
1

Opportunities and Challenges in Code Search Tools

CHAO LIU, Zhejiang University, China
XIN XIA∗, Huawei, China
DAVID LO, Singapore Management University, Singapore
CUIYUN GAO, Harbin Institute of Technology (Shenzhen), China
XIAOHU YANG, Zhejiang University, China
JOHN GRUNDY,Monash University, Australia

Code search is a core software engineering task. Effective code search tools can help developers substantially improve
their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different
techniques, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase.
However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the
research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication
trends of code search studies, analyzed key components, such as codebase, query, and modeling technique used to build code
search tools, and classified existing tools into focusing on supporting seven different search tasks. Based on our findings, we
identified a set of outstanding challenges in existing studies and a research roadmap for future code search research.

CCS Concepts: • Software and its engineering→ Search-based software engineering.

Additional Key Words and Phrases: code search, code retrieval, modeling

ACM Reference Format:
Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2020. Opportunities and Challenges in Code Search
Tools. ACM Comput. Surv. 1, 1, Article 1 (January 2020), 40 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In modern software development, code search is one of the most frequent activities [92, 114, 119, 138]. Studies
have shown that more than 90% of developers’ search efforts aim at finding code to reuse [7]. This is because
developers favor searching for existing or similar high-quality code to mitigate their learning burdens and
enhance their software development productivity and quality [17, 18, 38].
"Code search" refers to retrieval of relevant code snippets from a code base, according to the intent of a

developer that they have expressed as a search query [31, 38, 62, 72, 91, 112, 118, 123]. With the advent of large
code repositories and sophisticated search capabilities, code search is not only a key software development
activity in itself, but also supports many other important software engineering tasks. For example, code search
∗Corresponding Author: Xin Xia.

Authors’ addresses: Chao Liu, liuchaoo@zju.edu.cn, Zhejiang University, China; Xin Xia, xin.xia@acm.org, Huawei, China; David Lo,
davidlo@smu.edu.sg, Singapore Management University, Singapore; Cuiyun Gao, gaocuiyun@hit.edu.cn, Harbin Institute of Technology
(Shenzhen), China; Xiaohu Yang, yangxh@zju.edu.cn, Zhejiang University, China; John Grundy, John.Grundy@monash.edu, Monash
University, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/1-ART1 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

1:2 • Liu et al.

tools are helpful for bug/defect localization [4, 64, 97, 121, 127, 128, 131], program repair [2, 83], code synthesis
[101, 102], vulnerability detection [33, 36, 140], among many others.
Despite the existence of numerous code search studies, to the best of our knowledge there has been no

systematic study to summarize the key approaches and characteristics of existing code search tool research. Such
a systematic review would help practitioners and researchers understand the current state-of-the-art code search
tools and inspire their future studies. To perform a systematic review of this domain, we identified 81 relevant
studies from three widely used electronic databases, including ACM Digital Library, IEEEXplore, and ISI Web of
Science. We investigated the following research questions (RQs) in this study:

• RQ1. What are the emerging publication trends for code search studies? The reviewed 81 studies show that
the popularity of the code search topic has increased substantially in recent years with a peak in 2019. 60%
of these studies were published in conference proceedings instead of journals. 83% of studies contributed to
this domain by proposing new tools rather than performing empirical/case studies of existing tools. Deep
Learning (DL) related keywords were frequently discussed in the recent years.

• RQ2. How are the key components in existing code search tools developed? From the 67 different code search
tools reported, we found that DL-based approaches are the most popular modeling techniques over the
past two years.

• RQ3. How to classify the existing code search tools? The 67 code search tools can be classified into seven
categories – text-based code search, I/O example code search, API-based code search, code clone search,
binary code search, UI search, and programming video search. Only 12 studies shared an accessible
replication package link in their papers or provided their tool source code in GitHub.

• RQ4. How do studies evaluate code search tools? To evaluate a code search tool, most of the studies built
codebases with method-level source code written in Java. They then performed code searches with free-form
queries such as text and API names. Most studies manually checked the relevancy between a query and the
returned code, and evaluated the tool performance in terms of popular ranking metrics, such as Precision
and MRR (Mean Reciprocal Rank).

Based on these findings and the threats discussed in all reviewed code search studies, we observed a number of
challenges in existing code search tools. Generally, the codebase scale used is limited with code written in only
one programming language. The quantity of search queries is also limited and cannot cover developers’ various
search scenario in practical usage. The state-of-the-art tools based on machine learning (ML) models such as DL
still cannot solve the code search problem very well. One major reason is that ML models are optimized with low
quality and quantity of training data. The effectiveness of most code search tools is verified by use of manual
evaluation that suffers from subjective bias. When measuring the tool performance, the search time and tool
scalability are rarely assessed. Other important performance aspects, such as code diversity and conciseness, are
not considered. These challenges provide some opportunities for further research studies:

• Benchmarks: Developing a standard benchmark with large-scale code base written in multiple program-
ming languages, various representative queries, and an automated evaluation method.

• Machine Learning Models: Improving the ML models with better quality of training data, code repre-
sentation method, and loss functions for model optimization.

• Model Fusion: Fusing different types of models – such as DL-based model, traditional information
retrieval (IR) based model, and heuristic model – to balance their advantages and disadvantages for further
improvements.

• Cross-Language Searches: Building a multi-language code search tool to mitigate the costly deployment
of a tool for code in different programming languages.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:3

Fig. 1. Searching Java code from GitHub with the text-based query "convert int to string".

• Search Tasks: Supporting new kinds of code search tasks, such as searching UI (User Interface) code and
the code used in programming videos.

The main contributions of this study include:
• A novel systematic review on 81 code search studies published until July 31, 2020 as a starting point for
future research on code search.

• Analysis of the fundamental components – codebase, query, and model – in 67 different code search tools
to help researchers understand their characteristics.

• Classification of code search tools into seven categories and analyzing the relationships between tools for
each category as a basis for further comparisons and benchmarks.

• Analysis of the outstanding opportunities and challenges in code search studies based on our findings to
inspire further research in this area.

The remainder of this paper is organized as follows. Section 2 briefly introduces the usage of code search tools.
Section 3 presents our study methodology that we follow, and Sections 4-7 summarize the key research questions
and their answers investigated in this study. Section 8 discusses the challenges for the road ahead on code search
studies and presents the potential research opportunities for future work. Section 9 shows the potential threats
that may affect the validity of this review. Finally, Section 10 provides a summary of this study.

2 BACKGROUND
The objective of code search tools is to retrieve relevant code from a large-scale codebase according to the intent
of developers’ search query. For example, GitHub search1 is one type of tool widely used for searching for source
code snippets from a large-scale codebase with millions of open source repositories. Fig. 1 shows an example
of using the tool. After typing in the search query "convert int to string" with programming language choice

1https://github.com/search

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 • Liu et al.

Fig. 2. Working flow of the code search tools.

"language:java", the GitHub search returns more than three million lines of potentially relevant code. However,
the performance of this tool is not satisfactory, where the first returned code is not the expected code and it is
time-consuming to check the relevancy of each code one by one. To improve such code search task performance,
researchers have built many new tools. Some leverage DL techniques to improve the search accuracy, and some
use clustering of returned code to reduce developers’ efforts for code inspection.
As illustrated in Fig. 2, the usual workflow when using such a code search tool involves the following seven

key components:

Query. Code search tools take developers’ queries as input. These queries reflect the developers’ requirements
during a specific software development task [19, 40, 61]. Existing code search tools can support queries in different
forms and this determines how developers use the code search tools. For example, free-form text written in
natural language is the most common query, which is widely used for general search engines [75, 117, 145], such
as GitHub search. Some code search tools support a more structured code-based query to find similar code in
their codebase [56, 85, 103]. A detailed analysis of query types is presented in Section 7.1.

Codebase. In the code search task, the codebase defines the target search space, whose characteristics strongly
affect the tool performance [114, 118, 138]. Different code search studies and their tools build their codebases
in different ways. For example, the codebase may be constructed by a set of source/compiled code written in
different programming languages (e.g., Java, Python, and C/C++). The codebase scale also varies substantially
and the code may be collected from various sources, such as GitHub, FDroid, and Stack Overflow. Section 7.2
presents how developers build codebases from different perspectives.

Code Analysis Technique. Before building a code search model, many studies not only regarded code as
text but also leveraged the code analysis technique to extract more programming knowledge in code [74, 130,
145]. For example, they may parse the code into an abstract syntax tree to capture the syntactic relationship
between programming objects (e.g., variable and function) [136, 145], transform code into a control flow graph to
identify the working flow between each programming statement [21, 130], or generate the call graph of different
functions/methods to analyze how the target code depends on the others [74, 75], etc. Section 5.1 shows the
various code analysis techniques in detail.

Modeling Technique. As a specific code search task is highly dependent on the types of codebase (e.g., source
code or binary code) and query (e.g., text or source code), a code search tool should support the type combination
of query and codebase. In general, researchers build code search tools by using three types of modeling techniques.
The first is the traditional IR model that performs code search according to a relevancy algorithm (e.g., TF-IDF
[137]) between query and candidate code [86, 93, 98]. However, traditional models usually support only text-based

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:5

queries. The second is a heuristic model that directly measures the degree to which the elements in query match
the ones in code, e.g., with designed features [41, 147] or matching score [9, 115]. The final one is use of a ML
model that learns the relationship between code and query by using a large-scale dataset. Most ML models embed
query and code into a shared vector space so that their similarity can be measured by the cosine similarity. DL
techniques have been widely used for building code search tools in recent years. This is because a DL model
shows no limit on the types of query and codebase. It builds a neural network to represent the code features and
learns the query-code relationship by optimizing parameters in the neural network with large-scale data. This
solution can mitigate the difficulty in designing features to capture the code semantics that is represented by
various programming words with different coding structures and programming styles [40, 144, 145], compared
with the previous two model types (i.e., the IR and heuristic models). Section 5.2 lists the model techniques
adopted by the reviewed code search studies.

Auxiliary Technique. For a code search model (i.e., IR, heuristic, or ML models), its performance can be further
substantially improved by incorporating appropriate auxiliary techniques [77]. For example, query reformulation
enhances the capability of the major modeling technique by re-organizing the query, removing irrelevant words
from query, or extending query with related context [86, 153]; code clustering limits the redundant results
returned from the major modeling technique by clustering results and presenting the representative ones from
each cluster [84]; feedback learning optimizes the major modeling technique by leveraging the users’ feedback
on search relevancy [73]. As the final performance is determined by the suitable combination of the modeling
and auxiliary techniques (e.g., DL + query reformulation), we cannot simply say that one modeling/auxiliary
technique is superior to the other. Section 5.3 shows the commonly used auxiliary techniques.

Evaluation Method. To evaluate the validity of a code search tool, the relevancy of the searched code list and
a query should be assessed. Manual identification is the most prevalent method. This is because the relevant
code could be implemented by developers in various ways (e.g., using different APIs and programming styles)
and it is difficult to automatically determine the relevancy between the searched code and the search query
[40, 77, 117]. However, manual identification cannot scale to large numbers of queries. Therefore, researchers
have also investigated other ways to mitigate manual efforts. Generally, they provide some relevant code as
the ground-truth for each query so that the relevancy can be determined by measuring the similarity between
the search code and the ground-truth. However, the accuracy of such evaluation methods could be strongly
affected by the quantity and quality of the selected ground-truth, and how they calculated the similarity between
a searched code and a ground-truth. For example, when a relevant code snippet returned by a code search tool
is not in the ground-truth set, it may not be counted as a correct search, so that the tool performance could be
underestimated. Section 7.3 compares the tool evaluation methods that have been used.

Performance Measures. Code search tool performance is based on its identified relevancy between query and
the returned code. In most studies, code search tools care about the position of the correctly searched code in the
result list. For example, MRR (mean reciprocal rank [40]) and NDCG (normalized discounted cumulative gain [22])
are two commonly used metrics. These metrics assume that developers prefer to find the "best" recommended
code near the top of a result list [117, 144]. For example, supposing a tool returns three code with the expected
one in the second and third places, the MRR metric measures the performance by the reciprocal rank of the first
relevant code (i.e., 1/2). However, some developers want to search for more relevant code so that the ranking
position can be ignored [29, 41, 103]. Therefore, some code search studies evaluate the tool performance by using
classification metrics, such as Precision, Recall, and F1-score (a harmonic average of Precision and Recall) [20, 66].
For the above example with three returned code, the search precision equals to the number of relevant code
divided by the total count (i.e., 2/3). More details can be found in Section 7.4.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 • Liu et al.

3 METHODOLOGY
To perform a systematic review of code search tools, we followed the guidelines provided by Kitchenham and
Charters [57] and Petersen et al. [100].

3.1 ResearchQuestions
We wanted to identify, summarize, classify, and analyze the empirical evidence concerning different code search
studies published to date. To achieve this goal, we investigate four research questions (RQs):

• RQ1. What are the emerging publication trends for code search studies? The goal of this RQ is to investigate
the publication trends in terms of the publication year, publication venue, contribution type (e.g., new tool
and empirical study), and publication keywords of code search studies.

• RQ2. How are the key components in existing code search tools developed? This RQ investigates which code
analysis, modeling, and auxiliary techniques have been used in different code search tools

• RQ3. How to classify the existing code search tools? This RQ investigates how we can best classify these
different tools, and how often do they provide accessible replication packages.

• RQ4. How do studies evaluate code search tools? This RQ aims to analyze fundamental aspects for tool
evaluation: evaluation datasets (i.e., queries and codebase), evaluation method, and performance measures.

Through analysis of these RQs we also identify limitations, gaps and future research recommendations from
these studies. We use these to formulate our research roadmap for future code search studies.

3.2 Search Strategy
We identified 102 search terms (with 77 unique words) from 28 code search studies that were already known to
us. We refined these search terms by checking the titles and abstracts of the relevant papers, combined them
with logical "OR", and formed the search string: "code search" OR "code retrieval". This search string can cover
all the initial code search studies. We used the search string to perform an automated search on three widely
used electronic databases including ACM Digital Library, IEEExplore, and ISI Web of Science. The search was
performed on the title, abstract, and keywords of the papers. We conducted our search on July 31, 2020, and
identified the studies published up until that date. Note that we used the combined words ("code search" OR "code
retrieval") instead of the separated words ("code OR search OR retrieval"). This is because we observed that the
separated words include enormous number of irrelevant studies, while the related studies can be covered by the
combined words, after inspecting the search results returned by each electronic database. As shown in Table
1, we retrieved 1,117 relevant studies with the automatic search from these three electronic databases. After
discarding the duplicated studies, we obtained 692 code search studies.

Table 1. Selection of code search studies.

Process #Studies

ACM Digital Library 165
IEEE Xplore 322
Web of Science 630

Automatic search from three electronic databases. 1117
Removing duplicated studies. 692
Excluding primary studies based on title and abstract. 135
Excluding primary studies based on full text - final left. 81

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:7

3.3 Study Selection
Once we retrieved the candidate studies relevant to the code search study, we performed a relevance assessment
according to the following inclusion and exclusion criteria:

!The paper must be written in English.

