
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Deep Just-In-Time Defect Localization
Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy and Xinyu Wang

Abstract—During software development and maintenance, defect localization is an essential part of software quality assurance. Even
though different techniques have been proposed for defect localization, i.e., information retrieval (IR)-based techniques and
spectrum-based techniques, they can only work after the defect has been exposed, which can be too late and costly to adapt to the
newly introduced bugs in the daily development. There are also many JIT defect prediction tools that have been proposed to predict the
buggy commit. But these tools do not locate the suspicious buggy positions in the buggy commit. To assist developers to detect bugs in
time and avoid introducing them, just-in-time (JIT) bug localization techniques have been proposed, which is targeting to locate
suspicious buggy code after a change commit has been submitted. In this paper, we propose a novel JIT defect localization approach,
named DEEPDL (Deep Learning-based defect localization), to locate defect code lines within a defect introducing change. DEEPDL
employs a neural language model to capture the semantics of the code lines, in this way, the naturalness of each code line can be
learned and converted to a suspiciousness score. The core of our DEEPDL is a deep learning-based neural language model. We train
the neural language model with previous snapshots (history versions) of a project so that it can calculate the naturalness of a piece of
code. In its application, for a given new code change, DEEPDL automatically assigns a suspiciousness score to each code line and
sorts these code lines in descending order of this score. The code lines at the top of the list are considered as potential defect
locations. Our tool can assist developers efficiently check buggy lines at an early stage, which is able to reduce the risk of introducing
bugs in time and improve the developers’ confidence in the reliability of their software. We conducted an extensive experiment on 14
open source Java projects with a total of 11,615 buggy changes. We evaluate the experimental results considering four evaluation
metrics. The experimental results show that our method outperforms the state-of-the-art by a substantial margin.

F

1 INTRODUCTION

In software development and maintenance, developers of-
ten spend much effort and resources for program debug-
ging. For example, software debugging can cost 80% of the
total software cost for some software projects [1]. Neverthe-
less, identifying the locations of bugs has historically been
a manual task, which is considered to be time-consuming
and labor-intensive [2]. In this study, our research aims to
help developers to reduce the manual efforts regarding the
software debugging process. Two types of software engi-
neering tasks are relevant to our work: Just-In-Time (JIT) de-
fect prediction and fault localization. (i) Fault localization:
this task aims to help developers localize potential faulty
code elements (e.g., statements or methods) by analyzing
various dynamic execution information (e.g., failed/passed
tests, bug reports). Previous work investigated the fault
localization task by using information retrieval (IR) based
techniques [3], spectrum-based techniques [4], or learning
based techniques [5], [6]. However, one of the crucial dis-
advantages of these fault localization techniques is that
they heavily depend on the dynamic execution information
and only work after the defect has been exposed, which

• Fangcheng Qiu and Xinyu Wang are with the College of Computer
Science and Technology, Zhejiang University, China.
E-mail: {fangchengq, wangxinyu}@zju.edu.cn

• Zhipeng Gao and John Grundy are with the Faculty of Information
Technology, Monash University, Melbourne, Australia.
E-mail: {zhipeng.gao, john.grundy}@monash.edu

• Xin xia is with Software Engineering Application Technology Lab,
Huawei, China.
E-mail: xin.xia@acm.org

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xin Xia is the corresponding author.

can be too late and costly for the newly introducing bugs.
Besides, spectra-based techniques require test cases that are
often unavailable [7]–[9]. IR-based does not work until line
level (usually only until file/method level). (ii) JIT defect
prediction task: for a given commit, the JIT defect prediction
tool aims to help developers to check if the commit is a
buggy commit. Although different techniques have been
proposed to predict the buggy commit just-in-time [10], [11],
these prior works do not locate the suspicious positions.
Considering a submitted commit usually involves dozens of
changed files with hundreds of added lines (e.g., according
to our empirical study, the average number of added lines
of a commit is 98), finding the buggy line from a set of
irrelevant lines is still tedious and time-consuming.

To address the above challenges regarding the fault
localization and JIT defect prediction task, Yan et al. [12]
first proposed the task of “Just-in-time (JIT) defect local-
ization”, which aims to locate buggy code elements be-
fore the defect symptoms have cased any negative effects.
Compared with the task of JIT defect prediction and fault
localization, JIT defect localization can yield the following
benefits: (i) Fine-granularity detection. Compared with JIT
defect prediction which detects the buggy changes at file-
level or module level, JIT defect localization can locate the
buggy code elements at a fine-granularity (i.e., line-level).
Such fine-granularity detection can save the developer’s
time and effort to locate and address the defects. (ii) Early
stage detection. Compared with fault localization, which
heavily relies on defect symptoms and can only work after
the defects have been exposed, JIT defect localization is
performed when code change happens, in other words, JIT
defect localization locates the buggy code lines whenever a
commit is submitted. The early stage detection can prevent
the buggy code at an early stage and give developers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

immediate feedback.
Yan et al. [12] developed their JIT defect localization

framework based on the basic idea of “software natural-
ness”. Hindle et al. [13] have investigated the possibility of
using “naturalness” for the defect prediction task, because
buggy code tends to be more “unnatural” compared with
correct code [14]. They built a traditional language model
using n-gram techniques to estimate the “naturalness” of
a submitted change, However, their approach still suffers
from several inherent disadvantages.

• Contextual Features. Their approach employed n-gram
techniques for calculating naturalness scores, consider-
ing that n-gram technique is based on bag-of-words
(BOW) models, which can only capture the lexical
level features. When developers write code, the code
line is not written as an isolated element, developers
consider the connection of each code line with respect
to its context. Capturing the semantic level features and
contextual relations between the code lines can boost
the model.

• Out-of-Vocabulary (OOV) Problem. If a word appears in
the testing set but not in the training set, a traditional
model treats this word as an unknown word and fails to
predict it in the testing phase. The OOV problem occurs
very frequently in practice because different developers
tend to define variables according to their own habits.
Previous studies [15] suggest that such OOV problems
may greatly hinder the learning performance of the
model. Their approach can hardly handle the tokens
out of vocabulary.

