contents, linking release
notes to other key artifacts, and summarising or indexing
release note contents for different release note users. (4)
Investigating end-users’ opinions about release notes that
would be helpful in documenting end-user targeted release
notes.

ACKNOWLEDGMENT

The authors would like to thank all the interviewees and
participants of this study, without them, this work will
never be accomplished. In addition, the authors would like
to thank our anonymous reviewers for their constructive
feedback and suggestions that greatly improved our paper.
This research was partially supported by the Australian Re-
search Council’s Discovery Early Career Researcher Award
(DECRA) funding scheme (DE200100021), ARC Laureate
Fellowship funding scheme (FL190100035), ARC Discovery
grant (DP200100020), and Singapore’s Ministry of Education
(MOE2019-T2-1-193).

REFERENCES

[1] Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marshall-
Keim, Foutse Khomh, and Kim Moir. The practice and future of
release engineering: A roundtable with three release engineers.
IEEE Software, 32(2):42–49, 2015.

[2] Hyrum K Wright and Dewayne E Perry. Release engineering
practices and pitfalls. In 2012 34th International Conference on
Software Engineering (ICSE), pages 1281–1284. IEEE, 2012.

[3] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrian Marcus, and Gerardo Canfora. Arena: an ap-
proach for the automated generation of release notes. IEEE
Transactions on Software Engineering, 43(2):106–127, 2016.

[4] Gregorio Robles-Martínez, Jesús M González-Barahona, José
Centeno-González, Vicente Matellán-Olivera, and Luis Rodero-
Merino. Studying the evolution of libre software projects using
publicly available data. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, 25th International Conference on Software
Engineering, pages 111–115, 2003.

[5] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and
Michalis Faloutsos. Graph-based analysis and prediction for
software evolution. In 2012 34th International Conference on Software
Engineering (ICSE), pages 419–429. IEEE, 2012.

[6] Jason Tsay, Hyrum K Wright, and Dewayne E Perry. Experiences
mining open source release histories. In Proceedings of the 2011
International Conference on Software and Systems Process, pages 208–
212, 2011.

[7] André Van der Hoek and Alexander L Wolf. Software release
management for component-based software. Software: Practice and
Experience, 33(1):77–98, 2003.

[8] Hennie Huijgens, Arie Van Deursen, and Rini Van Solingen. The
effects of perceived value and stakeholder satisfaction on software
project impact. Information and Software Technology, 89:19–36, 2017.

[9] Jim Whitehead. Collaboration in software engineering: A
roadmap. In Future of Software Engineering (FOSE’07), pages 214–
225. IEEE, 2007.

[10] Filippo Lanubile, Christof Ebert, Rafael Prikladnicki, and Aurora
Vizcaíno. Collaboration tools for global software engineering.
IEEE software, 27(2):52–55, 2010.

[11] Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou.
Understanding the impact of rapid releases on software quality.
Empirical Software Engineering, 20(2):336–373, 2015.

[12] Surafel Lemma Abebe, Nasir Ali, and Ahmed E Hassan. An
empirical study of software release notes. Empirical Software
Engineering, 21(3):1107–1142, 2016.

[13] Martin Michlmayr, Francis Hunt, and David Probert. Release
management in free software projects: Practices and problems. In
IFIP International Conference on Open Source Systems, pages 295–300.
Springer, 2007.

[14] Günther Ruhe, Mark Stanford, et al. Intelligent support for
software release planning. In International Conference on Product
Focused Software Process Improvement, pages 248–262. Springer,
2004.

[15] Günther Ruhe. Product release planning: methods, tools and applica-
tions. Auerbach Publications, 2010.

[16] Inge Van De Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis,
Johan Versendaal, and Lex Bijlsma. Towards a reference frame-
work for software product management. In 14th IEEE International
Requirements Engineering Conference (RE’06), pages 319–322. IEEE,
2006.

[17] Liguo Yu. Mining change logs and release notes to under-
stand software maintenance and evolution. CLEI Electron Journal,
12(2):1–10, 2009.

[18] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian
Bailey. Software history under the lens: A study on why and
how developers examine it. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 1–10. IEEE,
2015.

[19] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a
release history database from version control and bug tracking
systems. In International Conference on Software Maintenance, 2003.
ICSM 2003. Proceedings., pages 23–32. IEEE, 2003.

[20] Keith H Bennett and Václav T Rajlich. Software maintenance and
evolution: a roadmap. In Proceedings of the Conference on the Future
of Software Engineering, pages 73–87, 2000.

[21] Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information
needs for integration decisions in the release process of large-scale
parallel development. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pages 1371–1380, 2012.