!The paper must involve at least one tool addressing the code search task.

!The paper must be a peer-reviewed full research paper published in a conference proceeding or a journal.

%Keynote records and grey literature are excluded.

%Conference studies with extended journal versions are discarded.

%The studies that propose new code search tools but did not evaluate their performance are excluded.

%The studies that apply existing code search techniques in support of other software engineering tasks (e.g., bug
localization, program repair, and vulnerability detection) with different goals to advance the code search itself are
ruled out.

The inclusion and exclusion criteria were piloted by the first and fourth authors starting with the assessment
of 30 randomly selected primary studies. The agreement of authors’ assessment was measured using pairwise
inter-rater reliability with Cohen’s Kappa statistic [23]. The agreement rate in the pilot study was "moderate"
(0.59). The pilot study helped us to develop a collective understanding of the inclusion/exclusion criteria. Then,
an assessment was performed for the full list of the identified studies. The agreement rate in the full assessment
was "substantial" (0.73). Disagreements were resolved after open discussions between the first and fourth authors.
For any case that they did not reach a consensus, the third author was consulted as a tie-breaker. During the
full assessment, we did not update the inclusion/exclusion criteria determined in the pilot study, which implies
that the collective discussion in the pilot study was well-considered. Specifically, we took two weeks to finish
the study selection process. As shown in Table 1, we identified 135 code search studies by inspecting the title
and abstract of the retrieved studies. After checking the full text of the remaining studies, we finally obtained 81
relevant code search studies.

3.4 Data Extraction
To answer the four research questions above, we read the 81 papers carefully and extracted the required data as
summarized in Table 2. Our data collection mainly focused on four kinds of information: publication information,
study background, tool details, and experimental setup. To suppress the effect of subjective bias, the data collection
was performed by the first and fourth authors, and verified by two senior PhD students who are not co-authors
of this study and majored in computer science.

Table 2. Extracted data for research questions.

RQ Description Extracted Study Data

RQ1 Publication Trend Publication year, publication venue, publication type (i.e., new tool, empirical study, and case study),
and publication keywords.

RQ2 Modeling Techniques Code analysis, modeling, and auxiliary techniques
RQ3 Modeling Details Tool descriptions (background, motivation, application scenario, baseline tools) and replication

package link.
RQ4 Evaluation Components Codebase (type, granularity, language, scale, source), query (type, scale, source), evaluation method,

performance measure.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 • Liu et al.

4 RQ1: WHAT ARE THE EMERGING PUBLICATION TRENDS FOR CODE SEARCH STUDIES?
We analyze the publication information from the 81 code search studies retrieved from Section 3, and discuss the
key emerging publication trends.

4.1 Publication Amount
Fig. 3(a) shows the number of studies that were published each year. We can see that the first code search study we
found was published in 2002. The popularity of code search studies has gradually been increasing from 2009, and
the publication peak occurs in 2019 with 22.2% of the total numbers (and not all 2020 papers have yet appeared of
course). Fig. 3(b) illustrates the cumulative counts of numbers shown in Fig. 3(a). To test the trend (i.e., increasing,
decreasing, or neither) of the cumulative publication number, we performed a Cox Stuart trend test [24] at a 5%
significance level. The statistical result shows a substantially increasing trend with p-value<0.01, which implies
the growing popularity of the code search study in the last 18 years.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

10

20

1 0 0 0 0 1 0
5 4 3 1 3

6 7 9
4

11

18

8

#P
ub

lic
at
io
ns

(a) Number of publications per year.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

50

100

1 1 1 1 1 2 2 7 11 14 15 18 24 31 40 44
55

73 81

#P
ub

lic
at
io
ns

(b) Cumulative number of publications per year, which shows an increasing trend (p-value<0.01) tested by the Cox Stuart trend test
[24] at a 5% significance level.

Fig. 3. Publication trend in years.

4.2 Publication Venues
The 81 reviewed studies were published in various conference proceedings and journals. Table 3 shows the
cumulative number of studies published in conferences or journals. We observe that the ratio of the journal to
total number keeps steady increasing with an average of 35% (ranging from 26% to 43%) from 2009 to 2020. This
result implies that most of the studies favor submitting to conferences instead of journals. Table 4 lists the top
publication venues with at least two code search studies. We can also observe that among these 17 venues, the
top-5 popular conferences these works were published are MSR, ICSE, ASE, FSE, and EMSE; meanwhile, the
top-5 journals are TSE, TOSEM, SPE, ASEJ, and TSC.

4.3 Publication Types
Table 5 illustrates how studies contributed to the code search task. We notice that most studies proposed new tools,
where its ratio to the total number of studies increased from 71% (2009-2015) to 82% (2017-2018) and further boosted

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:9

Table 3. Cumulative number of thee contribution types (i.e., new tool, empirical study, and case study) in each year from
2002 to 2020.

Type 2002 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Conference 0 1 1 4 8 9 11 16 23 28 29 36 45 49
Journal 1 1 3 3 5 6 7 8 8 12 15 19 28 32
Journal / Total 100% 100% 43% 27% 36% 40% 39% 33% 26% 30% 34% 35% 38% 40%

Table 4. Top publication venues with at least two code search studies (NT: new tool; ES: empirical study; CS: case study; TS:
Total Studies).

Short Name Full Name NT ES CS TS

MSR International Conference on Mining Software Repositories 3 4 0 7
ICSE International Conference on Software Engineering 6 0 0 6
ASE International Conference Automated Software Engineering 6 0 0 6
FSE Symposium on the Foundation of Software Engineering 4 1 0 5
TSE Transactions on Software Engineering 4 0 0 4
EMSE International Symposium on Empirical Software Engineering and Measurement 1 2 0 3
TOSEM Transactions on Software Engineering and Methodology 2 0 1 3
SANER International Conference on Software Analysis, Evolution, and Reengineering 2 1 0 3
SPE Software-Practice & Experience 3 0 0 3
ICPC International Conference on Program Comprehension 1 1 0 2
ASEJ Automated Software Engineering 2 0 0 2
TSC Transactions on Service Computing 2 0 0 2
JSS Journal of Systems and Software 2 0 0 2

APSEC Asia-Pacific Software Engineering Conference 2 0 0 2
WWW The World Wide Web Conference 2 0 0 2
MLPL International Workshop on Machine Learning and Programming Languages 2 0 0 2
Access IEEE Access 2 0 0 2

- Total 46 9 1 56

to 87% in the recent two years. Meanwhile, researchers performed four case studies in the real world, especially
for enterprise usage, in the early years from 2009 to 2015 to investigate developers’ experience and expectations
of code search tools [25, 114, 118, 122]. Researchers also performed about one empirical study each year (from
2009 to 2020) to analyze the search logs of existing code search tools [6, 7, 26, 37, 38, 89, 104, 105, 138, 142]. As
shown in Table 4, the 17 top publication venues with at least two code search studies publish 46 new tools, 9
empirical studies, and 1 case study.

Table 5. Cumulative number of thee contribution types (i.e., new tool, empirical study, and case study) in each year from
2002 to 2020.

Technique 2002 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

New Tool 1 2 5 8 10 10 13 17 22 30 32 42 60 67
Empirical Study - - 1 2 2 3 3 4 5 6 8 9 9 10
Case Study - - 1 1 2 2 2 3 4 4 4 4 4 4
New Tool / Total 100% 100% 71% 73% 71% 67% 72% 71% 71% 83% 80% 82% 87% 87%

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 • Liu et al.

4.4 Publication Keywords
To identify the key hot topics in code search, for 81 of papers, we collected the keywords provided by the authors
in the papers. For the remaining 15 papers that do not include any keywords, we extracted relevant technical
words/phrases from their abstracts and used them as keywords. Table 6 lists the 20 popular keywords that
appeared at least three times in different studies. These keywords can be categorized into three topics, namely
task, method, and dataset. We can observe that "code search" is the most frequently used keywords in the task
category, which is followed by three sub-field tasks ("API usage", "clone detection", and "binary code search"),
one synonym ("code retrieval") for the "code search", and four other related words ("software reuse", "mining
software", "usage pattern", and "empirical study"). For the method category, we can notice that 8 studies provided
keywords on "information retrieval" to describe their modeling technique, 10 studies indicated their auxiliary
technique "query expansion", and 16 studies focused on DL related keywords ("deep learning", "word embedding",
"representation learning", "attention mechanism", and "neural network"). Table 6 also shows that 14 studies
emphasized that their dataset sources were "Software Repositories", "Crowd Knowledge", "GitHub", or "Stack
Overflow". These results implied that DL-based methods are the most popular topic for code search studies in
recent years.

Table 6. Number of studies used 20 popular keywords (appeared at least three times in different studies) in each year from
2002 to 2020.

Type Keyword Years Total02 07 09 10 11 12 13 14 15 16 17 18 19 20

Task

Code Search - - 4 5 1 1 1 4 4 4 2 3 13 8 50
Clone Detection - 1 - 1 - - - 1 - 2 1 2 2 - 10
Software Reuse - - - - 1 - 1 1 1 - 1 2 2 - 9
API Usage - - - 3 1 - 1 - - - - 1 2 - 8
Code Retrieval - - - - 1 - 1 - - - 1 - - 1 6
Mining Software - - 1 - - - 1 - - - - 1 - - 3
Usage Pattern - - - - - - 1 - - - - 1 1 - 3
Empirical Study - - - - 1 - - - - - 1 - - 1 3
Binary Code Search - - - - - - 1 - - - - 1 1 - 3

Method

Query Expansion - - - - - - - 1 - 1 2 1 4 1 10
Information Retrieval - - - 2 - - 1 - - 3 - 1 - 1 8
Deep Learning - - - - - - - - - 1 - 1 3 1 6
Word Embedding - - - - - - - - - - - 1 2 1 4
Representation Learning - - - - - - - - - - - - 2 1 3
Attention Mechanism - - - - - - - - - - - - 1 2 3
Neural Network - - - - - - - 1 1 - 1 - 1 - 3

Dataset
Software Repositories - - - - - - 1 - - 2 - - - 1 4
Crowd Knowledge - - - - 1 - - - - 1 - - 3 - 4
GitHub - - - - - - - - - - 1 1 1 - 3
Stack Overflow - - - - - - - - - 1 - 1 1 - 3

- Total - 1 6 11 4 1 8 7 5 17 9 17 41 19 146

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:11

Summary of answers to RQ1 - Publication Trends: We investigated the growth trend of code search studies,
which publication venue types were favored, and how the existing publications contributed to the code search
study, and the popular keywords discussed in the recent years:

• Trend of Publication Amount: Code search started to be considered in the software engineering research
literature in 2002, its popularity continues to increase with a current peak so far in 2019 (with 18 studies),
and the total number of selected code search studies reaches 81 until July 31, 2020.

• Trend of Publication Venue: Most studies are published in conferences (rather than journals) with a
steady ratio (~65%) to the total number of studies in each year from 2009 to 2020.

• Trend of Publication Type: More than 70% of studies proposed new tools in each year, four case studies
were performed before 2015, and around one empirical study was conducted in each year from 2009.

• Trend of Contribution Keywords: Deep learning related keywords are the most popular topics for the
selected code search studies in recent years.

5 RQ2: HOW ARE THE KEY COMPONENTS IN EXISTING CODE SEARCH TOOLS DEVELOPED?
This section presents an analysis of the code analysis, modeling, and auxiliary techniques used by the reviewed
67 code search tools. These three techniques correspond to the components 3-5 in the working flow of the code
search tools in Fig. 2. Sections 5.1-5.3 provide detailed descriptions respectively.

5.1 Development of Code Analysis Techniques
Code search tools aim to search relevant code from codebase according to a given query. During the search,
many tools only regard code in a codebase as text without considering the programming knowledge [5, 8, 88].
However, the code involves various semantics in terms of programming components (e.g., class, field, method,
variable, etc.) and their dependency relationship (e.g., method call, class inheritance, etc.) [20, 30, 85, 132]. As this
information can support the code search modeling with more programming semantics, many studies leveraged
code analysis techniques to parse the codebase before modeling the code search task. Table 7 shows the 7 code
analysis techniques used in the reviewed 67 code search tools, which can be classified into two categories:
semantics analysis (parsing the programming components and their dependency relationship) and relevancy
analysis (filtering the code components related to the query). Besides, Table 8 shows that 29 studies leveraged
one code analysis technique, and two studies applied multiple techniques.

Table 7. Number of studies used code analysis techniques in each year from 2002 to 2020.

Type Technique Years Total02 07 09 10 11 12 13 14 15 16 17 18 19 20

Semantics Analysis

Abstract Syntax Tree Analysis - 1 1 1 - - - - 1 1 - - 4 - 9
Control Flow Graph Analysis - - - - - - 1 1 - 1 - 1 2 1 7
Call Graph Analysis - - 2 - - - 2 - - 1 - - 1 - 6
User Interface Hierarchy Analysis - - - - - - - - - - - 2 1 - 3

Relevancy Analysis
Code Differencing - - - - - - - - - - - 1 - - 1
Static Code Slicing - - - 1 1 - - - 1 - - - 1 - 4
Symbolic Execution - - - - - - - - - 1 - - - 1 2

- Total 0 1 3 2 1 0 3 1 2 4 0 4 9 2 32

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 • Liu et al.

Table 8. Different settings for code analysis techniques (CFG: control flow graph; AST: abstract syntax tree; SE: symbolic
execution) for code search tools.

Type #Studies %Studies

No Code Analysis Technique 36 54.7%
One Code Analysis Technique 29 43.3%
CFG + AST 1 1.5%
CFG + SE 1 1.5%
Total 67 100.0%

Semantics Analysis. To extract the programming semantics in code, 25 existing code search studies parsed
code into four structure types: 1) abstract syntax tree (AST), it shows the syntactic structure between different
programming objects, where each node of the tree denotes a programming object (e.g., class, method, variable,
etc.) while the edge illustrates the syntactic relationship between parent node (e.g., the addition operator) and
children (e.g., the variables related to the operator) [9, 20, 85]; 2) control flow graph (CFG), it records working flow
of the statements in a code, where each edge is a control flow statement (e.g., if, else, and while) and each node
denotes a programming block with some highly related statements (e.g., reading text from a file) [29, 30, 141];
3) call graph (CG), it describes how different functions (or methods) invoke each other, where it is commonly
assumed that a frequently invoked function shows a higher popularity compared with the others [41, 132, 152];
4) user interface hierarchy (UIH), for the UI code it represents the hierarchical layout of different UI components
(e.g., text box, button, and frame) [13, 107, 139].

Relevancy Analysis. To identify the relevant parts in code, seven code search studies leveraged three other
code analysis techniques: 1) code differencing (CD), it identifies the different and similar parts between the query
and a candidate code in codebase, which can help code search tools narrow the search scope [84]; 2) static code
slicing (SCS), it traces the statements working in code and filters out the irrelevant ones according to the expected
programming input and output (e.g., the input "File" and output "String" indicate that the relevant code expects to
read "File" and transform the content to a "String") [69, 125]; 3) symbolic execution (SE), a dynamic code analysis
method that determines which part of a code is relevant when running the code with a given input [21, 124].