To address the above challenges, in this paper, we pro-
pose a novel approach, named DEEPDL (Deep Learning-
based Just-in-Time Defect Localization), that can help de-
velopers to locate the buggy code lines at check-in time
(the inspection phase that after developers change source
code, before running the program) efficiently and accu-
rately. DEEPDL consists of three stages: data processing,
model training and model application. Particularly, in the
data processing stage, we collect code lines from the latest
snapshot of a software project as training samples to train a
neural language model. To alleviate the OOV problems, we
leverage a Byte-Pair Encoding (BPE) algorithm [16] to tok-
enize source code, which can greatly reduce the size of the
source code vocabulary and successfully solve the unseen
word in the testing set. DEEPDL can then be trained with
these training samples. During the model training stage, to
effectively capture the contextual features of the code lines
and their relations, we leverage a neural language model to
learn the naturalness of the code lines. Our neural language
model takes a sequence of code line blocks as input and
outputs a code line sequence, which can be formulated as a
sequence-to-sequence learning problem.

When it comes to the model application stage, when a
developer submits a new code change, after going through
the same data processing procedures, the newly changed
code is analysed by DEEPDL to estimate its “suspicious-
ness” score. The code line with the highest suspiciousness
score is considered to be a possible defect location. DEEPDL
can be used to assist developers in identifying the location
of the potential buggy code lines during code changes, and

can consequently reduce or even avoid the introduction of
bugs in daily development.

To demonstrate the effectiveness of our approach, we
train and evaluate DEEPDL on a Java dataset which con-
tains 14 open source Java projects from GitHub. We use
the source code from previous snapshots of the project to
train the model and use the buggy changes introduced
after this snapshot to evaluate the model. We measure the
performance of DEEPDL using Top-k accuracy, MRR and
MAP. The experimental results demonstrate that DEEPDL
achieves a Top-1 accuracy 0.32, Top-5 accuracy 0.59, MRR
0.44, and MAP 0.40 on average, outperforming the state-
of-the-art approachs by Yan et al.’s approach [12] and
CC2Vec [17].

We make the following key contributions with this work:
• We propose the first neural language model, DEEPDL,

for just-in-time line-level defect localization task. Our
model can help developers locate the suspicious bug
code lines in a bug introducing change.

• We perform extensive experiments on DEEPDL and our
results demonstrate the effectiveness and superiority of
our solution wrt. the existing work.

• We confirm that a large training corpus makes a cross-
project model achieve comparable performance to a
within-project model.

The organization of this paper is as follows. Section
2 describes the background of the language model and
sequence-to-sequence model. Section 3 describes the de-
tailed design of our approach. Section 4 describes our ex-
perimental design. Section 5 presents the evaluation results.
Section 6 discusses our work and gives the threats to va-
lidity. Section 7 presents the related work. We conclude the
paper in Section 8.

Fig. 1: An Example Commit in Flink

2 MOTIVATION

Figure 1 shows a commit example from the Flink project,
where the developer has submitted a commit for the pur-
pose of “Dynamically load Hadoop security module when avail-
able”, this single commit involves 21 changed files with 474
additions and 144 deletions. Even the state-of-the-art JIT
defect prediction tool can successfully identify whether this
commit is buggy or not, manually checking the changed
files one by one within this commit is still time-consuming
and labor-intensive. Therefore it is preferable to have a tool
that can check the potential defective lines within these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

Developer New Commit

Submit

JIT Defect
Prediction Tool

Clean Change

Buggy Change DeepDL
Suspicious Buggy Lines

in This Change

Fig. 2: Usage Scenario of DEEPDL

large number of changed files automatically, We illustrate
some key usage scenarios of our proposed tool, DEEPDL, as
follows: (i) First of all, DEEPDL is able to quickly identify
the locations of the defects for the historical commits with
the help of JIT defect prediction tool. For example, as shown
in Figure 2, developers can first leverage the JIT defect
prediction tool proposed by Hoang et.al [17] to check the
buggy commits, then our tool DEEPDL can be used to
automatically pinpoint the suspicious buggy line among a
set of non-buggy lines. The developers can thus focus on
the reported bugs instead of painstakingly browsing the
changed files one by one. (ii) Secondly, our tool can also
be used to remind developers in identifying the potential
defect localization when submitting a new commit. When
developers submit a code change, DEEPDL can automat-
ically locate the suspicious buggy code and provide the
notifications, therefore the DEEPDL can assist developers
to reduce the risk of introducing bugs and improve the
software’s reliability.

3 BACKGROUND

Our work adopts several recent advanced techniques from
natural language processing and deep learning [14], [18]–
[20], in this section, we presents the background of these
key related techniques.

3.1 Language Model
Our work is inspired by the idea of language model used in
the Natural Language Processing (NLP) field. To adapt this
idea to our task of defect localization, we want to build a
language model to estimate the “software naturalness” for
a given code fragment. Because compared with buggy code,
the clean code tends to be more “natural”.

3.1.1 Traditional Language Model
Traditional language model is a probability distribution
over sequences of words. Given a sequence of tokens w =
[t1, t2, ...ti], the language model estimates the probability of
it. The probability is computed as:

P (w) = P (t1)
n∏
i=2

P (ti|t1, ..., ti−1) (1)

P (ti|t1, ..., ti−1) denotes the probability that token ti
follows the previous tokens, i.e., t1, ..., ti−1. This traditional
language model predicts the next word by looking up the
history of words. As a result, the language model assigns

a probability (or a score) to a sequence of words. In the
work of Yan et al. [12], they adopted a traditional N-gram
language model to calculate the “naturalness” score of a
code fragment. The higher score of a new code fragment is,
the more natural the new code fragment is with the training
code corpus.

3.1.2 Neural Language Model
The traditional language model can only capture the lexical
level features, most recently, deep neural networks have
been introduced to build the neural language model (NLM),
which can improve the traditional language model. Mikolov
et al. [21] first proposed a neural language model based
on Recurrent Neural Network (RNN), since RNN is orig-
inally designed for sequences and can catch the chain-like
natures. Sundermeyer et al. [22] introduced Long short-term
memory (LSTM) neurons into neural language model and
proposed, which aims to address the long-term dependency
problem which can not be solved by the RNN language
model. However, the LSTM language model is unidirec-
tional that only predicts the outputs from past inputs. A
bidirectional RNN model [23] utilizes past and future con-
texts by processing the input data in both directions. Bidi-
rectional LSTM help us estimate the probability by using
the left and right context of that word. Bidirectional LSTM
using past and future contexts has achieved improvements.
To better capture the relationship of the current word and its
context, an attention mechanism is also added to language
model. Tran et al. [24] and Mei et al. [20] demonstrated
that an attention mechanism can improve the performance
of RNN language models. The neural language models
have been shown to outperform n-gram based language
models, however, they are unable to handle the subword
information. This is especially problematic in dealing with
rare words or domains with dynamic vocabularies. To the
best of our knowledge, our work is the first to employ a
neural language model for just-in-time defect localization
tasks.