[22] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. Semi-
automatic generation of audience-specific release notes. In 2016
IEEE/ACM International Workshop on Continuous Software Evolution
and Delivery (CSED), pages 19–22. IEEE, 2016.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 19

[23] Ines Mergel. Open collaboration in the public sector: The case
of social coding on github. Government Information Quarterly,
32(4):464–472, 2015.

[24] Per Runeson and Martin Höst. Guidelines for conducting and
reporting case study research in software engineering. Empirical
software engineering, 14(2):131, 2009.

[25] Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. Goal
question metric paradigm. Encyclopedia of software engineering,
1:528–532, 1994.

[26] Hudson Borges, Andre Hora, and Marco Tulio Valente. Under-
standing the factors that impact the popularity of github reposito-
ries. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 334–344. IEEE, 2016.

[27] Klaas Andries de Graaf, Peng Liang, Antony Tang, Willem Robert
van Hage, and Hans van Vliet. An exploratory study on ontology
engineering for software architecture documentation. Computers
in Industry, 65(7):1053–1064, 2014.

[28] Astride Aregui and Thierry Denœux. Constructing consonant
belief functions from sample data using confidence sets of pig-
nistic probabilities. International Journal of Approximate Reasoning,
49(3):575–594, 2008.

[29] Tingting Bi, Xin Xia, David Lo, John Grund, and Thomas Zim-
mermann. What Make a Good Release Note: Complementary Material:
https://tinyurl.com/y92yl9pq.

[30] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and
Daniela Damian. Selecting empirical methods for software engi-
neering research. In Guide to advanced empirical software engineering,
pages 285–311. Springer, 2008.

[31] Forrest Shull, Janice Singer, and Dag IK Sjøberg. Guide to advanced
empirical software engineering. Springer, 2007.

[32] Valerie M Sue and Lois A Ritter. Conducting online surveys. Sage,
2012.

[33] Barbara A Kitchenham and Shari L Pfleeger. Personal opinion
surveys. In Guide to advanced empirical software engineering, pages
63–92. Springer, 2008.

[34] I Elaine Allen and Christopher A Seaman. Likert scales and data
analyses. Quality progress, 40(7):64–65, 2007.

[35] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi
Kuvaja. Systematic literature review on the impacts of agile release
engineering practices. Information and Software Technology, 86:87–
100, 2017.

[36] Gail C Murphy. Beyond integrated development environments:
adding context to software development. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 73–76. IEEE, 2019.

[37] Mika V Mäntylä, Foutse Khomh, Bram Adams, Emelie Engström,
and Kai Petersen. On rapid releases and software testing. In 2013
IEEE International Conference on Software Maintenance, pages 20–29.
IEEE, 2013.

[38] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu,
and Vladimir Filkov. Quality and productivity outcomes relating
to continuous integration in github. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 805–816,
2015.

[39] Zhifang Liao, Haozhi Jin, Yifan Li, Benhong Zhao, Jinsong Wu,
and Shengzong Liu. Devrank: Mining influential developers in
github. In GLOBECOM 2017-2017 IEEE Global Communications
Conference, pages 1–6. IEEE, 2017.

[40] Erik Berglund and Michael Priestley. Open-source documentation:
in search of user-driven, just-in-time writing. In Proceedings of
the 19th annual international conference on Computer documentation,
pages 132–141, 2001.

[41] Remco C De Boer and Hans Van Vliet. Writing and reading soft-
ware documentation: How the development process may affect
understanding. In 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering, pages 40–47. IEEE, 2009.

[42] Pär Carlshamre. Release planning in market-driven software
product development: Provoking an understanding. Requirements
engineering, 7(3):139–151, 2002.

[43] Gunther Ruhe and Moshood Omolade Saliu. The art and science
of software release planning. IEEE software, 22(6):47–53, 2005.

[44] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson,
Björn Regnell, and Anders Wesslén. Experimentation in software
engineering. Springer Science & Business Media, 2012.

8 APPENDIX

TABLE 9
Extracted data items and data analysis methods for Stage 1 (i.e., the

large scale empirical study).

No. Data item Data analysis
method

Relevant
RQ

D1 The number of release notes
of each project.

Descriptive
statistics

RQ1

D2 The duration of each
project.

Descriptive
statistics

RQ1

D3 The number of commits of
each release and contribu-
tor.

Descriptive
statistics

RQ1

D4 The domain of the selected
GitHub projects.

Descriptive
statistics.

RQ1

D5 The number of release notes
producers.

Descriptive
statistics

RQ1

D6 The information
documented in release
notes.

Descriptive
statistics
and constant
comparison

RQ1

TABLE 10
Extracted data items and data analysis methods for Stage 2 (i.e.,

interviews with professionals).