5.2 Development of Modeling Techniques
For a given query and a codebase, the objective of a code search model is to correctly measure the semantic
relevancy between the query and candidate code snippets in the codebase, and retrieve the top-k code according
to their relevancy scores. Table 9 shows the main models used in the reviewed code search studies. These models
are classified into three types including IR, heuristic, and ML models. From the table, we can notice that the ML
models are favored in the recent years. Moreover, Table 10 shows that 15 studies combined multiple modeling
techniques to solve the code search task.

Information Retrieval Models. Early studies mainly applied the traditional IR techniques to the code search,
which commonly regards the code search as text matching between query and code. Table 9 shows that 25 code
search models leveraged the traditional ranking algorithms TF-IDF (term frequency-inverse document frequency)
[137] and BM25 (best match 25, an improved version of TF-IDF) [108] to measure the relevancy between a query
and a candidate code based on the frequency of their shared words [86, 98]. However, the above models assume
that all the query words are connected with the Boolean operator "OR" (e.g., "how to read a file"). However, not
all words are equally important (e.g., "read" and "file" dominate the intent of the query). To address this issue, 4
studies [86, 143] adopted the Boolean models to support the code search with the "AND" operator, such as "(read
AND file) OR how OR to OR a". Meanwhile, as query and code may use different words to describe the same

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:13

Table 9. Number of code search models studied in each year from 2002 to 2020.

Type Model Years Total02 07 09 10 11 12 13 14 15 16 17 18 19 20

Information Retrieval

TF-IDF - - 1 - - - 1 - 1 1 1 4 4 2 15
BM25 - - - - - - - - - 1 - 2 5 2 10
Boolean Model - - - - - - - - 1 - 1 1 1 - 4
Structural Semantic Indexing - - - 1 - - - - - - - - - - 1
Probabilistic Model - - - - - - 1 - 1 1 - - - - 3

Heuristic Model
Customized Matching 1 - 2 - 1 - 1 2 2 2 - 4 2 1 18
Feature-Based Similarity - 1 1 1 1 - 1 1 1 - - - 3 - 10
Graph Search - - - 1 - - - - - 2 - - - - 3

Machine Learning

Feed-Forward Neural Network - - - - - - - - - - - 2 2 1 5
Convolutional Neural Network - - - - - - - - - - - - 1 1 2
Recurrent Neural Network - - - - - - - - - 2 - 1 2 2 7
Graph Neural Network - - - - - - - - - - - - 1 - 1
Reinforcement Learning - - - - - - - - - - - - 1 - 1

- Total 1 1 4 3 2 0 4 3 6 9 2 14 22 9 80

Table 10. Different settings for modeling techniques (TF-IDF: term frequency-inverse document frequency; BM: boolean
model; FBS: feature-based similarity; CM: customized matching; FFNN: feed-forward neural network; BM25: best match 25;
PM: probabilistic model; RNN: recurrent neural network; GNN: graph neural network; RL: reinforcement learning) for code
search tools.

Type #Studies %Studies Type #Studies %Studies

No Modeling Technique 2 3.0% BM25 + PM 1 1.5%
One Modeling Technique 50 74.6% CM + FBS 1 1.5%
TF-IDF + BM 2 3.0% RNN + FFNN 2 3.0%
TF-IDF + FBS 2 3.0% RNN + GNN 1 1.5%
TF-IDF + CM 4 6.0% RNN + RL 1 1.5%
TF-IDF + FFNN 1 1.5% Total 67 100.0%

intent, the direct word matching is prone to failure. To overcome this issue, one studies leveraged the Structural
Semantic Indexing (SSI) model [109]. It represents the codebase as a word-code matrix that records the frequency
of a term that occurred at each code. The matrix is reduced via Singular Value Decomposition (SVD) to filter out
the noise found in a code so that two code which have the same semantics are located close to one another in a
multi-dimensional space [8]. However, a major limit is that the query should be one of the codes in the codebase.
To solve this issue, 3 studies used the probabilistic model [5]. It computes the relevancy score between a query
and a code as the probability that the code will be relevant to the query. This reduces the relevancy ranking
problem to an application of the probability theory.

Heuristic Models. Traditional IR models mainly regard code as text. But code is not just text – it is written in
highly structured programming languages with specific keywords, syntactic rules, and semantic representations
and meanings [40, 148]. To better express code semantics, Table 9 shows that 31 code search studies developed
heuristic models based on researchers’ domain knowledge (with code search analysis techniques) to search code
in a more intuitive way. Graph search is one representative method, which represents code as a control flow graph
[29] or a call graph [74]. The code search is then transformed into a sub-graph matching issue between query

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 • Liu et al.

and code. Furthermore, Table 9 shows that 18 studies preferred the customized matching (CM) method while 10
studies would like to use the feature-based similarity (FBS) approach. Generally, The CM directly measures the
matching degree between the parsed elements shared in query and code [9, 115] while the FBS represents the
similarity between query and code based on some designed features [41, 147].

Machine Learning Models. The semantic gap between query and code is the major challenging issue for IR
and heuristic models. To address this challenge, researchers have built ML models that capture the correlation
between query and code from large-scale training data. Generally, ML models leverage techniques to embed
query and code into a shared vector space. The code search problem can then be performed by measuring the
cosine similarity between vectors. Table 9 shows that 5 studies have built models based on the feed-forward
neural network (FFNN) [30], and 10 studies adopted the DL techniques including convolution neural network
(CNN) [46, 117], recurrent neural network (RNN) [20, 40, 51, 130, 134, 144, 145], and graph neural network (GNN)
[130]. Moreover, one study enhanced the performance of code search by incorporating the reinforcement learning
(RL) [73], which not only learns from prediction errors as the other machine learning models but also from the
correct predictions with rewards.

5.3 Development of Auxiliary Techniques
Simply building code search tools with techniques listed in Table 9 may not be enough for practical usage
scenarios. Therefore, researchers have also utilized auxiliary techniques to improve the search effectiveness and
efficiency. Table 11 presents the four auxiliary techniques used in different years. Meanwhile, Table 12 shows the
number of studies leveraged multiple auxiliary techniques.

Table 11. Number of studies used auxiliary techniques in each year from 2002 to 2020.

Technique 2002 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Inverted Index - - 1 1 - - 2 1 1 4 1 5 8 4 28
Query Reformulation - - - 1 - - - 2 2 1 2 3 7 2 20
Code Clustering - 1 1 1 1 - 1 1 1 1 - 1 3 - 12
Feedback Learning - - - - - - - - - - - - 1 - 1
Total 0 1 2 3 1 0 3 4 4 6 3 9 19 6 61

Table 12. Different settings for auxiliary techniques (II: inverted index; QR: query reformulation; CC: code clustering; FL:
feedback learning) for code search tools.

Type #Studies %Studies

No Auxiliary Technique 24 35.8%
One Auxiliary Technique 25 37.3%
II + QR 15 22.4%
II + CC 2 3.0%
II + FL 1 1.5%
Total 67 100.0%

Inverted Index. Time efficiency is of high importance in code search due to the need to search a large-scale
codebase. To accelerate the search response time, 28 code search studies indexed code by leveraging the Lucene-
based tool [90]. Lucene is an efficient text-based search engine, which divides indexing information for any given
term into blocks, and builds a parallel structure called a skip list [149] to allow queries to efficiently jump over a

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:15

set of code that does not match a query. One study also applied R*tree instead of Lucene [66], a multi-dimensional
structure for vector indexing [12].

Query Reformulation. A text-based query written in natural language is usually short and misses related
contexts. Thus, a code search tool likely returns many irrelevant code snippets for its queries without complete
and precise semantics. Therefore, 20 tools have reformulated developers’ queries before performing the code
search. This includes techniques such as expanding queries with related words from Stack Overflow [120, 153],
extending query words with relevant APIs or class names [86, 146], replacing query words with better synonyms
in codebase [68, 70].

Code Clustering. It is time-consuming for developers to inspect each code snippet returned by a tool one
by one. Therefore, researchers have tried to reorganize the results list by clustering similar code snippets
[41, 58, 61, 84, 85]. In this case, much developer effort can be saved by only checking the representative code
examples. If one developer is interested in one representative, they can check the corresponding cluster later.
However, Table 11 shows that only 12 of the reviewed code search tools actually improved the code search
results by using such a clustering technique. Thus, it is suggested for further studies to consider results clustering
improvement as an important tool component.

Feedback Learning. After a search tool returns a list of relevant codes, developers usually check each code one
by one and inspect the relevant ones. Developers’ feedback on search relevancy can help a tool to identify users’
real interests and continuously optimize the tool performance. To reach this goal, researchers have leveraged
reinforcement learning to capture developers’ preferences [73]. However, it is not easy to obtain such user
feedback. This may be the reason why researchers have rarely investigated incorporation of feedback learning
into code search tools. This is another promising area for further research.

Summary of answers to RQ2 - Development of the Key Components in Code Search Tools: In this
survey, we analyzed the classification and trend of the code analysis, modeling, and auxiliary techniques used in
the reviewed 67 code search studies:

• Code Analysis Technique: To provide more programming knowledge for modeling, 25 (37.3%) studies
transformed code into different structures (i.e., abstract syntax tree, control flow graph, call graph, and user
interface hierarchy), and 7 (10.4%) studies filtered out the irrelevant part in code by using three techniques
(code differencing, static code slicing, and symbolic execution).

• Modeling Technique: Deep learning is the most popular modeling technique in the last two years,
compared with information retrieval and other heuristic methods.

• Auxiliary Technique: Inverted Index was frequently used for accelerating code search efficiency; re-
searchers also leveraged other auxiliary techniques (i.e., query reformulation, code clustering, feedback
learning) to improve the search accuracy.

6 RQ3: HOW TO CLASSIFY THE EXISTING CODE SEARCH TOOLS?
Section 6.1 presents a classification of the tools into seven categories and Section 6.2 describes how these tools
work in general. Section 6.3 investigates how often code search studies provide accessible replication packages.

6.1 Classification of Code Search Tasks
To understand how different code search tools work, we reviewed 67 code search tools and classified them into
seven categories, as shown in Table 13: 1) Text-based code search – searches source code shared with the same

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 • Liu et al.

semantics as developers’ text-based search queries; 2) Code clone search – uses source code as input and finds
similar code from a codebase; 3) I/O example code search – aims to find code that matches a given input/output
example; 4) API-based code search – finds representative API examples from a codebase according to a given API
name; 5) Binary code search – is similar to the code clone search task but focuses on the binary code (i.e., the
compiled source code); 6) UI code search – retrieves UI implementation code that matches developers’ manually
sketched UI images; 7) Programming video search – is a special variant of the text-based code search task but
searches code in programming videos.
Table 14 shows the number of studies published from 2002 to 2020 for each of these code search task clas-

sifications. We can see that text-based code search is the most popular task with a total of 34 proposed tools
and it is also the most frequently investigated task in the recent three years. Moreover, UI code search and the
programming video search are two emerging tasks, which require more attention from further studies.

Table 13. Classification of code search tasks.

No. Code Search Task Query Codebases #Studies Percent

1 Text-Based Code Search Text Source Code 34 51%
2 Code Clone Search Source Code Source Code 9 14%
3 I/O Example Code Search Input/Output Example Source Code 8 12%
4 API-Based Code Search API Source Code 7 11%
5 Binary Clone Search Binary Code Binary Code 5 7%
6 UI Code Search UI Sketch UI Code 3 4%
7 Programming Video Search Text Code in Video 1 1%
- Total - - 67 100%

Table 14. Number of code search tasks studied in each year ranging from 2002 to 2020.

Task 2002 2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Text-Based Code Search - - 1 1 - - 1 1 3 4 2 6 10 6 34
Code Clone Search 1 - - 1 - - - - 1 2 - 1 3 - 9
I/O example Code Search - 1 1 - 1 - - 2 - 1 - - 1 1 8
API-Based Code Search - - 1 1 1 - 1 - 1 - - - 2 - 7
Binary Code Search - - - - - - 1 1 - 1 - 1 1 - 5
UI Code Search - - - - - - - - - - - 2 1 - 3
Programming Video Search - - - - - - - - - - - - - 1 1
Total 1 1 3 3 2 0 3 4 5 8 2 10 18 7 67

6.2 Development of Seven Code Search Tasks
6.2.1 Text-Based Code Search. The goal of text-based code search is to retrieve source code from a large-scale
code corpus that most closely matches the free-form input by developers [10, 19]. The free-form input refers to
the query written in natural language with unrestricted format, such as the queries "Java read file" or "how to
read a file in Java". Reusing existing code can largely boost developers’ coding efficiency and potentially also
quality, by reusing high quality code examples. Text-based code search is frequently studied because this task
aims to improve the performance of frequently used code search engines in practice, such as GitHub search.
Table 15 presents text-based code search tools with their code analysis, modeling, and auxiliary techniques. This
table also shows how different tools are related to each other in terms of their compared baseline tools.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:17

Table 15. Text-based code search tools with code analysis (AST: abstract syntax tree; CG: call graph; CD: code differencing;
CFG: control flow graph), modeling (RNN: recurrent neural network; FFNN: feed-forward neural network; CNN: convolutional
neural network; RL: reinforcement learning; BM25: best match 25; TF-IDF: term frequency-inverse document frequency; BM:
Boolean model; GS: graph search; PM: probabilistic model; SSI: structural semantic indexing), and auxiliary (II: inverted
index; QR: query reformulation; FL: feedback learning; CC: code clustering) techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2020 CARLCS-CNN [117] - RNN, FFNN - DeepCS
2 2020 QESC2 [153] - BM25 QR, II QECK, CodeHow
3 2020 Ye20 [145] AST RNN - DeepCS, CoaCor
4 2020 CDRL [46] - CNN - DeepCS, QECK, CodeHow
5 2020 CodeMF [45] - BM25 QR, II QECK
6 2019 CoaCor [144] - RNN, RL - DeepCS, CODE-NN
7 2019 Wu19 [136] AST TF-IDF, BM QR, II CodeHow
8 2019 MMAN [130] AST, CFG RNN, GNN - CodeHow, DeepCS
9 2019 NQE [82] - BM25 QR NCS
10 2019 Cosoch [73] - TF-IDF FL, II -
11 2019 QESC1 [49] - BM25 QR, II QECK, CodeHow
12 2019 QREC [47] - BM25 QR, II QECK, CodeHow
13 2019 UNIF [19] - FFNN - NCS, DeepCS
14 2019 GKSR [48] - BM25 QR, II QECK, CodeHow
15 2019 QESR [55] - BM25 QR, II QECK, CodeHow
16 2018 GitSearch [120] - TF-IDF QR, II -
17 2018 NCS [113] - FFNN, TF-IDF - -
18 2018 CodeNuance [84] CD BM25 CC, II CodeExchange
19 2018 QECC [50] - BM25 QR, II QECK, CodeHow
20 2018 DeepCS [40] - RNN, FFNN - CodeHow, Sourcerer
21 2018 Codepus [67] - TF-IDF, CM II -
22 2017 Zhang17 [146] - TF-IDF QR, II -
23 2017 SnippetGen [143] - BM QR CodeHow
24 2016 QECK [98] - TF-IDF QR, II Portfolio, Keivanloo14
25 2016 RACKS [74] CG GS CC -
26 2016 ROSF [52] - BM25, PM II Portfolio, Keivanloo14
27 2016 CODE-NN [51] - RNN - -
28 2015 CodeExchange [88] - TF-IDF, CM QR, II -
29 2015 CodeHow [86] - BM QR Sourcerer
30 2015 Allamanis15 [5] - PM - -
31 2014 Keivanloo14 [58] - CM, FBS CC -
32 2013 Portfolio [93] CG TF-IDF, FBS II -
33 2010 Bajracharya10 [8] - SSI - Sourcerer
34 2009 Sourcerer [75] CG TF-IDF, FBS II -