3.1.3 Naturalness of Code
In general, naturalness represents how “surprised” an el-
ement is by the given document. The naturalness of code
was first proposed by Hindle et al. [13]. They found that
the source code is also very repetitive even more so than
natural languages and the repetitiveness of source code can
be captured by language models. The naturalness of code is
widely used to detect bugs or syntax errors. Ray et al. [14]
focused on the “naturalness” of buggy code and found that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

buggy code tends to be more unnatural than the clean code.
And Santos et al. [25] proposed a tool to detect and correct
the syntax errors based on naturalness of code. Based on
the code naturalness, Yan et al. [12] proposed a two-phase
framework to detect buggy commits and localize buggy
code lines in buggy commits. Based on their findings, we
also leverage naturalness in our approach.

3.2 Seq2Seq Model
The language model is a fundamental task in natural lan-
guage processing, which is formalized as a probability dis-
tribution over a sequence of target words. The language
model has various applications (e.g., speech recognition,
text generation and machine translation), all these appli-
cations can be viewed as generating a variable-length se-
quence of tokens from a variable-length sequence of input
data. Intuitively, the sequence-to-sequence (Seq2Seq) mod-
els can model these mappings well and achieve state-of-
the-art results with respect to the aforementioned applica-
tions [26]–[28]. Besides, both the encoder and decoder of
Seq2Seq model can be trained with paired text to obtain
as language model [29], [30]. Similarly, for our task of JIT
defect localization, we aim to learn the naturalness between
the newly added line with respect to its surrounding lines,
we thus adopt the Seq2Seq model to train a neural language
model (i.e., the input sequence is a code block and the out-
put sequence is the code line). Ideally, our neural language
model will take a code block as input and generate a “clean”
code line as output with respect to the code block. Then a
“naturalness” score can be calculated (measured by entropy)
between the added line and the generated “clean” code line.

3.2.1 Encoders & Decoders.
In general, a Seq2Seq model uses an encoder-decoder ar-
chitecture. It first employs an encoder to map the input
sequence into a fixed dimensional vector, then this vector is
used by the decoder to decode the target sequence. Encoder
is responsible for embedding the input sequence into a
contextualized hidden state vector. Particularly, given the
input sequence X = (x1, x2, ..., xn) comprising a number
of n tokens. These tokens are fed sequentially into the
the encoder, which generates a sequence of hidden states
H = (h1, h2, ..., hn). The final hidden state hn can be used
as the embedding vector v of the whole input sequence.
Decoder is responsible for generating the target sequence
based on the embedding vector. Specifically, at time step
t, the decoder takes the embedding vector of the previous
word yt−1 and the previous hidden state st−1 to produce
the output yt and hidden state st for time step t.

3.2.2 Attention Mechanism
The attention mechanism [31] has been recently proposed
for selecting the important parts from the input sequence
for each target word. In practice, we compute the attention
function on a set of queries simultaneously, packed together
into a matrix. The attention mechanism has been widely
used in NLP tasks. Different types of attention mecha-
nisms have also been proposed, i.e., self-attention, multi-
dimensional attention, multi-headed attention. The atten-
tion mechanism amplify the signal from the relevant part

of the input sequence and provide a better representation
for the input sequence.

3.3 Transformer

Ashish et al. introduced a novel architecture called Trans-
former [19]. Its encoder and decoder use attention mecha-
nisms to replace the RNN. Our work applies this technique
and its core part is introduced below:
• Self-Attention The input of Self-Attention consists of

queries and keys of dimension dk , and values of
dimension dv . We compute the attention function on a
set of queries simultaneously, packed together keys(K)
and values(V) into a matrix Q. We compute the matrix
of outputs as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2)

• Multi-Head Attention Multi-Head Attention is a com-
bination of multiple Self-Attention structures, each
head learns features in different representation spaces,
which makes the model have more capacity. Multi-
Head Attention linearly projects the queries, keys and
values h times with different, learned linear projections
to dk , dk and dv dimensions, respectively. It is com-
puted as below:

MultiHead(Q,K, V) = Concat(head1, ..., headn)W
O

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i)
(3)

• Positional Encoding After embedding, we have a ma-
trix representation of our tokens sequence. But these
representations are not encoding the fact that tokens
appear in different positions. In order for the model
to make use of the order of the sequence, we need to
modify the meaning represented by a specific token
depending on its position. Without changing the com-
plete representation of the token, we slightly modify
it to encode its position, which is positional encoding.
There are many kinds of positional encodings, learned
and fixed [32]. We use sinusoidal functions described as
follows – i is the position of the token in the sequence
and j is the position of the embedding feature.

Pi,2j = sin(i/100002j/dmodel)

Pi,2j+1 = cos(i/100002j/dmodel)
(4)

• Transformer Encoder. The transformer encoder is com-
posed of a stack of N = 6 identical layers. Each layer
has a multi-head self-attention mechanism sub-layer
and a position-wise fully connected feed-forward net-
work sub-layer. There is a residual connection around
each of the two sub-layers, followed by layer normal-
ization.

• Transformer Decoder. The transformer decoder is also
composed of a stack of N = 6 identical layers. Each
layer has the two sub-layers that are same as encoder
and a multi-head attention sub-layer. There is also a
residual connection around each of the two sub-layers,
followed by layer normalization.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

Project Java Files

Pre-process Data

Tokenize + BPE

Source
Sequence

Target
Sequence

Embedding

Embedding

Extract Extract
Line Encoder

Decoder

Linear Softmax

Loss

Added Lines

Added
Line

Context
Blocks Added Line

Buggy Score Sorted List

Extract Descending

New Commit

Trained Model

Data Processing
Seq2Seq Model

Multi-Head Attention

Multi-Head Attention
Masked Multi-Head
 Attention

Pre-process Data

Target
SequenceContext

Blocks

Model Training

Model Application

Context Encoder

Multi-Head Attention

Attention Layer

Fig. 3: Overall Framework of DEEPDL

4 APPROACH

We propose a novel deep learning based model,
named DEEPDL (Deep Learning-based Just-in-Time Defect
Localization), for just-in-time suspicious buggy code line
location. Figure 3 outlines the details of our DEEPDL with
respect to its three stages – data processing, model training
and model application respectively.