No. Data item Data analy-
sis method

Relevant
RQ

D7 The functions of the inter-
viewee in software develop-
ment.

Descriptive
statistics

RQ2.1

D8 The contents and elements,
benefits, limitations,
software activities, and
suggestions related to
release notes interviewees
discussed (Based on the
interview questions).

Descriptive
statistics
and
constant
comparison

RQ2.1
and
RQ2.2

TABLE 11
Extracted data items and data analysis methods for Stage 3 (i.e.,

Online survey).

No. Data item Data analy-
sis method

Relevant
RQ

D9 The functions of the inter-
viewee in software develop-
ment of participants.

Descriptive
statistics

RQ2.2

D10 The scores of statements. Descriptive
statistics
and
constant
comparison

RQ2.2

D11 The comments of surveys
that participants provided.

Descriptive
statistics
and
constant
comparison

RQ2.1
and
RQ2.2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 20

TABLE 12
Comments from Release Note Producers and their roles

Comment from release note producer Role
Comment 3"A release plan should be available to all
individuals involved for the entire release. This may
include developers, release engineers, testers, man-
agers and system admins, or operations personnel",
and "Knowing who your stakeholders are is key here.
Think about who they are, what they care about, and
how best to communicate with them. As well, consider
if they’re internal or external to your team or
organization. But some developers are interested in
documenting, and they don’t know what should to
document

Architect

Comment 3 "Some post-release behaviors might include
end users logging in and then logging out of the app
for changes to take place, or as a requirement of using
the newly released version of the software. Stakeholders
should be aware of details that may affect their
work during a release process. Customers should also
be aware of changes that might impact their work as well.
Notifying a customer of a planned outage or steps they
will need to take after an update, ahead of the release,
should be considered critical communication."

Architect

Comment 3 " Even if a team has a good plan for releasing,
informing stakeholders of all or parts of this plan is
equally as important. It’s key for setting expectations
and for allowing the entire release to go smoothly. Share-
holders that experience problems during, or soon after, a
release may take some actions which may end up reducing
frequency and/or quality of future releases if they perceive
a major issue. Often, this occurs due to a communication
failure instead of a technological failure. Solid informa-
tion about non-functional requirements to all stake-
holders can prevent these communication breakdowns
from happening."

Architect

Comment 3 “These are the people who’re getting the
most value from your product, who’re emotionally in-
vested in your team’s success. I would like to focus on
the high level information when I document release
notes."

Architect

TABLE 13
Comments from Release Note Users and their roles

Comment from release note users Role
Comment 3“Release notes are a really interesting en-
gagement opportunity to me—most people don’t read
them, but those that do represent a highly targeted au-
dience of very engaged users. Every company with an
app has to write them, and I love to see what issues
have been fixed, but they are not always clear.”

Developer

Comment 7"The release contents is an internally-
consumed document that fosters communication between
teams on a project, it might start with a high-level
description of the release’s major themes instead of a
list of fixed bugs"

Architect

Comment 3 "Bug fixes and performance improve-
ments" is completely meaningless. What was fixed?
How will performance improve? What along the user
experience can we expect improvements?

Tester

Comment 7 "Quality attributes, like response time,
are very important information to me, but bug fixes
and performance improvements" on the box and call it
a day, but that doesn’t really tell your users and internal
stakeholders anything, maybe link an issue number?"

Tester

Comment 3 "Release notes are a really interesting en-
gagement opportunity to me—most people don’t read
them, but those that do represent a highly targeted
audience of very engaged users. I also have no idea
what information I should provide to contribute
the release notes.”

Developer

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 21

TABLE 14
Background information of the interviewees.

Interviewee Professional
years

Professional
role

Project domain Release note documen-
tation/use experience

Country

I1 and I15 12 years Architect Application system (Fi-
nancial system)

Release note producers China

I2 12 years Architect Application system
(Transport systems)

Release note producer China

I12 10 years Manager Application system
(Shopping system)

Release note user Japan

I3 8 years Pre-sale Application system (En-
tertainment system)

Release note user Australia and
China

I4, I13, and I14 5 years Architect Application System (Fi-
nancial system)

Release note producers Sweden and
China

I5 5 years Team leader System Software
(Database)

Release note user The Nether-
lands

I6 and I7 4 years Developer Application system
(Manufacturing system)

Release note users China

I10 and I11 4 years Developer Application system (En-
tertainment system)

Release note producer China

I8 3 years Developer Application system (En-
tertainment system)

Release note user Canada and
Australia

I9 2 years Developer and
tester

Application system (En-
tertainment system)

Release note user China