Information Retrieval Models. Sourcerer [75] is one of the simplest tools. It simply regards code as plain text
and ranks candidate found code in the codebase by the classic information retrieval approach TF-IDF (term
frequency-inverse document frequency) [42]. A higher TF-IDF score means that the query words frequently
appeared in the relevant code but rarely occurred in other irrelevant code. To accelerate the search response time,
Sourcerer leveraged the Lucene library [90] to build an inverted index for the large-scale codebase. Finally, for a
given query, Sourcerer re-ranks the candidate code according to their popularity within the code dependency
graph [135].
To improve code search quality, researchers have tried various approaches. Martie et al. [88] provided code

searchers with more advanced choices (e.g., package, class, method, parameters, etc.). Jiang et al. [52] refined

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 • Liu et al.

the result list by building a supervised ranker to predict the relevancy of a candidate code to a query. Li et al.
[73] leveraged reinforcement learning techniques to learn from user feedback – whether a code snippet found is
relevant to a search query or not – from developers’ search sessions. To mitigate developers’ inspection efforts,
researchers used code clone detection methods [110, 116] to cluster candidate code and present the representative
ones for developers [58, 84]. They have also augmented searched code with contextual information in terms of a
chain of methods in the code dependency graph [74, 93].
However, the major challenge is the semantic gap between query and code. Code is not like a search query

and code is written in a highly structured programming language with different syntactic rules and semantic
representation [45, 86, 153]. To address this issue, researchers have proposed many query processing techniques
to align this semantic gap, such as replacing query words with appropriate synonyms that occur in the codebase
[136]; and expanding query words with code changes (e.g., pull requests and commits) in the development history
[47–50, 55, 153]. It has been observed that API is an important factor to complement the missing semantics in
queries [8]. Researchers have thus expanded query words with relevant APIs or class names from official API
documents [86], codebases [143], or Stack Overflow posts [11, 45, 98, 120, 146].

Machine Learning Models. Allamanis et al. [5] explained the code search task as a probabilistic model, namely
the probability that a code would be retrieved to match the input query. Other proposed tools score query-code
pairs by a trained multiplicative model [95]. Although this probabilistic model is an early IR-based algorithm,
the experimental result provided by Allamanis et al. [5] shows that the query and code can be jointly modelled,
inspiring other ML models.

Later, Iyer et al. [51] proposed CODE-NN that leverages LSTM to build a translation model from query to code.
To train the model, CODE-NN collected posts from Stack Overflow, where the question and corresponding code in
the post are used as the training data. To learn a better representation of code and query, Gu et al. [40] proposed
the tool DeepCS that represents code by separate components, including method name, API sequence, and word
set in the method body. Their tool embeds query and code into vectors so that code search can be performed by
measuring the cosine similarity between vectors. DeepCS is trained by the code and corresponding comments.
To further improve the performance of DeepCS, Huang et al. [46] incorporated code/query embedding with an
attention mechanism. Shuai et al. [117] leveraged a co-attention mechanism to learn the correlation between
the embedded query and code. Wan et al. [130] proposed a tool with more code representations, which embeds
the code structure by a tree-based LSTM and the call graph of code by a GGNN (Gate-Graph Neural Network).
Recently, researchers [144, 145] improved code search with generated code summarization, and then built tools
as a reinforcement learning process of code search and code summarization tasks. The generated summarization
is important because it is an abstraction of the code and shares the same semantic level as a developer’s search
query.
However, the above tools are complex, and training them is time-consuming. Therefore, researchers also

investigated more lightweight tool approaches at the same time. Sachdev et al. [113] proposed a tool, NCS, that
leveraged an unsupervised token-level embedding fastText [16] to transform code and query into vectors. NCS
searched candidate code for a query by using the TF-IDF weighting method [42], and finally re-ranked the
candidates by comparing their cosine similarity to the query vector. To improve the search effectiveness of NCS,
Liu et al. [82] added a query expansion technique to the NCS; Cambronero et al. [19] proposed the model UNIF
that replaced the unsupervised component TF-IDF in NCS by a neural network with an attention mechanism.
The UNIF can be trained by the code-comment pairs as for DeepCS [40]. However, different from DeepCS, UNIF
has a substantially shorter training time due to its simple model complexity [19].

6.2.2 Code Clone Search. A code clone search tool takes a piece of code as a query and returns a list of similar
codes [61, 85, 103]. It differs from code clone detection [110, 116] because it is query-centric, retrieves only clones
that are associate with the query, instead of looking for a complete set of clone pairs in the codebase as the clone

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:19

detection, and cares about the tool scalability [103]. Table 17 shows the reviewed studies related to the code clone
search task.

Early tools regarded code clone search as a token-by-token matching issue. CCFinder [56] identifies whether
the partial token sequences of a candidate code snippet contains the target query code. SourcererCC [115]
calculated code similarity based on the overlap degree between the tokens of two codes. When the degree value
is lower than a pre-defined coefficient, SourcererCC returns the code in a codebase as a clone. However, code
does not just consist of tokens but with particular structures. Thus, further tools considered this code structural
information. Lee et al. [66] transformed a source code snippet into an abstract syntax tree (AST). The graph is
represented by a characteristic vector via the locality sensitive hashing (LSH) algorithm [39, 53], where a node in
AST is composed by its subgraphs. Code clone search is then regarded as a subgraph matching problem (namely
whether a query matches the subgraph of a code). In contrast, Balachandran [9] searched code clones by directly
measuring the matching degree between query and candidate code in terms of the code structural feature.
In recent years, researchers have built tools based on learning models. DLC [134] leveraged a tree-based

recurrent neural network (RNN) to embed binary code into vectors and learned their lexical relationship. Code
clone search can then be performed by measuring the cosine similarity between code vectors. Additionally, Chen
et al. [20] proposed a tree-based convolution neural network called TBCAA, which outperforms the model DLC
[134]. Researchers have also sought other ways to improve code clone search. Siamese [103] incorporates a
multi-representation, corresponding to four clone types [111] as described in Table 16, to represent an indexed
corpus of code, improves the query quality by leveraging the knowledge of token frequency in the codebase, and
finally re-ranks the searched candidate code based on the TF-IDF weighting method. FaCoY [61] extended the
query with related code in Stack Overflow, and searches similar code fragments against the code index built from
the source code of software projects. Aroma [85] pruned and clustered candidate code, and intersects the snippets
in each cluster to carve out a maximal code snippet. This snippet is common to all the snippets in the cluster and
which contains the query snippet. The set of intersected code snippets are then returned as recommended code
snippets.

Table 16. Four clone types between the query (i.e., the inputted code) and the searched relevant code.

Clone Types Description

Type-1 The relevant code is identical to the query except for the variations in whitespace, layout, and comments.

Type-2 The relevant code is syntactically identical to the query except for the variations in identifiers, literals, and types,
in addition to the Type-1.

Type-3 Compared with the query, the relevant code involves further modifications such as some changed, added, or
removed statements, in addition to the Type-2.

Type-4 The relevant code performs the same computation as the query but they are implemented with different syntactic
variants (e.g., using different APIs or organizing code with different structures), in addition to the Type-3.

6.2.3 I/O Example Code Search. For I/O example code search, a query contains a set of examples specifying
the desired input/output (I/O) behaviors of target code [21]. For instance, in the Java programming tasks (e.g.,
converting an "Integer" to a "String", or trimming the file extension “file” from a file name “file.txt”), the given
I/O examples (i.e., "Integer/String" and "file.txt/file") reflect the incomplete functional specifications (e.g., type
conversion and file name trimming) that can be collected from development requirements [21] or test cases [69].
An I/O example code search tool aims to find the code methods that match a specified I/O example, where the
relevant code methods may complete the task in various ways [21]. This kind of tool can be further applied to the
programming by example field [32, 94]. Table 18 shows I/O example code search tools included in this systematic

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 • Liu et al.

Table 17. Code clone search tools with code analysis (AST: abstract syntax tree), modeling (CNN: convolutional neural
network; RNN: recurrent neural network; TF-IDF: term frequency-inverse document frequency; CM: customized matching),
and auxiliary (QR: query reformulation; II: inverted index; CC: code clone) techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2019 TBCAA [20] AST CNN - Siamese, SourcererCC, CCFinder, DLC
2 2019 Siamese [103] - TF-IDF QR, II FaCoy, SourcererCC, CCFinder
3 2019 Aroma [85] AST TF-IDF, CM CC, II SourcererCC
4 2018 FaCoY [61] - BM, TF-IDF QR, II SourcererCC, CCFinder
5 2016 DLC [134] AST RNN - -
6 2016 SourcererCC [115] - CM II CCFinder
7 2015 Balachandran15 [9] AST CM - -
8 2010 Lee10 [66] AST GS QR, II -
9 2002 CCFinder [56] - CM - -

review. We can see that these tools have mainly refined the results of existing online search engines, such as
GitHub search, Google Code, and Sourcerer.
To find a method that matches the expected I/O examples, early tools [106, 126] employed graph-based code

mining algorithms to mine paths that start with the input example and end with the output example. However, it
was observed although some methods did not satisfy the I/O requirement, their partial code meets the expectation.
Therefore, researchers [69, 125] leveraged slicing techniques that locate the output example from a method and
extract related code snippets backwards. Such a technique excludes the methods that cannot trace the input
example. To improve search performance, researchers also leveraged query processing techniques to optimize
the initial results of online search engines, namely expanding query with appropriate synonyms [68, 70].

Dynamic analysis techniques have also been adopted for I/O example code search. Stolee et al. [124] proposed a
tool called Satsy. It is based on a symbolic execution approach and works in two phases. During an offline encoding
phase, Satsy encodes the semantics of code in codebase into logical formulas concerning their input/output
variables. During an online search, Satsy binds concrete values from I/O examples to compatible variables in
each formula to construct a constraint, and checks the satisfiability of the constraint using a solver Z3 [28].
Although Satsy has been applied to search for Java code in previous studies [124], its usefulness in daily code
search activities is limited, as it handles only loop-free code snippets manipulating data of char, int, boolean, and
String types. To extend the usefulness of Satsy, Chen et al. [21] proposed a tool Quebio. Different from Satsy, its
symbolic encoding phase supports more language features like the invocation to library APIs, which enables
Quebio to handle more data types (e.g., array, List, Set, and Map) during the search. This new feature enables
Quebio to be used in a wider range of scenarios.

6.2.4 API-Based Code Search. This code search task aims to help developers find useful code examples for a given
API (e.g., the API "FileReader.Read()" used for reading the contents from a file). This task is important because
developers write code using various APIs, but only a limited portion is explained with code examples, where
only around 2% of APIs in JDK 5 (27k in total) provide examples [132, 152]. Therefore, developers have to type
the expected API in existing search engines, such as Google. However, the problem is that early search engines
often return numerous irrelevant or repeated results [41, 147]. To improve the performance of the API-based
code search, many tools have been proposed to filter out the irrelevant results and better re-organize the relevant
candidates [60, 87, 132]. One early example is MAPO [152] that searches a list of code relevant to the target API
and clusters the code according to their API call sequences using a classical hierarchical clustering technique
[43]. To help developers find expected code quickly, MAPO also generates code call patterns (i.e., a sequence of
API calls) for describing each cluster.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:21

Table 18. I/O example code search tools with code analysis (AST: abstract syntax tree; SCS: static code slicing; SE: symbolic
execution), modeling (CM: customized matching; FBS: feature-based similarity; TF-IDF: term frequency-inverse document
frequency), and auxiliary (II: inverted index) techniques.

No. Year Code Analysis Tool Name Modeling Auxiliary Baselines

1 2020 Quebio [21] CFG, SE TF-IDF, CM II Satsy
2 2019 TIRSnippet [125] SCS FBS CC PARSEWeb
3 2016 Satsy [124] SE CM - -
4 2014 Lemos14 [70] - - QR QEwct
5 2014 QEwct [68] - - QR CodeGenie
6 2011 CodeGenie [69] SCS CM - -
7 2009 S6 [106] AST CM - -
8 2007 PARSEWeb [126] AST FBS CC -

As the major challenge is how to cluster and rank the searched code, researchers have proposed a number
of solutions. EXoaDocs [60] transforms the searched code into a vector space according to their AST structure,
clusters them by using a hierarchical clustering algorithm (the centroid of a cluster is regarded as the representative
code), and ranks the code based on three factors. These are representativeness – the reciprocal of the similarity to
the representative code of the corresponding cluster; conciseness – the reciprocal of code length; and correctness –
the degree the code is related to the target API. PropER-Doc [87] clusters candidate code based on their interacted
API types, and ranks the candidates based on three designed metrics: significance, how the API in code related
to the query; density, the portion of code lines that refers to the query; cohesiveness, the aggregation level of
the query described within the code. UPMiner [132] clusters code based on the similarity of the API sequences
and groups the frequent closed sequences into a code pattern for a cluster using the tool BIDE [133]. The code
pattern that covers more possible APIs and contains fewer redundant lines is ranked higher. MUSE [65] discards
irrelevant lines of code in the codebase, clusters the simplified code by a code clone detection method [44], and
ranks the representative code in clusters based on their reusability, understandability, and popularity. KodeKernel
[41] represents a source code as an object usage graph, instead of method invocation sequences or feature vectors.
It clusters code by embedding them into a continuous space using a graph kernel. KodeKernel then selects a
representative code from each cluster based on two designed ranking metrics: centrality, the average distance
from one code to another in the cluster; and specificity, the code contains less rarely appeared lines.
Recently, Zhang et al. [147] indicated that it is difficult to match the intent of the query to the searched

candidate code due to the insufficient context of the code. To address this issue, they proposed the model ADECK
that searches code examples from the question and answer (Q&A) forum Stack Overflow (SO). During the search,
ADECK represents each post (i.e., code with discussion in SO) related to the query as a tuple consisting of the
post title and the best-answered code scored by users. Then ADECK clusters the tuples based on their semantic
similarities by leveraging the APCluster method [34].