4.1 Data Preparation
We use the same dataset setting by Yan et al. [12] for
a fair comparison. These projects have a varying number
of contributors. Besides, all the projects have over 5,000
changes to ensure sufficient samples and over 2,000 stars
to ensure that the studied projects are non-trivial ones. And
they have a good issue tracking system making it easy for
us to label commits and source code lines. To make our
paper self explanatory, we describe the details of our data
preparation process as follows.

4.1.1 Collecting Training and Testing Set
In the data collecting process, we identify the clean code
lines and buggy code lines respectively. Clean code lines
are used as the training set for building a “Clean” neural
language model. Buggy code lines are used as the testing
set for evaluating the bug localization performance.

For a fair comparison, we use the same projects collected
by Yan et al. [12] and choose the same settings for the start
date and end date of each project. That is, for each project, we
collect the changes from the start of the project to October 1,
2017. Following their experimental settings, we then identify
the splitting commit according to the total number of changes
in chronological order (60% of the commits for training and
40% of the commits for testing). The splitting commit is
used to split the training and testing set. Table 1 presents
the summary of the selected projects, e.g., the project name,
the time period (i.e., start date and end date) we choose for
each project, the total number of commits of each project
during the time period.

For example, as shown in Figure 4, for the Flink project,
we first count all the commits from the start date (2010/12/15)
until end date (2017/10/1), which comprises 11,982 commits
in total. After that, we can easily identify the splitting com-
mit (happened in 2015/03/08) for dividing the training and
testing set. The data before the splitting commit are used for
training and the data after the splitting commit are used for
testing.

After identifying the splitting commit, we downloaded
the snapshot of each project before the splitting commit for
training. A snapshot represents the project’s state at that
point of time. To build a “Clean” neural language model,
we need to make a “Clean” snapshot. In other words, we
need to ensure that the downloaded snapshot only contains
clean code lines. We thus need to remove all the buggy
lines from the downloaded snapshot. To do this, we leverage
RA-SZZ [33] to identify the clean and buggy lines both in
the training set and the testing set. The detailed process is
conducted as follows:

1) Bug-fix commit identification. For each commit after the
splitting point, we first identify whether this commit
is a bug-fix commit. For a given commit, if the corre-
sponding commit message contains the defect related
message (e.g., “Fixed #233”), we then check the corre-
sponding issue report from the issue tracking system
(ITS) to determine whether the report is defined as a
defect. If the report is defined as a defect and it is
resolved, we mark this commit as a bug-fix commit.
If the report is defined as a defect and it is resolved, we
then mark this commit as a bug-fix commit.

2) Bug-introducing commit identification. After identi-
fying the bug-fix commits, for each bug-fix commit,
we further leverage RA-SZZ [33] to identify the bug-
introducing commits. RA-SZZ first compares the bug-
fix commit with its previous version to identify the
changed lines. Then RA-SZZ filters out the changed
lines that are irrelevant to the defect changes (e.g.,
blank/comment lines, format modification). After that,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

RA-SZZ traces back the remaining lines through the
change history to identify the commits that introduce
these lines, which are identified as bug-introducing com-
mits.

3) Removing buggy lines from the downloaded snapshot.
After identifying the bug-introducing commits, for each
bug-introducing commit, if it happened before the split-
ting point, then this commit has introduced buggy lines
to our training set. Therefore, we need to remove the
buggy lines introduced by the bug-introducing commit
and only retain the clean lines. Following the previous
work’s settings, we define the lines that were added by
the bug-introducing commit and were later fixed by the
bug-fix commit as buggy lines. These identified buggy
lines are further mapped to the downloaded snapshot
version of the project. We remove these buggy lines
from the downloaded snapshot, the remaining lines
can be viewed as clean code lines, which are added to
the “Clean” snapshot for training a “Clean” language
model.

4) Identifying the buggy lines within the testing set. For
each bug-introducing commit, if it is happened after the
splitting point, we add it to our testing set. Different
from removing buggy code lines from our training set,
we need to identify the buggy code lines in the test-
ing set as ground truth for evaluating the localization
performance. Our testing set starts from the splitting
point and ends on October 1, 2017. To ensure all the
buggy lines in the testing set can be correctly identified,
following Yan et al’s work [12], we further use a five
months window (from October 1, 2017 to March 1,
2018) to cover the bug-fix and bug-introducing commits
as much as possible. This is reasonable because 80% of
the buggy commits are fixed within 5 months on aver-
age [12]. Then we pinpointed the buggy lines within the
testing set introduced by the bug-introducing commits.

Finally, there are 44,244 buggy changes in the whole
data set and 11,615 buggy changes for the testing set. For
our training set, we first remove the buggy lines, the test
code, blank lines, import statements and comments from the
downloaded snapshot and retrained the rest of the source
code as clean code lines, all the clean code lines are merged
to make the clean snapshot for training. The summary of
the training set is shown in Table 2. The clean snapshot
is used for constructing code blocks to train a “Clean”
neural language model. After training, the “Clean” neural
language model is then used to locate the buggy lines in
the testing set for evaluation. For the testing set, as shown
in Table 3, we identified 11,615 bug-introducing commits,
1,134,601 added lines in commits and further pinpointed
109,311 buggy lines within these bug-introducing commits.
The largest bug-introducing commit in the testing set has
2,592 added lines. The smallest bug-introducing commit
in the testing set only contains 1 line of added code. The
average number of added code lines within a commit is 98.
The median number of added code lines within a commit
is 32. And the ratio of buggy lines in a bug-introducing
commit is 21.72% on average. The ratio of buggy lines in
all added lines is 9.6%.

After that, we leverage the tokenize tool1 to tokenize our
training set and testing set. Our DEEPDL approach code
used in our experiments and our 14 project dataset are
available at https://github.com/Lifeasarain/DeepDL.