6.2.5 Binary Code Search. When deploying source code on different operating systems with various compilers
and optimization methods, source code is usually transformed into different binary codes. For a given binary
code, how to search for the same binary code but compiled in other forms becomes the objective of the binary
code search task. Assembly code (i.e., the human-readable binary code) is commonly used to build the codebase
[30, 59]. The binary code search task can be applied for plagiarism detection, malware detection, and software
vulnerability auditing [27, 59].

To address the binary code search task, researchers proposed many tools as shown in Table 20. Specifically,
Rendezvous [59] compares the descriptive statistics between code tokens in terms of the mnemonic n-grams,
mnemonic n-perms, control flow sub-graph, and data constants. To ensure tool scalability, Rendezvous builds

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 • Liu et al.

Table 19. API-based code search tools with code analysis (CG: call graph; SCS: static code slicing), modeling (CM: customized
matching; FBS: feature-based similarity), and auxiliary (CC: code clustering) techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2019 KodeKernel [41] CG FBS CC eXoaDocs, MUSE
2 2019 ADECK [147] - FBS CC eXoaDocs
3 2015 MUSE [65] SCS FBS CC -
4 2013 UPMiner [132] CG CM CC MAPO
5 2011 PropER-Doc [87] - FBS CC -
6 2010 eXoaDocs [60] SCS FBS CC -
7 2009 MAPO [152] CG CM CC -

indexing for a codebase to reduce the scope of search space according to the given query. However, the low-level
compiler transformations can strongly affect the performance of Rendezvous. To tackle this issue, Tracy [27]
decomposes code into tracelets – the continuous, short, partial traces of an execution – and compares these
tracelets based on a Jaccard containment similarity [3] in the face of low-level compiler transformations. Kam1n0
[29] represents the control flow graph (CFG) of binary code as a LSH (locality sensitive hashing) scheme [63],
where a node in CFG is formed as a combination of its subgraph. Binary code search is then transformed into
a subgraph search problem. It is challenging to align the semantics between two binary codes. To overcome
this challenge, BingGo-E [141] selectively inlines a binary code with relevant libraries and user-defined codes
to complete the semantics in code. Asm2Vec [30] leverages a feed-forward neural network to jointly learn the
semantic relationships between binary code. The learned code representation can largely mitigate the manual
incorporation of the complex prior domain knowledge.

Table 20. Binary clone search tools with code analysis (CFG: control flow graph), modeling (FFNN: feed-forward neural
network; CM: customized matching; GS: graph search; PM: probabilistic model), and auxiliary (II: inverted index) techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2019 Asm2Vec [30] CFG FFNN - Rendezvous
2 2018 BingGo-E [141] CFG CM - Tracy
3 2016 Kam1n0 [29] CFG GS II Rendezvous, Tracy
4 2014 Tracy [27] CFG CM II Rendezvous
5 2013 Rendezvous [59] CFG PM II -

6.2.6 UI Code Search. When developing software user interfaces (UIs) developers commonly draft UI sketches
and implement corresponding UI code with related APIs. This often takes enormous efforts. UI code search tools
take UI sketches as a query and search for UI code snippets that match the requirement of the UI sketch from a
codebase. Table 21 shows three UI code search tools we reviewed in this study. Reiss et al. [107] converted the
image of a developer’s UI sketch into a scalable vector graphic (SVG) diagram, and reduced the search space
by using an existing text-based search engine S6 [54] with related keywords. After a series of transformations
for the candidate code, this tool returns the ones that can be compiled and run. Behrang et al. [13] proposed a
similar tool GUIFetch but measures the query-code relevancy with a comprehensive metric based on the screen
similarity in terms of the screen type, size, and position, and the screen transition similarity. To improve query
representation, Xie et al. [139] adapted the pix2code [14] tool to automatically extract the code structure from a UI
sketch. Pix2code uses a DL model that can capture the UI components types and their hierarchical relationships,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:23

which was trained with manually labeled UI sketches. To sort candidate UI code, Xie et al. [139] measured the
layout distance between query and candidate code based on the Levenshtein distance [71].

Table 21. UI code search tools with code analysis (UIH: user interface hierarchy), modeling (CM: customized matching), and
auxiliary techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2019 Xie19 [139] UIH CM - Reiss18
2 2018 GUIFetch [13] UIH CM - -
3 2018 Reiss18 [107] UIH CM - -

6.2.7 Programming Video Search. Programming video code snippet search is a new code search task recently
investigated by Bao et al. [10]. This task aims to search for relevant code snippets in programming videos (e.g.,
from YouTube) using text-based queries. The major challenge is how to capture the code in videos and transform
it into text. Code search can then be implemented by using text-based code search tools described earlier in
Section 6.2.1. To capture the relevant code frame in programming videos, Bao et al. [10] proposed a tool psc2code.
It removes noisy frames by a CNN (Convolutional Neural Network) based image classification, extracts source
code by calling a professional ORC (Optical Character Recognition) tool, and performs code search by using the
TF-IDF algorithm.

Table 22. Programming video search tools with code analysis, modeling (TF-IDF: term frequency-inverse document frequency),
and auxiliary (II: inverted index) techniques.

No. Year Tool Name Code Analysis Modeling Auxiliary Baselines

1 2020 Psc2Code [10] - TF-IDF II -

6.3 Availability of Replication Packages
Wewondered how often the reviewed 67 code search tools share replication packages in their papers. We searched
and inspected all the links in each paper. If a replication package link is available, we checked the link accessibility
and whether the replication package contains source code. If we found no relevant link in a paper, we also
searched its replication package in GitHub with the paper title. After searching GitHub, we found replication
packages for four studies [29, 61, 65, 85]. The ownerships of the searched replication packages can be confirmed
by the claims in the README file (i.e., the author list and the citation information). The pie chart in Fig. 4
shows that only 18% of the reviewed studies provide accessible replication packages. Among the other studies, 14
studies provide inaccessible links in the paper or accessible links without source code. We found no description
of replication packages for 41 studies. To facilitate future code search study, we provide the usable replication
packages in Table 28 in Appendix A.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 • Liu et al.

No link (41)
61%

Accessible link (12)

18%

Inaccessible link or no source code (14)

21%

Fig. 4. Replication package.

Summary of answers to RQ3 - Classification of Code Search Tools: In this survey, we classified 67 exiting
tools into seven tasks, analyzed their developments respectively, and estimated the availability of replication
packages:

• Code Search Tasks: 50 (74.6%) tools searched source code with queries written in natural language (i.e.,
text, API name, input/output example), 14 (20.9%) tools searched the code with similar semantics to a
given source/binary code, and 3 (4.5%) tools searched the UI code for a sketched UI image.

• Replication Package: We found only 12 code search studies (18% of total studies) shared accessible
replication package links in their papers or provided source code in GitHub.

7 RQ4: HOW DO STUDIES EVALUATE CODE SEARCH TOOLS?
We investigated the key elements used to evaluate the 67 code search tools including aspects of the evaluation
datasets (i.e., queries and codebase), evaluation method, and performance measures as illustrated in Fig. 2.

7.1 Queries
Code search queries reflect developers’ search requirements, and their features determine how a code search tool
can support developers’ intents. As described in Table 13 of Section 6.1, there are seven types of queries: text,
source code, API, binary code, I/O example, test case, and UI sketch. Fig. 5(a) shows that, among these query
choices, text query can be supported by 35 code search studies. The query-based search is popular because it can
be regarded as a general search engine like the GitHub search. Fig. 5(b) illustrates the distribution of query scales
in the reviewed 67 code search tools. We can see that 35 studies evaluated tool effectiveness with 10-100 queries.
Five studies tested tools with no more than ten queries, while 25 studies performed code search with a larger
scale of inputs of more than 100 queries.
We also analyzed the query sources adopted by different code search studies. As illustrated in Table 23, 39%

of queries were collected from question and answer forums including Stack Overflow [19] and Eclipse FAQs
[8]; 6% of queries were extracted from software development kits, including JDK [41], Android development kit
[147], and .Net framework [132]. The remaining 55% of queries were manually selected from frequently used
examples: codebase [69, 126], search logs of practically used code search engine [88, 143], a summary of search
on the Internet [93, 107], and automatically generated queries [50, 153].

7.2 Codebase
Various characteristics of the codebase define the search space of a specific code search type. After inspecting the
67 code search tools, we found three types of codebases. As illustrated in Fig. 6(a), 91% of codebases are built with
source code written by developers in high-level programming languages (e.g., Java); 8% of codebases consist of

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:25

0 5 10 15 20 25 30 35
UI Sketch
Test Case

I/O Example
Binary Code

API
Source Code

Text

3
3

5
5

7
9

35

#Studies.

(a) Query type

0 5 10 15 20 25 30 35
[1,10)

[10,100)
[100,1k)
[1k,10k)

[10k,100k)
[100k,1m)

5
35

8
9

8
2

#Studies.

(b) Query scale

Fig. 5. Query type and scale.

Table 23. Query source.

Type Source #Studies Percent

Question and Answer Forum Stack Overflow 25 36%
Eclipse FAQs 2 3%

Development Kit
Java Development Kit 3 4%
Android Development Kit 1 1%
.NET Framework 1 1%

Frequently Used Examples

Codebase 30 43%
Search Log 4 6%
Web Search 2 3%
Automatic Generation 2 3%

binary code, i.e., the compiled source code; and one study collected a corpus of programming tutorial video with
source code as a codebase to help developers search code from videos [10]. Fig. 6(b) shows the distribution of the
code granularity: 69% of the tools regard methods as search targets; 16% of the tools focus on recovering code
fragments; and 15% of the tools concentrate on retrieving relevant files, e.g. the app UI code [107].
Fig. 7 (a) shows the distribution of programming language in code bases: Java is the most favored language

with 52 studies, followed by C#, Assembly, C/C++, SQL, Python, and Javascript. Fig. 7(b) shows the distribution
of the codebase scale in terms of the number of studied instances (i.e., method, fragment, or file). We can see that
35 of the selected studies used small scale codebases with more than 1k and lower than 1m code items. 22 studies

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 • Liu et al.

91%

Source Code (61)

8% Binary Code (5)

1% Video (1)

(a) Codebase types.

69%

Method (46)

16% Fragment (11)

15% File (10)

(b) Codebase granularity.

Fig. 6. Codebase types and granularity.

constructed larger scale codebases with more than one million code items. However, the codebase scales of ten
studies are unknown because their tools are based on online search engines, such as the GitHub search2 with
millions of open source repositories. Table 24 shows the codebase scale in different code granularities (method,
fragment, and file) respectively. We can see that most studies that search code methods have built larger codebases
(>10m).

Table 25 summarizes the data sources of different codebases. By classifying the sources into four categories, we
can see that the open source community is the biggest source category including GitHub [40], SourceForge [152],
Google code [106], Apache [67], FDroid [52], OpenHub [74], and Tigris.org [66]. Among these communities,
GitHub is the most popular one related to 23 code search studies. Researchers also collected data from app stores
(Google Play and Apple store [139]), enterprise with closed projects (Microsoft [132] and Amazon [74]), and
programming forum and videos (Stack Overflow [5, 147] and YouTube [10]). 19% of studies manually selected and
downloaded some projects according to their experience [8, 93], while 13% of studies proposed new techniques
to better support online search engines (e.g., GitHub search [41] and Google code [87]).

Table 24. Codebase scale in different code granularities (i.e., method, fragment, and file).

Scale Unknown [100m,1t) [10m,100m) [1m,10m) [100k,1m) [10k,100k) [1k,10k) Total

Method 7 1 6 7 6 12 7 46
Fragment 0 0 0 6 2 1 2 11

File 3 0 0 2 1 2 2 10
Total 10 1 6 15 9 15 11 67

7.3 Evaluation Methods
The reviewed code search studies have evaluated new tools in four ways, as listed in Table 26. Manual identification
is the major evaluation method in 37 related studies. In this case, researchers or invited developers manually
inspected the top-n result list returned by a code search tool and identified their relevancy to query intent one by
one. However, such manual evaluation approaches may suffer from subjective bias. To mitigate this issue, 30 code
search studies provided three approaches to automatically identify the relevancy between queries and searched
2https://github.com/search

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:27

0 5 10 15 20 25 30 35 40 45 50 55
Javascript

Python
SQL

C/C++
Assembly

C#
Java

1
1

3
3

5
8

52

#Studies.

(a) Programming language

0 2 4 6 8 10 12 14 16
[1k,10k)

[10k,100k)
[100k,1m)
[1m,10m)

[10m,100m)
[100m,1t)
Unknown

11
15

9
15

6
1

10

#Studies.

(b) Codebase scale

Fig. 7. Codebase language and scale.

Table 25. Codebase source.

Source Type Source #Studies Percent

Public Code Repositories

GitHub 23 29%
SourceForge 6 8%
Google Code 4 5%
Apache 3 4%
FDroid 2 3%
OpenHub 1 1%
Tigris.org 1 1%

App Store Google Play 1 1%
Apple Store 1 1%

Internal Code Repositories Microsoft 1 1%
Amazon 1 1%

Forum and Video Sharing Platform Stack Overflow 8 10%
YouTube 1 1%

Other Selected Projects 15 19%
Online Search Engine 10 13%

results. 19 studies constructed a ground-truth where selected code snippets correspond to each query result in
advance. However, obtaining the ground-truth is not easy and is very manually intensive to do. Therefore, two
studies [41, 139] asked researchers or developers to manually annotate the ground-truth in the codebase, which

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 • Liu et al.

requires the codebase scale to be amenable to these limited manual efforts. To mitigate issues when using manual
efforts, nine studies designed a measurement to score the query-code relevancy (e.g., leveraging a clone detection
method to score the similarity between a search code and an example code [49, 113]) and determined relevancy if
the score is larger than a pre-defined threshold. However, choosing the right threshold is difficult and researchers
have tried their best to simulate manual identification.

Table 26. Evaluation method.

No. Method Description Count Percent

1 Manual Manual identification 37 55%
2 Automated1 Automated identification based on collected query-code pairs 19 28%
3 Automated2 Automated identification based on manually annotated query-code

relevancy
2 3%

4 Automated3 Automated identification based on a designed algorithm to judge the
query-code relevancy

9 14%

- Total - 67 100%

7.4 Performance Measures
To measure the effectiveness of a code search task, studies used various performance metrics as listed in Table 27.
Generally, there are two types of accuracy measure approaches – one treating code search as a ranking issue and
the other treating code search as a classification issue.