TABLE 1: Summary of Dataset

Project Start Date End Date Snapshot Date Commits
Activemq 2011/9/15 2017/9/30 2012/7/24 13:20:44 +0000 9,871
Closure-compiler 2009/11/3 2017/9/30 2016/2/10 08:21:27 -0800 10,870
Deeplearning4j 2013/11/26 2017/9/30 2016/8/31 23:12:09 +1000 8,770
Druid 2011/5/11 2017/9/30 2013/1/14 11:29:28 +0800 5,417
Flink 2010/12/15 2017/9/30 2015/3/18 10:44:43 +0100 11,982
Graylog2-server 2010/5/17 2017/9/30 2015/5/24 12:17:44 +0100 13,702
Jenkins 2006/11/5 2017/9/30 2013/5/15 18:38:49 -0400 23,764
Jetty.project 2009/3/16 2017/9/30 2014/4/7 12:52:43 +1000 14,804
Jitsi 2005/7/21 2017/9/30 2011/1/11 14:34:18 +0000 12,608
Jmeter 1998/9/3 2017/9/30 2012/2/29 13:33:18 +0000 14,625
Libgdx 2010/3/6 2017/9/30 2014/1/5 15:38:17 -0800 13,019
Robolectric 2010/7/28 2017/9/30 2014/8/21 19:21:59 -0700 7,085
Storm 2011/9/15 2017/9/30 2016/1/5 13:58:16 +0800 8,819
H2o 2014/3/3 2017/9/30 2015/9/8 13:36:41 -0700 21,914
Total 117,250

TABLE 2: Summary of Training Set

Project Code Lines Before Processing Code Blocks
Activemq 431,051 357,056
Closure-compiler 417,665 363,648
Deeplearning4j 570,009 486,080
Druid 197,770 152,431
Flink 1,011,692 855,808
Graylog2-server 199,461 174,464
Jenkins 166,077 137,280
Jetty.project 302,994 212,352
Jitsi 308,285 218,624
Jmeter 142,428 120,510
Libgdx 256,867 210,432
Robolectric 171,886 144,768
Storm 287,266 231,360
H2o 259,549 221,632
Average 337,357 277,603

TABLE 3: Summary of Test Set

Project Commits Buggy Commits Total Added Lines in
Buggy Commit Buggy Lines

Activemq 3,948 597 64,156 8,433
Closure-compiler 4,348 584 38,432 3,998
Deeplearning4j 3,508 1,024 81,280 10,254
Druid 2,167 356 66,981 2,361
Flink 4,793 1,317 281,676 20,228
Graylog2-server 5,481 783 68,208 12,793
Jenkins 9,506 1,030 47,185 5,297
Jetty.project 5,922 1,089 104,832 8,322
Jitsi 5,043 1,318 115,124 13,742
Jmeter 5,850 1,265 39,796 6,536
Libgdx 5,208 609 57,612 6,144
Robolectric 2,834 418 53,132 3,818
Storm 3528 103 30,200 1104
H2o 8,766 1,122 85,987 6,281
Total 70,902 11,615 1,134,601 109,311

4.1.2 Processing Training and Testing Set
After collecting the training and testing set, for each project
we collected, we obtained a “Clean” snapshot for training.
For the “Clean” snapshot, we remove the test code, blank
lines, import statements and comments. we extract the re-
maining source code and split the source code into a list
of code lines (l1, l2, ..., ln). For each code line, we add the
two lines preceding this line and two lines subsequent this
line as its context information. That is, for a specific code
line li, a chunk of five code lines [li−2, li−1, li, li+1, li+2] is
regarded as a basic line block Li for building the training set.

1. https://tree-sitter.github.io

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

Finally, our final training set is built by stacking all the line
blocks together. In summary, our training set contains a list
of line blocks [L1, L2, ..., Ln]. Each line block Li include 5
associated code lines, i.e., Li = [li−2, li−1, li, li+1, li+2], and
each code line li contains a sequence of tokens.

Regarding the testing set, for each project we collected,
the testing set contains a set of bug-introducing commits and
the associated pinpointed buggy lines. Each bug-introducing
commits contains a set of added lines (i.e., regular added
lines and buggy added lines). The buggy added lines are
the lines that are pinpointed as buggy for introducing bugs
later. When it comes to the evaluation, since we aim to locate
the buggy added lines among the added line candidates.
Therefore, for each added line within the bug-introducing
commit, we add its surrounding two lines to make a basic
line block, we then feed each basic line block into our
neural language model to calculate the naturalness score, or
in other words suspiciousness score. The top ranked added
lines are considered to be potential buggy code lines, which
are used to calculate the localization performance of our
model. In summary, we collected 3,886,445 code line blocks
for training and 1,134,601 code line blocks for testing.

Flink

Time Line

. . .Commit 1

Snapshot

Commit b Commit M

2010/12/15

Commit a

Start Date
2017/10/1
End Date

2015/3/18 2018/3/1
Extened Date

Commit N.

Fix
Bug Introducing

Commit
Bug Introducing

Commit
Bug Fix
Commit

Fig. 4: Project Time Line

4.1.3 Tokenization and Building Vocabulary

In this step, for each line block Li in the training set and
testing set, we tokenize the code line into a list of tokens
and then build our single vocabulary. However, due to
reasons that the identifier names in the code corpus are quite
arbitrary and vary greatly according to different developers,
simply leveraging traditional tokenization methods on the
code corpus will lead to serious Out-of-Vocabulary (OOV)
problem.

Because our model is based on neural language models,
which are sensitive to the unknown tokens, too many un-
known words in the testing corpus will significantly hinder
the learning performance of our approach [15]. To address
this challenge, Sennrich et al. [34] proposed a subword
units-level model to reduce OOV problems. Following this
work, Karampatsis et al. [35] applied this technique in
modeling source code, which has been demonstrated to be
effective in reducing OOV tokens. Inspired by their work,
we first tokenize the source code line into word-level units

and then we employ a Byte Pair Encoding (BPE) method [16]
for subword segmentation. BPE is a data compression tech-
nique that iteratively collects the most frequent pair of
bytes in a sequence and replaces it with a single unused
byte. Sennrich et.al [34] first apply this technique to the
word segmentation field. They merge characters or char-
acter sequences instead of bytes. They find it can actually
improve performance in neural machine translation models.
BPE builds up the vocabulary iteratively. For each iteration,
the training corpus (in our case: a code line) is segmented
into a sequence of subwords (symbols) based on the current
vocabulary (a suffix symbol ’@’ is added to reorganize the
original sequence of tokens). Following that, we count all
the symbol pairs, the most frequent symbol pair (W1, W2)
is merged and replaced with a new symbol ’W1W2’ and
added to the vocabulary. BPE algorithm takes all characters
in the data set as initial vocabulary and stops after the given
number of merge operations. An example of a Java code
snippet tokenized into BPE subwords is shown in Figure 5.