For ranking, for a search result list with top-k code, a metric measures the accuracy concerning the important
location in the list [40, 77, 117]. FRank@k and FFP@k are metrics for an individual query, which are the ranks
of the first relevant code and the first false positive code respectively. To measure the comprehensive search
accuracy for all queries, MRR@k and SuccessRate@k care about the first correctly search code for a query, where
MRR@k is an average of reciprocal ranks of the first correct search for each query; SuccessRate@k counts the
percentage of queries that retrieved at least one relevant code. To measure the accuracy concerning multiple
relevant codes for a query, researchers adopted Precision@k, MAP@k, and NDCG@k, where Precision@k equals
to the percentage of relevant code in the top-k result list; MAP@k considers Precision@k with k ranging from 1
to k; NDCG@k is also a position sensitive metric similar to MAP@k but implemented in terms of the discounted
cumulative gain.

The previous metrics are based on code-query relevancy status (i.e., relevant or not). In contrast, we found that
one study measures code search tool performance based on relevancy scores like MSE@k, the mean squared errors
between the relevancy ratings by a tool, and the ratings by researchers or developers. Similarly, the correlation
test between two ratings lists can also be used as a metric, including the KCC@k (Kendall’s correlation coefficient
[1]), SCC@k (Spearman correlation coefficient [96]), and PCC@k (Pearson correlation coefficient [15]).

Some studies regard code search as a classification task. Different from treating it as a ranking task, classification
ignores the position of located code snippets for a given query and aims to retrieve as many relevant code snippets
as possible [20, 29, 66]. For a query, a code search tool searches all relevant code from the codebase without size
limitation. Its performance can then be measured by Precision (the proportion of code in a result list is truly
relevant for a query) and Recall (the proportion of relevant code in the codebase that is correctly retrieved for a
query).
However, the same tool usually cannot usually achieve both high Precision and high Recall. To solve this

issue, studies have also used summary metrics: F1-score, the harmonic mean of Precision and Recall [66, 78, 79];
F2-score, a variant of F1-score that puts more weights on Precision [59]; AUROC, the area under the receiver

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:29

Table 27. Performance Metrics.

Type Metric Description #Studies

Ranking

Precision@k The percentage of relevant code in the top-k result list for each query. 27
MRR@k The average of reciprocal ranks of the results of a set of queries, where the reciprocal

rank of a query is the inverse rank of first relevant code in the top-k result list.
19

NDCG@k The normalized discounted cumulative gain for the top-k search results. 16
SuccessRate@k The proportion of queries that the relevant code could be found in the top-k result

lists.
11

MAP@k Mean average precision, where the average precision of a query is the mean of
precision at each rank.

5

FRank@k The rank of the first relevant code in the top-k result list for a given query. 4
FFP@k The rank of the first false positive code in the top-k results for a given query. 1
MSE@k The mean squared errors between the relevancy ratings of each search code and the

ground-truth ratings.
1

KCC@k The Kendall’s correlation coefficient between the searched code rankings and the
ground-truth rankings.

1

SCC@k The Spearman’s correlation coefficient between the searched code rankings and the
ground-truth rankings.

1

PCC@k The Pearson correlation coefficient between the searched code rankings and the
ground-truth rankings.

1

Classification

Precision The proportion of code in a result list are truly relevant for a query. 16
Recall The proportion of relevant code in codebase that are correctly retrieved for a query. 9
F1-score A harmonic mean of Precision (p) and Recall (r), equaling to 2pr/(p + r). 4
AUROC The area under the receiver operating characteristics curve. 2
F2-score A weighted harmonic mean of Precision (p) and Recall (r) with double weights on

recall, equaling to 5pr/(4p + r).
1

AUPR The area under the precision-recall curve. 1

Other Search Time The average time duration for each code search query to be processed. 13

operating characteristics curve [75]; and AUPR, the area under the precision-recall curve [29]. Despite the
accuracy measures, 13 studies also considered the tool efficiency in terms of the code search time [115, 134].

Summary of answers to RQ4 - Code Search Evaluation: we analyzed the evaluation datasets (i.e., queries
and codebase, which correspond to the search input and space for code search tools respectively), evaluation
methods, and performance measures used for 67 existing code search tools:

• Queries: 25 (37.3%) studies collected text-based queries from Stack Overflow while 30 (44.8%) studies
extracted code-based queries from their codebases.

• Codebase: 52 reviewed studies’ (77.6%) codebases were built with large-scale code written in Java; 46
studies (68.7%) focused on searching method-level code; 40 studies use codebases (59.7%) that were built by
collecting code from public repositories (e.g., GitHub and FDroid).

• Evaluation Method: The performance of 37 code search tools (55.2% of the total count) was estimated
using manual analysis.

• Performance Measure: The ranking metrics (e.g., MRR and NDCG) are mainly used to measure the
performance of code search models.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 • Liu et al.

8 CHALLENGES AND OPPORTUNITIES

8.1 Challenges

Challenge 1: Diversity of the Codebase. The characteristics of a codebase determine what a tool can find in
the search space. However, most researchers have built their codebases in different ways that may affect the tool
performance and usability:
1) Small Scale. The codebase scale in a practical environment (e.g., GitHub and FDroid) is usually large with

millions of lines of code. However, many code search studies only tested their tools on a small scale codebase
[46, 73, 132, 143]. In this case, findings may not generalize to large codebases [73]. Moreover, for a small-scale
codebase, a code search tool may not work just because the codebase contains no code relevant to some search
queries.
2) Language Specific. As illustrated in Fig. 7, most codebases only focused on code written in one type of

programming language, especially Java. However, developers write and search code in various programming
languages (e.g., Python and C#). Although some studies claimed that their tools can be easily extended to other
languages, they only tested their tools on a codebase for one specific language [46, 125, 130].

Challenge 2: Limited Queries. To test the tool effectiveness, studies carefully collected queries from Q&A
forums, development kits, and frequently used examples as listed in Table 23. The studies tried their best to find
appropriate queries to simulate developers’ search behaviors in the real world. However, the selected queries are
limited in four aspects:

1) Limited Quantity. Fig. 5(b) shows that nearly 60% of studies tested their proposed tools by using no more than
100 queries. Such query scale can only cover a limited number of real-world queries actually used by software
developers [45, 46, 120]. We observed that one major reason that hinders the query scale is the tool evaluation
method. As illustrated in Table 26, we notice that 55% of the code search tools were verified by manual evaluation
only. Increasing the query scale would substantially increase the burden of user study participants in their labeling
efforts.
2) Query Representativeness. Commonly, code search studies selected the top-n frequently used queries from

Q&A forums, or randomly sample a small set of queries from the real world [45, 46, 120]. However, studies seldom
investigated the representativeness of the selected queries. Thus, it would be uncertain and questionable if a
code search tool can work for other types of queries. Moreover, the selected queries are usually too general and
in reality developers often search for very domain-specific code [132]. Therefore, it is necessary to analyze the
distribution and characteristics of queries to verify the tool generalizability.
3) English Query Only. For text-based queries, code search studies have nearly always only investigated the

queries written in English. However, developers are scattered all around the world and use different languages,
not just English [120]. Therefore, it is beneficial and necessary to make an extension to non-English queries
especially for text-based search tools. It is also necessary to investigate how developers with more limited English
can use English-based code search tools.

Challenge 3: Model Construction Issues.ML models are popular and favored in recent years. This is because
ML models (e.g., DL) require no substantial manual efforts in incorporating domain knowledge into the traditional
IR and heuristic models. However, existing DL models possess several threats to their model validity:
1) Validity of Parameters. DL models involve many internal parameters, such as batch size, stop condition,

learning rate, etc. Code search studies have usually initialized these parameters with default settings and do not
verify the effectiveness of this parameter choice [47, 48, 98]. They have also sometimes tuned the parameters
without explaining the reasons or validity. Such unverified parameters may threaten the model generalizability
[76].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:31

2) Quality and Quantity of Training Data. For text-based code search, DL models were trained with pairs of
code and comments. The comment is a replacement for the query. Nevertheless, developers wrote queries in
different styles and languages. Noisy comments also likely affect model performance. Thus, the quality of this
training data may adversely threaten the trained model effectiveness [117, 130, 144]. Moreover, only a few codes
contain comments so that a model trained with commented code may not work for other code [77].

Challenge 4: Evaluation Issues.We observed that tool evaluation is the most widely discussed future work
issue in the reviewed code search studies. Based on their discussions and our findings, we attributed this evaluation
issue to two aspects:
1) Relevancy Identification. Table 26 shows that only 28% of code search tools were evaluated by automated

identification with a carefully curated ground-truth. This is because a ground-truth is difficult to construct for
most code search tasks. Although nine code search studies identified the query-code relevancy by designed
measurements, it is uncertain if such measurements are actually reasonable. Due to the above difficulties, most
code search studies chose to identify relevancy with human efforts. However, their evaluation with manual
identification is subject to potential serious bias and human errors [40, 45, 76, 84, 130].
2) Dataset Configuration. For a tool based on a learning model, studies commonly split the codebase into

three parts (i.e., training, validating, and testing data) with different ratios (e.g., 8:1:1) [20, 48]. This is a common
setting for tool verification and the split can avoid the overfitting issue [40]. However, this setting substantially
reduces the scale of the codebase in tool testing. In a real-world code search scenario, the search space usually
contains millions of repositories with limited number of training data. The testing data scale is also increasing
continuously. Therefore, to better simulate practical search cases, it is suggested to split the codebase with less
training data and more testing data.

Challenge 5: Limited Performance Measures. Although researchers used various performance metrics to
measure the tool performance, as listed in Table 27, the adopted metrics are not enough to meet the requirements
for code search evaluation. We observed that current code search tools lack the following considerations:
1) Tool Efficiency and Scalability. Searching for relevant code from a large-scale codebase is one feature of

the code search task. Therefore, developers expect that the used tool performs code search as fast as possible.
However, most code search studies did not estimate the tool performance in terms of the tool search time, as
illustrated in Table 27. Especially for tools based on learning models, the search time is commonly not acceptable
due to the high model complexity [35, 77]. Moreover, as the codebase is frequently updated by developers, it is
also necessary to estimate the scalability and reproducibility of the proposed tool on codebases of different scales.
2) Other Important Metrics. To estimate the performance of code search tools, the accuracy (e.g., MRR and

NDCG) and efficiency (e.g., search time) metrics are not enough. Some code search studies (e.g., text-based search,
API-based search, and I/O example search) just return a list of relevant code to a search query, but ignore the
diversity of the list of returned code without excluding repeated results [89]. Moreover, some returned code
snippets may be not concise (i.e., with many lines irrelevant to the actual query intent) or incomplete (e.g.,
missing some important control flow and error handling statements), so that the code cannot be reused easily
by developers in their real-world software development scenarios [147]. To address these issues, Keivanloo et
al. [58] measured the conciseness by the ratio of irrelevant lines to the total lines of code; and calculated the
degree of completeness by the number of addressed tasks divided by the total number of tasks, where the task
includes the intent of the search query and other possible missed statements (i.e., well-typed declaration, variable
initialization, necessary control flow, and expected exception handling). To sum up, it is important to consider
the other important metrics, e.g., the diversity, conciseness, and completeness of the search code [65].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 • Liu et al.

Challenge 6: Replication Issues. Tool reproducibility is of high merit in code search research, as other re-
searchers or practitioners require less effort in replicating / extending / comparing to the study. We observed that
existing code search tools suffer from the following replication issues:
1) Replication Package. Sharing source code and dataset can greatly help to support the tool replicability

and mitigate researchers’ replication efforts. However, Fig. 4 shows that only 18% of code search tools provide
accessible replication packages [76, 120]. It is recommended that future studies share their contributions publicly
[76]. Some researchers may share their code upon email request, but it is highly recommended to provide the
accessible replication package links in the papers and to maintain these repositories.
2) Online Search Engine. Table 9 shows that ten code search tools depend on an online search engine (e.g.,

GitHub search, Google Code search, and Sourcerer). However, the online search engines could be improved
through time, so that new studies cannot replicate the experimental results reported by early studies. To facilitate
the tool replication, further studies are encouraged to provide the access date of their used online search engines.
Besides, if there exists source code or paper for an online engine (e.g., Sourcerer), it is necessary to check their
differences. In this way, when researchers found the performance of their re-implemented code search tool is
different from the performance reported in a paper, they could understand whether the difference comes from
the improvement of the online search engine or their re-implementation errors.

8.2 Opportunities

Opportunity 1: Better Benchmarks.One urgent task for code search research is to build a standard benchmark
that different tools can be evaluated with. Such a benchmark requires that: the codebase is industrial-scale with
millions of lines of code and multiple programming languages [46, 130]; the tested search queries involve various
diverse types of real-world examples covering not just top-n frequently used general queries; developing a
standard automated tool evaluation method to exclude manual efforts and subjective bias; and excluding repeated
code before assessing the tool performance.

Opportunity 2: DL-Based Model with Big Data. It is promising to build DL-based code search models trained
with big data to learn the correlations between queries and code. There are some opportunities to improve the
DL-based models such as: standardizing code written by different developers with various programming styles
and experiences to mitigate training difficulties; improving the quality of the training data; developing better
code representation methods to capture the programming semantics [117, 148]; leveraging better loss functions
to optimize the DL-based model, e.g., using the ranking loss function [80, 81, 117, 145], and increasing size of the
training and testing data sets.

Opportunity 3: Fusion of Different Types of Models. Researchers have developed various code search
tools. Although learning models have shown promising advantages over traditional and heuristic models, their
disadvantages are still obvious, such as slow code search time, low scalability and need for periodic retraining.
However such efficiency issues can be complemented by the other two types of models. Therefore, it is suggested
to explore fusing the advantages of different types of code search models into tools [77].

Opportunity 4: Multi-Language Tool. It is difficult to apply an existing tool designed for a specific program-
ming language to searching code written in other programming languages. This is because tools often depend
on language-specific features and parsing processes. Moreover, a learning model is likely to cost a long time to
retrain data for a new programming language. Therefore, it is recommended to develop a multi-language code
search tool. For example, leveraging the multi-task learning techniques [150, 151] to capture the semantics of
multi-language in code search, and investigating whether a model trained on one language can be transferred to
other language [99, 129]. In this way, code search practitioners do not have to train and deploy code search tools
on each programming language one by one.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:33

Opportunity 5: New Code Search Tasks. UI code search [13, 107, 139] and programming video search [10]
are two emerging code search tasks. Different from the traditional popular code search tasks using text-based
code search, they extended the capability of existing code search engines to use UI sketches as queries and
videos as sources for useful code snippets. Specifically, the UI code search can provide more relevant help for UI
developers, while programming video search provides more detailed tutorials for novice developers. Therefore, it
is recommended that researchers pay more attentions for new tools for these new code search tasks.

9 THREATS TO VALIDITY

9.1 Publication Bias
Publication bias indicates the issue of publishing more positive results over negative results [57]. This is because
positive results, e.g., a code search tool with statistically significant advantages over baselines, have a much
higher chance of getting published. Meanwhile, negative results, e.g., the suspected flawed studies, are likely
rejected for publication. Thus, to ensure the publication chance, some studies may report biased, incomplete and
incorrect conclusions due to their low quality of experimental design (e.g., using limited or selected testing data).
Therefore, the claims in this review supported or rejected by our selected major studies could be biased if the
original literature suffers from such publication bias.

9.2 Search Terms
It is always challenging to find all relevant primary studies in any systematic review [57, 100]. To address
this issue, we presented a detailed search strategy. The search string was constructed with terms identified by
checking titles, abstracts, and keywords from many relevant papers that were already known to the authors.
The adopted search string was piloted and the identified studies confirmed the applicability of the search string.
These procedures provided high confidence that the majority of the key studies were included in the review.

9.3 Study Selection Bias
The study selection process was carried out in two phases. The first phase excluded studies based on the title
and abstract by two independent researchers. A pilot study of the selection process was conducted to place a
foundation for a better understanding of the inclusion/exclusion criteria. Potential disagreements were resolved
during the pilot study and inclusion/exclusion criteria were refined. Inter-rater reliability was evaluated to
mitigate the threat that emerged from the researchers’ personal subjective judgment. The agreement between the
two researchers was "substantial" for selecting relevant papers from the full set of papers. The selection process
was repeated until a full agreement was achieved. When the researchers could not decide on a particular study, a
third researcher was consulted. The second phase was based on the full text. Due to this well-established study
selection process, it is unlikely that any relevant studies were missed.

9.4 Data Extraction
For data extraction, the studies were divided between two researchers; each researcher extracted the data from
the relevant studies and the extracted data were rechecked by the other researcher. Issues in data extraction were
discussed after the pilot data extraction and the researchers were able to complete the data extraction process
following the refinement of the criteria. Extracted data were then inspected by automated scripts to check the
correctness of the extracted values across the paper content, improving the validity of our analysis.

9.5 Data Analysis
We may have mis-compared some studies, mis-understood some of the techniques or evaluation methods
reported, missed replication package links or failed to find repositories searching with paper title, or may have

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 • Liu et al.

mis-understood reported dataset and evaluation metric details. From the extracted data we took due care in each
of these areas to properly analyse, represent, classify and summarise the reviewed studies in this paper. However,
there may be errors in our classification and analysis that impacts the overall findings of this review.

10 CONCLUSION
In recent years, researchers have proposed many tools to support the very common and important code search
task to help boost developers’ software development productivity and quality of code produced. To investigate
the current state of research on code search, we performed a comprehensive review of 81 code search studies
found from searching three electronic databases, ACM Digital Library, IEEEXplore, and ISI Web of Science. After
extracting data from and analysing these selected studies, we found that:

• The popularity of code search research is substantially increasing with a peak in 2019, which accounts for
more than 50% of the studies published from 2002-2020; 60% of studies were published in conferences; 83%
of the studies proposed new code search tools.

• 74% of the reviewed tools focused on the general code search task (inputted with text-based queries,
API-based queries, and input/output example) to improve the existing code search engines (e.g., GitHub
Search); 21% of the tools aimed to search similar source/binary code from codebase; the remaining 5%
of tools intended to search UI code or code in programming videos; in the recent two years, researchers
frequently leverage DL techniques to tackle the challenges in early tools; but only 18% of code search tools
shared accessible replication package links in their papers or provided source code in GitHub.

• To verify tool validity, method-level Java code collected from open source community (e.g., GitHub and
FDroid) is a popular choice to build a large-scale codebase; Representative search queries were commonly
extracted from Q&A forums, development kit, and frequently used examples; most studies manually
identified the relevancy of query and searched code and assessed the tool performance by using the ranking
metrics (e.g., MRR and NDCG).

After analyzing the shortcomings of existing code search tools, we recommend further studies to build a
better benchmark with large-scale code written in multiple programming languages, including various queries
covering not only top frequently used examples but also domain-specific cases, and a standard automated tool
evaluation method. DL-based tools require further improvements, such as better code representation, higher
quality of training data, and speed improvements. It is recommended to fuse them with other models such
as traditional IR-based and heuristic models. It is difficult to deploy an existing tool to search code written in
multiple programming languages. Therefore, a multi-language tool is needed in the future. Additionally, new
code search tasks such as searching UI code or code in programming videos are also worthy of more attention. In
the future, we would like to investigate how a variety of code search tools are applied to underpin other software
engineering tasks (e.g., bug/defect localization, program repair/synthesis, and vulnerability auditing).

ACKNOWLEDGEMENTS
This research was partially supported by the National Science Foundation of China (No. U20A20173), Key Research
and Development Program of Zhejiang Province (No.2021C01014), the National Research Foundation, Singapore
under its Industry Alignment Fund – Prepositioning (IAF-PP) Funding Initiative, and the ARC Laureate Fellowship
(FL190100035). Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research Foundation, Singapore.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:35

Table 28. Replication package links.

Task Tool URL

Text-Based Code Search

CARLCS-CNN [117] https://github.com/cqu-isse/CARLCS-CNN
CoaCor [144] https://github.com/LittleYUYU/CoaCor
DeepCS [40] https://github.com/guxd/deep-code-search

CODE-NN [51] https://github.com/sriniiyer/codenn

I/O example Code Search MUSE [65] https://github.com/lmorenoc/icse15-muse-appendix

API-Based Code Search - -

Code Clone Search
Siamese [103] https://github.com/UCL-CREST/Siamese
Aroma [85] https://github.com/facebookresearch/aroma-paper-artifacts
FaCoY [61] https://github.com/FalconLK/facoy

Binary Clone Search Kam1n0 [29] https://github.com/McGill-DMaS/Kam1n0-Community
Tracy [27] https://github.com/Yanivmd/TRACY

UI Search Xie19 [139] https://github.com/yingtao-xie/code_retrieval/

Programming Video Search psc2code [10] https://github.com/baolingfeng/psc2code

A REPLICATION PACKAGES

REFERENCES
[1] Hervé Abdi. 2007. The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA (2007),

508–510.
[2] Afsoon Afzal, Manish Motwani, Kathryn Stolee, Yuriy Brun, and Claire Le Goues. 2019. SOSRepair: Expressive Semantic Search for

Real-World Program Repair. IEEE Transactions on Software Engineering (2019).
[3] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. 2010. On indexing error-tolerant set containment. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data. 927–938.
[4] Shayan Akbar and Avinash Kak. 2019. SCOR: source code retrieval with semantics and order. InWorking Conference on Mining Software

Repositories. IEEE, 1–12.
[5] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal modelling of source code and natural language. In

International Conference on Machine Learning. 2123–2132.
[6] Sushil Bajracharya and Cristina Lopes. 2009. Mining search topics from a code search engine usage log. In Working Conference on

Mining Software Repositories. IEEE, 111–120.
[7] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and mining a code search engine usage log. Empirical Software

Engineering 17, 4-5 (2012), 424–466.
[8] Sushil K Bajracharya, Joel Ossher, and Cristina V Lopes. 2010. Leveraging usage similarity for effective retrieval of examples in code

repositories. In International Symposium on Foundations of Software Engineering. 157–166.
[9] Vipin Balachandran. 2015. Query by example in large-scale code repositories. In IEEE International Conference on Software Maintenance

and Evolution. IEEE, 467–476.
[10] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, Minghui Wu, and Xiaohu Yang. 2020. psc2code: Denoising Code Extraction from

Programming Screencasts. ACM Transactions on Software Engineering and Methodology 29, 3 (2020), 1–38.
[11] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are developers talking about? an analysis of topics and trends in

stack overflow. Empirical Software Engineering 19, 3 (2014), 619–654.
[12] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-tree: an efficient and robust access method

for points and rectangles. In ACM SIGMOD international conference on Management of data. 322–331.
[13] Farnaz Behrang, Steven P Reiss, and Alessandro Orso. 2018. GUIfetch: supporting app design and development through GUI search. In

International Conference on Mobile Software Engineering and Systems. 236–246.
[14] Tony Beltramelli. 2018. pix2code: Generating code from a graphical user interface screenshot. In EICS. 1–6.
[15] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coefficient. In Noise reduction in speech

processing. Springer, 1–4.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 • Liu et al.

[16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. TACL
5 (2017), 135–146.

[17] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010. Example-centric programming: integrating web search
into the development environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 513–522.

[18] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer. 2009. Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1589–1598.

[19] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. 2019. When deep learning met code search. In
International Symposium on Foundations of Software Engineering. 964–974.

[20] Long Chen, Wei Ye, and Shikun Zhang. 2019. Capturing source code semantics via tree-based convolution over API-enhanced AST. In
ACM International Conference on Computing Frontiers. 174–182.

[21] Zhengzhao Chen, Renhe Jiang, Zejun Zhang, Yu Pei, Minxue Pan, Tian Zhang, and Xuandong Li. 2020. Enhancing example-based code
search with functional semantics. Journal of Systems and Software (2020), 110568.

[22] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008.
Novelty and diversity in information retrieval evaluation. In Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval. 659–666.

[23] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 1 (1960), 37–46.
[24] David Roxbee Cox and Alan Stuart. 1955. Some quick sign tests for trend in location and dispersion. Biometrika 42, 1/2 (1955), 80–95.
[25] Kostadin Damevski, David Shepherd, and Lori Pollock. 2014. A case study of paired interleaving for evaluating code search techniques.

In 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE,
54–63.

[26] Kostadin Damevski, David Shepherd, and Lori Pollock. 2016. A field study of how developers locate features in source code. Empirical
Software Engineering 21, 2 (2016), 724–747.

[27] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables. Acm Sigplan Notices 49, 6 (2014), 349–360.
[28] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 337–340.
[29] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2016. Kam1n0: Mapreduce-based assembly clone search for reverse

engineering. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 461–470.
[30] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec: Boosting static representation robustness for binary

clone search against code obfuscation and compiler optimization. In IEEE Symposium on Security and Privacy. IEEE, 472–489.
[31] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. Feature location in source code: a taxonomy and survey.

Journal of software: Evolution and Process 25, 1 (2013), 53–95.
[32] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020. Wrex: A Unified Programming-by-Example Interaction

for Synthesizing Readable Code for Data Scientists. In Proceedings of the 2020 CHI conference on human factors in computing systems.
1–12.

[33] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. 2016. Scalable graph-based bug search for firmware
images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 480–491.

[34] Brendan J Frey and Delbert Dueck. 2007. Clustering by passing messages between data points. science 315, 5814 (2007), 972–976.
[35] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In Proceedings of the 2017 11th joint meeting on

foundations of software engineering. 49–60.
[36] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. Vulseeker: a semantic learning based vulnerability seeker for

cross-platform binary. In 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 896–899.
[37] Xi Ge, David Shepherd, Kostadin Damevski, and Emerson Murphy-Hill. 2014. How developers use multi-recommendation system in

local code search. In VL/HCC. IEEE, 69–76.
[38] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from here, some from there: Cross-project code reuse in

github. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 291–301.
[39] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in high dimensions via hashing. In VLDB, Vol. 99. 518–529.
[40] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In International Conference on Software Engineering. IEEE,

933–944.
[41] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2019. CodeKernel: a graph kernel based approach to the selection of API usage

examples. In International Conference on Automated Software Engineering. IEEE, 590–601.
[42] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies. 2013. Automatic query reformula-

tions for text retrieval in software engineering. In International Conference on Software Engineering. IEEE, 842–851.
[43] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and techniques. Elsevier.
[44] Simon Harris. 2003. Simian-similarity analyser. HYPERLINK Available from: http://www. harukizaemon. com/simian/index. html (2003).

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:37

[45] Gang Hu, Min Peng, Yihan Zhang, Qianqian Xie, Wang Gao, and Mengting Yuan. 2020. Unsupervised software repositories mining and
its application to code search. Software-Practice & Experience 50, 3 (2020), 299–322.

[46] Qing Huang, An Qiu, Maosheng Zhong, and Yuan Wang. 2020. A Code-Description Representation Learning Model Based on Attention.
In International Conference on Software Analysis, Evolution and Reengineering. IEEE, 447–455.

[47] Qing Huang and Guoqing Wu. 2019. Enhance code search via reformulating queries with evolving contexts. Automated Software
Engineering 26, 4 (2019), 705–732.

[48] Qing Huang and Huaiguang Wu. 2019. QE-integrating framework based on Github knowledge and SVM ranking. Science China.
Information Science 62, 5 (2019), 52102.

[49] Qing Huang, Yang Yang, andMing Cheng. 2019. Deep learning the semantics of change sequences for query expansion. Software-Practice
& Experience 49, 11 (2019), 1600–1617.

[50] Qing Huang, Yangrui Yang, Xue Zhan, Hongyan Wan, and Guoqing Wu. 2018. Query expansion based on statistical learning from code
changes. Software-Practice & Experience 48, 7 (2018), 1333–1351.

[51] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural attention model.
In AMACL. 2073–2083.

[52] He Jiang, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang, and Xiapu Luo. 2016. Rosf: Leveraging information retrieval
and supervised learning for recommending code snippets. IEEE Transactions on Services Computing 12, 1 (2016), 34–46.

[53] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007. Deckard: Scalable and accurate tree-based detection of
code clones. In International Conference on Software Engineering. IEEE, 96–105.

[54] Renhe Jiang, Zhengzhao Chen, Zejun Zhang, Yu Pei, Minxue Pan, and Tian Zhang. 2018. Semantics-Based Code Search Using
Input/Output Examples. In International Working Conference on Source Code Analysis and Manipulation. IEEE, 92–102.

[55] Huan Jin and Lei Xiong. 2019. A Query Expansion Method Based on Evolving Source Code. Wuhan University Journal of Natural
Sciences 24, 5 (2019), 391–399.

[56] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[57] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical Report. Technical
report, Ver. 2.3 EBSE Technical Report. EBSE.

[58] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code examples. In Proceedings of the 36th International Conference
on Software Engineering. ACM, 664–675.

[59] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. 2013. Rendezvous: A search engine for binary code. In Working Conference on
Mining Software Repositories. IEEE, 329–338.

[60] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. 2010. Towards an Intelligent Code Search Engine.. In AAAI.
[61] Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le Traon. 2018. FaCoY: a code-to-code

search engine. In International Conference on Software Engineering. 946–957.
[62] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Features and how to find them: a survey of manual feature location. Software

Engineering for Variability Intensive Systems (2019), 153–172.
[63] Brian Kulis and Kristen Grauman. 2009. Kernelized locality-sensitive hashing for scalable image search. In 2009 IEEE 12th international

conference on computer vision. IEEE, 2130–2137.
[64] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2017. Bug localization with combination of deep learning

and information retrieval. In International Conference on Program Comprehension. IEEE, 218–229.
[65] Moreno Laura, Bavota Gabriele, Di Penta Massimiliano, Oliveto Rocco, and Marcus Andrian. 2015. How Can I Use This Method?. In

International Conference on Software Engineering. ACM.
[66] Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, and Sunghun Kim. 2010. Instant code clone search. In International Symposium on

Foundations of Software Engineering. 167–176.
[67] Shin-Jie Lee, Xavier Lin, Wu-Chen Su, and Hsi-Min Chen. 2018. A comment-driven approach to API usage patterns discovery and

search. Journal of Internet Technology 19, 5 (2018), 1587–1601.
[68] Otávio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V Lopes. 2014. Thesaurus-based automatic query expansion

for interface-driven code search. In Working Conference on Mining Software Repositories. 212–221.
[69] Otávio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher, Paulo Cesar Masiero, and Cristina Lopes. 2011. A test-driven

approach to code search and its application to the reuse of auxiliary functionality. Information and Software Technology 53, 4 (2011),
294–306.