The reasons why we adopt BPE algorithm for tokeniza-
tion are as follows: (i) The OOV problem can be allevi-
ated. Because our vocabulary contains more words, more
unknown words in the testing set now can be represented
properly. Common sequences can be represented by a single
word, while the rare or unseen word will be segmented into
more common subwords. (ii) The size of the vocabulary
can be significantly reduced. Even the new identifier names
proliferate as code corpus increases, we can maintain a code
vocabulary with relatively small vocabulary size.

As a result, given a basic code line block
Li = [li−2, li−1, li, li+1, li+2] from training set, for each
code line lk(i − 2 ≤ k ≤ i + 2), lk is tokenized into a
sequence of subword units, i.e., lk = [uk1 , uk2 , ..., ukn],
where [uk1 , uk2 , ..., ukn] represents the subword unit tokens
after tokenization. For example, as shown in Figure 5,
the second code line “block.addChildToFront(
newBranchInstrumentationNode(traversal); ” is
tokenized to a sequence of subword units [‘block’, ‘.’,
‘add’, ‘Child’, ‘ToFront’, ‘new’, ‘Branch’, ‘In’, ‘stru’,
‘mentation’, ‘Node’, ‘(’, ‘traversal’, ‘)’, ‘;’] by applying
the BPE tokenization method described above. When tok-
enizing this source code line, the BPE algorithm encounters
two out of vocabulary tokens, e.g., ‘addChildToFront‘
and ‘newBranchInstrumentationNode‘. Take
‘newBranchInstrumentationNode‘ as an example,
BPE splits ‘newBranchInstrumentationNode‘ into a
sequence of characters and apply the learned operations
to merge the characters into larger, known word in the
vocabulary. Since the words ‘new’, ‘Branch’, ‘In’, ‘stru’,
‘mentation’, ‘Node’ already exist in the vocabulary, so this
OOV word ‘newBranchInstrumentationNode’ is split
into a chunk of subword unit tokens [‘new’, ‘Branch’, ‘In’,
‘stru’, ‘mentation’, ‘Node’].

Traditional tokenizers can only split the source code
into tokens according to grammar, BPE can split the tokens
tokenized by traditional tokenizer into finer granularity sub-
word units. In this way, we can reduce the size of vocabulary
and alleviate OOV problems.

After that, we add a special token ‘〈EOL〉’ to sepa-
rate each line and a special token ‘〈EOS〉’ to the end
of each basic line block. Finally, we obtained 5,021,046

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

code line blocks. For each code line block Li, Li will
be tokenized as a sequence of subword units, i.e., Li =
[li−2, 〈EOL〉, li−1, 〈EOL〉, li, 〈EOL〉, li+1, 〈EOL〉, li+2,
〈EOS〉], where lk = [uk1 , uk2 , ..., ukn].

Basic Line Block:
Node block = data.getBranchNode(lineIdx, branchIdx);
block.addChildToFront(newBranchInstrumentationNode(traversal);
branchCoverageOffset += numBranches;
String arrayName = createArrayName(traversal);
Node getElemNode = IR.getelem(IR.name(arrayName), IR.number(idx));

Traditional Tokenization:
Node block = data . getBranchNode (lineIdx , branchIdx) ;
block . addChildToFront (newBranchInstrumentationNode (traversal) ;
branchCoverageOffset += numBranches ;
String arrayName = createArrayName (traversal) ;
Node getElemNode = IR . getelem (IR . name (arrayName) , IR . number (idx)) ;

BPE Tokenization :
Node block = data . get Branch Node (line. Id. x , branch. Id x) ;
block . add . Child ToFront (new Branch In stru mentation Node (traversal) ;
branch C over age Offset += num Branches ;
String arrayName = create ArrayName (traversal) ;
Node getElem. Node = IR . getelem (IR . Name (arrayName) , IR . number (idx)) ;

Li-2
Li-1
Li
Li+1
Li+2

Li-2
Li-1
Li
Li+1
Li+2

Li-2
Li-1
Li
Li+1
Li+2

Added Line

Fig. 5: Tokenize example

4.2 Model Training

4.2.1 Model Overview

Naturalness represents how “surprised” an element is by a
given document. Previous studies have demonstrated the
effectiveness of using a language model to capture the
“naturalness” of software [14]. They found that buggy code is
rated as significantly more “unnatural” by language models.
Inspired by these findings, we propose a neural language
model, DEEPDL, to locate the suspicious code elements
when the code change happens.

After the data preparation process, all the train-
ing line blocks are tokenized into subword unit se-
quences. For a given processed line block Li =
[li−2, 〈EOL〉, li−1, 〈EOL〉, li, 〈EOL〉, li+1, 〈EOL〉, li+2,
〈EOS〉], we want to build a neural language model to esti-
mate the naturalness of the central source code line (i.e., li)
with respect to its context (i.e., [li−2, li−1, li+1, li+2]). By this
we mean for a given code block, whether the central code
line is “natural” with respect to their surrounding lines. We
formulated this task as a sequence-to-sequence (Seq2Seq)
learning problem, which turns one sequence (i.e., the source
sequence) into another sequence (i.e., the target sequence).
The primary components of the Seq2Seq model are encoder
and decoder network. The encoder turns each item within
the source sequence into a corresponding hidden vector,
while the decoder reverses the process, turning the vector
into a target sequence item.

In this study, we set the source sequence Xsrc as the
whole line block Li (i.e., Xsrc = Li), and we set the target
sequence Ytgt as central code line of each code block (i.e.,
Ytgt = [li]). Mathematically, given Xsrc is a sequence of to-
kens within the code line block, our neural language model
aims to generate the central code line Ytgt, which is “natu-
ral” to its context. Overall, our goal is to train a language
model θ using 〈Xsrc, Ytgt〉 pairs, such that the probability
Pθ(Ytgt|Xsrc) is maximized over the given training dataset,
Pθ(Ytgt|Xsrc) can be seen as the conditional log-likelihood
of the central code line given the code block input.

4.2.2 Encoders

Our model follows a sequence-to-sequence architecture and
the encoder part learns latent features from source code
lines. Recently, Transformers have been widely used to
capture the code semantic features by encoding code into
vectors [36]. In this study, we employ a Transformer En-
coder [19] as the encoder template for our task. The trans-
former encoder is composed of a stack of 6 residual encoder
blocks, each encoder block is broken down into two sub-
layers (i.e., a self-attention sub-layer and a feed-forward
network sub-layer). The input to the transformer encoder
is a sequence of tokens, the input sequence of tokens flows
through each of the two layers of the encoder components.
The first encoder block transforms the input sequence from
a context-independent token representation to a context-
dependent vector representation, and the following encoder
blocks further refine this contextual representation until the
last encoder block outputs the final contextual encoding.
The output of the transformer is a contextualized vector of
the input sequence.