[70] Otávio Augusto Lazzarini Lemos, Adriano Carvalho de Paula, Gustavo Konishi, Sushil Krishna Bajracharya, Joel Ossher, Cristina Videira
Lopes, et al. 2014. Thesaurus-Based Tag Clouds for Test-Driven Code Search. Journal of Universal Computer Science 20, 5 (2014),
772–796.

[71] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10.
707–710.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:38 • Liu et al.

[72] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. 2013. What help do developers seek, when and how?. In 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE, 142–151.

[73] Wei Li, Shuhan Yan, Beijun Shen, and Yuting Chen. 2019. Reinforcement Learning of Code Search Sessions. In Asia-Pacific Software
Engineering Conference. IEEE, 458–465.

[74] Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. 2016. Relationship-aware code search for JavaScript
frameworks. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
690–701.

[75] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and Pierre Baldi. 2009. Sourcerer: mining and searching
internet-scale software repositories. Data Mining and Knowledge Discovery 18, 2 (2009), 300–336.

[76] Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2020. On the Replicability and Reproducibility of Deep
Learning in Software Engineering. arXiv preprint arXiv:2006.14244 (2020).

[77] Chao Liu, Xin Xia, David Lo, Zhiwei Liu, Ahmed E Hassan, and Shanping Li. 2020. Simplifying Deep-Learning-Based Model for Code
Search. arXiv preprint arXiv:2005.14373 (2020).

[78] Chao Liu, Dan Yang, Xin Xia, Meng Yan, and Xiaohong Zhang. 2018. Cross-project change-proneness prediction. In 2018 IEEE 42nd
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 64–73.

[79] Chao Liu, Dan Yang, Xin Xia, Meng Yan, and Xiaohong Zhang. 2019. A two-phase transfer learning model for cross-project defect
prediction. Information and Software Technology 107 (2019), 125–136.

[80] Chao Liu, Dan Yang, Xiaohong Zhang, Haibo Hu, Jed Barson, and Baishakhi Ray. 2018. A recommender system for developer onboarding.
In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. 319–320.

[81] Chao Liu, Dan Yang, Xiaohong Zhang, Baishakhi Ray, and Md Masudur Rahman. 2018. Recommending GitHub Projects for Developer
Onboarding. IEEE Access 6 (2018), 52082–52094.

[82] Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, and Satish Chandra. 2019. Neural query expansion for code search.
In ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. 29–37.

[83] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: revisiting template-based automated program repair.
In ACM SIGSOFT International Symposium on Software Testing and Analysis. 31–42.

[84] Wenjian Liu, Xin Peng, Zhenchang Xing, Junyi Li, Bing Xie, and Wenyun Zhao. 2018. Supporting exploratory code search with
differencing and visualization. In International Conference on Software Analysis, Evolution and Reengineering. IEEE, 300–310.

[85] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019. Aroma: code recommendation via structural code search.
OOPSLA 3 (2019), 152.

[86] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015. Codehow: Effective code search based
on api understanding and extended boolean model (e). In International Conference on Automated Software Engineering. IEEE, 260–270.

[87] Lee Wei Mar, Ye-Chi Wu, and Hewijin Christine Jiau. 2011. Recommending proper API code examples for documentation purpose. In
Asia-Pacific Software Engineering Conference. IEEE, 331–338.

[88] Lee Martie, Thomas D LaToza, and Andre van der Hoek. 2015. Codeexchange: Supporting reformulation of internet-scale code queries
in context (T). In International Conference on Automated Software Engineering. IEEE, 24–35.

[89] Lee Martie and Andre Van der Hoek. 2015. Sameness: an experiment in code search. In Working Conference on Mining Software
Repositories. IEEE, 76–87.

[90] Michael McCandless, Erik Hatcher, Otis Gospodnetić, and O Gospodnetić. 2010. Lucene in action. Vol. 2. Manning Greenwich.
[91] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. 2011. Portfolio: finding relevant functions and their

usage. In International Conference on Software Engineering. 111–120.
[92] Collin McMillan, Negar Hariri, Denys Poshyvanyk, Jane Cleland-Huang, and Bamshad Mobasher. 2012. Recommending source code

for use in rapid software prototypes. In Proceedings of the 34th International Conference on Software Engineering. IEEE Press, 848–858.
[93] Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu. 2013. Portfolio: Searching for relevant functions and

their usages in millions of lines of code. ACM Transactions on Software Engineering and Methodology 22, 4 (2013), 1–30.
[94] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. 2013. A machine learning framework for programming

by example. In International Conference on Machine Learning. PMLR, 187–195.
[95] Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. IEEE Computer Society 34, 8 (2010), 1388–1429.
[96] Leann Myers and Maria J Sirois. 2004. S pearman Correlation Coefficients, Differences between. Encyclopedia of statistical sciences

(2004).
[97] Brent D Nichols. 2010. Augmented bug localization using past bug information. In Annual Southeast Regional Conference. 1–6.
[98] Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Query expansion based on crowd knowledge for code search. IEEE

Transactions on Services Computing 9, 5 (2016), 771–783.
[99] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data engineering 22, 10

(2009), 1345–1359.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Opportunities and Challenges in Code Search Tools • 1:39

[100] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software
engineering: An update. Information and Software Technology 64 (2015), 1–18.

[101] Denys Poshyvanyk and Mark Grechanik. 2009. Creating and evolving software by searching, selecting and synthesizing relevant
source code. In International Conference on Software Engineering-Companion Volume. IEEE, 283–286.

[102] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. Swim: Synthesizing what i mean-code search and idiomatic snippet
synthesis. In International Conference on Software Engineering. IEEE, 357–367.

[103] Chaiyong Ragkhitwetsagul and Jens Krinke. 2019. Siamese: scalable and incremental code clone search via multiple code representations.
Empirical Software Engineering 24, 4 (2019), 2236–2284.

[104] Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico Andrés Lois, Sebastián Fernandez Quezada, Christopher
Parnin, Kathryn T Stolee, and Baishakhi Ray. 2018. Evaluating how developers use general-purpose web-search for code retrieval. In
Proceedings of the 15th International Conference on Mining Software Repositories. ACM, 465–475.

[105] Sukanya Ratanotayanon, Hye Jung Choi, and Susan Elliott Sim. 2010. My repository runneth over: an empirical study on diversifying
data sources to improve feature search. In International Conference on Program Comprehension. IEEE, 206–215.

[106] Steven P Reiss. 2009. Semantics-based code search. In International Conference on Software Engineering. IEEE, 243–253.
[107] Steven P Reiss, Yun Miao, and Qi Xin. 2018. Seeking the user interface. Automated Software Engineering 25, 1 (2018), 157–193.
[108] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Now Publishers Inc.
[109] Barbara Rosario. 2000. Latent semantic indexing: An overview. Techn. rep. INFOSYS 240 (2000), 1–16.
[110] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone detection research. Queen’s School of Computing TR 541,

115 (2007), 64–68.
[111] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and evaluation of code clone detection techniques and tools:

A qualitative approach. Science of computer programming 74, 7 (2009), 470–495.
[112] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques. In Domain Engineering. Springer, 29–58.
[113] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018. Retrieval on source code: a neural

code search. In ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. 31–41.
[114] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers search for code: a case study. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 191–201.
[115] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. 2016. SourcererCC: Scaling code clone detection

to big-code. In International Conference on Software Engineering. 1157–1168.
[116] Abdullah Sheneamer and Jugal Kalita. 2016. A survey of software clone detection techniques. International Journal of Computer

Applications 137, 10 (2016), 1–21.
[117] Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin Xia, and Yan Lei. 2020. Improving Code Search with Co-Attentive Representation

Learning. In International Conference on Program Comprehension.
[118] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes. 2011. How well do search engines support code

retrieval on the web? ACM Transactions on Software Engineering and Methodology 21, 1 (2011), 1–25.
[119] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010. An examination of software engineering work

practices. In CASCON First Decade High Impact Papers. IBM Corp., 174–188.
[120] Raphael Sirres, Tegawendé F Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, and Yves Le Traon. 2018. Augmenting and

structuring user queries to support efficient free-form code search. Empirical Software Engineering 23, 5 (2018), 2622–2654.
[121] Bunyamin Sisman and Avinash C Kak. 2013. Assisting code search with automatic query reformulation for bug localization. InWorking

Conference on Mining Software Repositories. IEEE, 309–318.
[122] Jamie Starke, Chris Luce, and Jonathan Sillito. 2009. Searching and skimming: An exploratory study. In IEEE International Conference

on Software Maintenance and Evolution. IEEE, 157–166.
[123] Kathryn T Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the search for source code. ACM Transactions on Software

Engineering and Methodology (TOSEM) 23, 3 (2014), 26.
[124] Kathryn T Stolee, Sebastian Elbaum, and Matthew B Dwyer. 2016. Code search with input/output queries: Generalizing, ranking, and

assessment. Journal of Systems and Software 116 (2016), 35–48.
[125] Rui Sun, Hui Liu, and Leping Li. 2019. Slicing Based Code Recommendation for Type Based Instance Retrieval. In International

Conference on Software and Systems Reuse. Springer, 149–167.
[126] Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant for reusing open source code on the web. In International

Conference on Automated Software Engineering. 204–213.
[127] Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining alternative patterns for detecting neglected conditions. In International

Conference on Automated Software Engineering. IEEE, 283–294.
[128] Suresh Thummalapenta and Tao Xie. 2011. Alattin: mining alternative patterns for defect detection. Automated Software Engineering

18, 3-4 (2011), 293–323.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:40 • Liu et al.

[129] Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms,
methods, and techniques. IGI global, 242–264.

[130] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip Yu. 2019. Multi-modal attention network learning
for semantic source code retrieval. In International Conference on Automated Software Engineering. IEEE, 13–25.

[131] Bei Wang, Ling Xu, Meng Yan, Chao Liu, and Ling Liu. 2020. Multi-Dimension Convolutional Neural Network for Bug Localization.
IEEE Transactions on Services Computing (2020).

[132] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei Zhang. 2013. Mining succinct and high-coverage API
usage patterns from source code. In Working Conference on Mining Software Repositories. IEEE, 319–328.

[133] Jianyong Wang and Jiawei Han. 2004. BIDE: Efficient mining of frequent closed sequences. In Proceedings. 20th international conference
on data engineering. IEEE, 79–90.

[134] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. 2016. Deep learning code fragments for code clone
detection. In International Conference on Automated Software Engineering. IEEE, 87–98.

[135] Norman Wilde, Ross Huitt, and Scott Huitt. 1989. Dependency analysis tools: reusable components for software maintenance. In
Proceedings. Conference on Software Maintenance. IEEE, 126–131.

[136] Huaiguang Wu and Yang Yang. 2019. Code search based on alteration intent. IEEE Access 7 (2019), 56796–56802.
[137] Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. 2008. Interpreting tf-idf term weights as making relevance

decisions. ACM Transactions on Information Systems (TOIS) 26, 3 (2008), 1–37.
[138] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and Zhenchang Xing. 2017. What do developers search for

on the web? Empirical Software Engineering 22, 6 (2017), 3149–3185.
[139] Yingtao Xie, Tao Lin, and Hongyan Xu. 2019. User Interface Code Retrieval: A Novel Visual-Representation-Aware Approach. IEEE

Access 7 (2019), 162756–162767.
[140] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural network-based graph embedding for cross-platform

binary code similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 363–376.
[141] Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu. 2018. Accurate and scalable cross-architecture cross-os binary

code search with emulation. IEEE Transactions on Software Engineering 45, 11 (2018), 1125–1149.
[142] Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the Code Snippets What We Are Searching for? A

Benchmark and an Empirical Study on Code Search with Natural-Language Queries. In International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 344–354.

[143] Yangrui Yang and Qing Huang. 2017. IECS: Intent-enforced code search via extended boolean model. Journal of Intelligent & Fuzzy
Systems 33, 4 (2017), 2565–2576.

[144] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: code annotation for code retrieval with reinforcement learning.
In The World Wide Web Conference. 2203–2214.

[145] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. 2020. Leveraging Code Generation to Improve Code
Retrieval and Summarization via Dual Learning. In The World Wide Web Conference. 2309–2319.

[146] Feng Zhang, Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Expanding queries for code search using semantically related api
class-names. IEEE Transactions on Software Engineering 44, 11 (2017), 1070–1082.

[147] Jingxuan Zhang, He Jiang, Zhilei Ren, Tao Zhang, and Zhiqiu Huang. 2019. Enriching API Documentation with Code Samples and
Usage Scenarios from Crowd Knowledge. IEEE Transactions on Software Engineering (2019).

[148] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 783–794.

[149] Jingtian Zhang, Sai Wu, Zeyuan Tan, Gang Chen, Zhushi Cheng, Wei Cao, Yusong Gao, and Xiaojie Feng. 2019. S3: a scalable in-memory
skip-list index for key-value store. Proceedings of the VLDB Endowment 12, 12 (2019), 2183–2194.

[150] Yu Zhang and Qiang Yang. 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114 (2017).
[151] Yu Zhang and Qiang Yang. 2018. An overview of multi-task learning. National Science Review 5, 1 (2018), 30–43.
[152] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and recommending API usage patterns. In European

Conference on Object-Oriented Programming. Springer, 318–343.
[153] Qun Zou and Changquan Zhang. 2020. Query expansion via learning change sequences. International Journal of Knowledge-based and

Intelligent Engineering Systems 24, 2 (2020), 95–105.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Research Questions
	3.2 Search Strategy
	3.3 Study Selection
	3.4 Data Extraction

	4 RQ1: What are the emerging publication trends for code search studies?
	4.1 Publication Amount
	4.2 Publication Venues
	4.3 Publication Types
	4.4 Publication Keywords

	5 RQ2: How are the key components in existing code search tools developed?
	5.1 Development of Code Analysis Techniques
	5.2 Development of Modeling Techniques
	5.3 Development of Auxiliary Techniques

	6 RQ3: How to classify the existing code search tools?
	6.1 Classification of Code Search Tasks
	6.2 Development of Seven Code Search Tasks
	6.3 Availability of Replication Packages

	7 RQ4: How do studies evaluate code search tools?
	7.1 Queries
	7.2 Codebase
	7.3 Evaluation Methods
	7.4 Performance Measures

	8 Challenges and Opportunities
	8.1 Challenges
	8.2 Opportunities

	9 threats to Validity
	9.1 Publication Bias
	9.2 Search Terms
	9.3 Study Selection Bias
	9.4 Data Extraction
	9.5 Data Analysis

	10 conclusion
	A Replication Packages
	References