To better estimate the “naturalness” of a code line block,
we adopt two encoders, i.e., Central Line Encoder and Context
Line Encoder to embed the central line and context lines into
vector representation respectively. In this study, Central Line
Encoder and Context Line Encoder are the same in structure
which use the transformer encoder. Likewise, the input to
the encoders is a basic code line block Li, the outputs of the
encoders are two embedding vectors respectively. Through
the two encoders, the semantically related concepts across
different source code lines can be mapped and correlated in
the higher dimensional vector space.
• Central Line Encoder. For a basic code line block Li, the

Central Line Encoder extracts out the central line (i.e., li)
and uses the transformer encoder to embed it into a
semantic vector xcen.

• Contextual Line Encoder. For a basic code line block Li,
we extract out the two lines before the central line (i.e.,
[li−2, li−1]) as the preceding context, and two lines after
the central line (i.e., [li+1, li+1]) as the subsequent con-
text. Similar to the Central Line Encoder, After feeding
the preceding context and the subsequent context into
the Context Line Encoder, we can get the embedding
vector xcon for the context lines within a code line
block.

4.2.3 Decoders

The decoder’s job is to generate the target sequence. Similar
with the transformer encoder, the transformer decoder has
similar sub layers. The transformer decoder is composed of
6 decoder blocks. Each decoder block has two self-attention
layers, and a feed-forward layer. The decoder is capped off
with a linear layer and a softmax layer to get the final word
probability distributions. The decoder is auto-regressive, in
particular, it takes the encoder’s contextualized vectors as
well as the previous outputs as inputs, and generates a
single output step by step.

To connect the Encoder and Decoder, we employ a cross-
attention layer. In particular, after getting the central line
vector xcen and the context line vector xcon, the cross-
attention layer takes xcen and xcon as input and outputs

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

a hidden state vector xh. We then send xh into our trans-
former decoder, the transformer decoder will turn the hid-
den vector into a target sequence. Mathematically, given
the hidden states xh, the transformer decoder calculates the
conditional probability distribution of the target sequence
Ytgt, i.e., Pθ(Ytgt|xh), as follows:

Pθ(Ytgt|xh) =
L∏
i=1

Pθ(yi|Y0:i−1;xh) (5)

where L is the length of the target sequence Ytgt. The
transformer decoder first maps the encoded hidden states
(i.e., xh) and all the previous target states Y0:i−1, to logit
vector li. The logit vector li is then processed by the
softmax operation to estimate the conditional distribution
Pθ(yi|Y0:i−1;xh). After calculating the above conditional
distribution, we can auto-regressively generate the output
sequence and thus define a mapping of an input sequence
Xsrc to an output sequence Ytgt.

4.2.4 Data Flow
We summarize the data-flow of our model as follows: as
shown in Figure 6, the input to our model is a basic code line
block Li, which is broken into two parts (the central code
line [li] and the context code lines [li−2, li−1, li+1, li+2]).
Each code line is represented as a sequencee of subword
unit tokens. Then the central code line is passed through
the Central Line Encoder to generate the central line encoded
vector xcen, while the context code lines are passed through
the Context Line Encoder to generate the context lines en-
coded vector xcon. After that, a cross attention layer takes
the xcen and xcon as input and outputs a hidden state vector
xh, which can capture the relationship between the central
code line and the context code lines. The hidden state vector
xh is then passed through the Decoder part to generate
the target sequence. The Decoder part takes in the encoded
hidden states (i.e., xh) and step by step generates a single
output yi while also being fed the previous output Y0:i−1.
To be more specifically, the transformer decoder first maps
the hidden state vector (i.e., xh) as well as the previous
output Y0:i−1 to a logit vector li, the logit vector li then
goes through a final softmax layer to model the conditional
probability distribution of the target sequence. The softmax
layer will produce a probability distribution vector over
all vocabulary tokens, and we choose the token with the
highest probability as the predicted token.

4.2.5 Loss Function
We leverage a cross entropy loss function to calculate the
loss of the model. The cross entropy (entropy in short) is a
widely-adopted metric used in statistical language models,
a sentence with higher entropy score is considered to be
more natural. Ray et al. [14] investigated the possibility of
using entropy to estimate the “naturalness of buggy code”.
The core research question of their work is “can entropy
provide a useful indication of the likely bugginess of a
line of code?”. According to their experimental results, they
found that buggy code lines have higher entropy scores
than non-buggy lines, which means the entropy can be an
indicator to measure the naturalness (or suspiciousness) of
a code snippet. The higher entropy of a code snippet, the

Self-Attention

Add & Normalize

Feed Forward

Add & Normalize

Attention Layer

Self-Attention

Add & Normalize

Feed Forward

Add & Normalize

Self-Attention

Add & Normalize

Linear

Softmax

Central Line
Encoder

x 6 x 6

Central Line
Above Context

Below Context

Self-Attention

Add & Normalize

Feed Forward

Add & Normalize

Central Line Output Sequence

Cross Entropy
Loss

Contextual Line
Encoder

Decoder

x 6

Fig. 6: Architecture of Proposed Approach

more unnatural (or suspicious) the code snippet is with
the training corpus. In particular, regarding the decoding
process, the probability of generating a token yi is P (yi).
During the training process, for each token at each times-
tamp, the loss associated with the generated central code
line is− 1

l

∑l
i=1 log2 p(yi), where l is the length of the central

code line. The final goal of our model is to minimize the
cross entropy, i.e., minimize the following objective function
over all the training dataset:

H(y) = − 1

N

N∑
j=1

l∑
i=1

log2 p(y
(j)
i) (6)

where N is the number of training instances, y(j)i rep-
resents the ith token in the jth training sample. The cross
entropy describes how much the predicted probability di-
verges from the ground truth. Through optimizing the
above objective loss function using optimization algorithms
(e.g., gradient descendant), the parameters θ of our model
can be estimated. Finally, after the training process, we can
obtain a neural language model (i.e., DEEPDL). The neural
language model maximizes the probability of the target
sequence given the input sequence (i.e., Pθ(Ytgt|Xsrc))
over our training dataset.

4.3 Model Application
For practical application, the input of DEEPDL is a buggy
commit (identified by the JIT defect prediction tools) or

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

a newly submitted commit. Given a buggy code commit,
DEEPDL first extracts all the added code lines within this
commit. For each added line, we make a code line block
by adding its surrounding two lines, we process the code
line block as described in Section 4.1.1 and Section 4.1.2.
For each code line block, we fed the code line block into
our trained neural language model, DEEPDL, to generate
an output sequence. The generated sequence can be consid-
ered as a “clean” code line since it is generated from our
trained “clean” neural language model. After that, we can
calculate the entropy between the generated sequence and
the added line, and the entropy of the added code line can
be computed as the average of the entropy of each subword
token within this code line, as follows:

Hp(s) =
1

|s|

|s|∑
n=1

Hp(ti) (7)

Finally, we get the entropy of all the added lines in the
buggy commits and treat the entropy as its suspiciousness
score. The code line with the highest suspiciousness score is
considered to be a possible defect location in the code. Sim-
ilar to the buggy commit, if we are handling the newly sub-
mitted commits, by following the same application pipeline,
DEEPDL can identify the suspicious added lines within the
newly submitted commits, which can reduce the risk of
introducing bugs and improve the software’s reliability.

5 EXPERIMENT SETUP

We first introduce our data preparation process, then
present the detailed parameter settings for training our
DEEPDL approach. We then introduce our chosen evalu-
ation metrics used in this study for evaluating the perfor-
mance of our approach.

5.1 Training Details

We set the initial learning rate to 0.1 with a momentum
of 0.5 and clip the gradients norm by 5. The learning rate
decay of 0.99. The size of mini-batches is 16. Our model
is trained using the Stochastic Gradient Descent (SGD)
algorithm. We use the cross-entropy as the loss function.
It is worth mentioning that for each project, we reserve 10%
of the training set as the validation set. We further tuned
the hyperparameters according to the performance of the
model on the validation set. Specifically, for each project, the
training runs for 50 epochs and we save the model after each
epoch, we then select the model with the best performance
(the lower of the entropy score, the better performance of the
neural language model) on validation set as our final neural
language model. We build our model based on Pytorch 2

using four NVIDIA RTX 2080Ti GPU.

5.2 Evaluation Measure

To evaluate the performance of our approach, we use the
widely accepted metrics MRR (Mean Reciprocal Rank),
MAP (Mean Average Precision) [37] and Top-k Accuracy as
the evaluation metrics. In addition, these evaluation metrics

2. https://pytorch.org

are also adopted in Yan et al’s work. Thus they can be used
for fair comparison purposes We introduce the details of
these three evaluation metrics as follows.

5.2.1 MRR

MRR is a popular metric used to evaluate an information
retrieval technique [37]. For a given query, its reciprocal rank
is the multiplicative inverse of the rank of the first correct
answer. For our study, MRR measures how far we need to
check down a sorted list of added lines of a buggy change
to locate the first buggy line. It can be computed as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(8)

where Q is the number of queries. MRR is the average of the
reciprocal ranks for queries Q.

5.2.2 MAP

MAP provides the mean of the average precision scores for
a set of queries. The average precision (AP) of a query is
the average of the precision values for this query. MAP
considers the ranks of all buggy lines in that sorted list. It
can be computed as:

AP =
M∑
i=1

P (i) ∗ rel(i)
numberofrelevantdocuments

(9)

where i is then rank in the sequence of retrieved item, P (i)is
the precision at cut-off i in the list. rel(k) is a indicator
function equaling 1if the item at rank i is a relevant item

MAP =
1

N

N∑
i=1

APi (10)

Our evaluation is performed at the change-level. Each
buggy change in our test set has a MRR and a MAP
performance value. The higher MRR and MAP value means
that the model has a better bug localization performance.

5.2.3 Top-K Accuracy

Top-k Accuracy measures whether the Top-k most likely
buggy lines returned by our approach are actually the buggy
code location. For example, given one defect change c, if at
least one of the Top-k most likely buggy lines returned by
our approach is actually the buggy location, we regard the
localization as successful, and set the Top-k value of this
change Topk(c) to 1; otherwise, we regard the localization
as unsuccessful and set the Top-k value Topk(c) to 0.
Consider a set of N defect changes in a project P, its Top-
k accuracy is computed as:

Topk(P) =
1

N

N∑
c=1

Topk(c). (11)

Following the experimental settings in previous studies [12],
in this paper, we set k = 1 and 5.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

TABLE 4: The performance DEEPDL vs. Baselines

Project Top-1 accuracy Top-5 accuracy MRR MAP
Yan’s CC2Vec Ours Yan’s CC2Vec Ours Yan’s CC2Vec Ours Yan’s CC2Vec Ours

Activemq 0.3936 0.3417 0.4070 0.5628 0.5142 0.6348 0.4785 0.4317 0.5117 0.4505 0.4217 0.4749
Closure-compiler 0.2432 0.2226 0.2774 0.4966 0.4452 0.4983 0.3650 0.3404 0.3933 0.3504 0.3289 0.3718
Deeplearning4j 0.2451 0.1963 0.3184 0.4971 0.4189 0.5908 0.3702 0.3150 0.4464 0.3264 0.2847 0.3746
Druid 0.2107 0.1517 0.1966 0.4157 0.2949 0.4663 0.3149 0.2330 0.3297 0.2720 0.2043 0.2975
Flink 0.2065 0.1716 0.2445 0.4146 0.3470 0.4761 0.3125 0.2625 0.3584 0.2608 0.2307 0.2894
Graylog2-server 0.3384 0.3207 0.3742 0.5951 0.5249 0.6731 0.4637 0.4207 0.5077 0.4222 0.3961 0.4503
Jenkins 0.3602 0.2951 0.3748 0.6184 0.5436 0.6699 0.4834 0.4149 0.5149 0.4536 0.4026 0.4792
Jetty 0.2452 0.1928 0.2773 0.4702 0.4279 0.5427 0.3550 0.3104 0.4022 0.3210 0.2838 0.3537
Jitsi 0.3475 0.3126 0.3634 0.6297 0.5849 0.6798 0.4798 0.4373 0.5043 0.4325 0.4007 0.4425
Jmeter 0.4545 0.4103 0.4980 0.7462 0.6743 0.7968 0.5838 0.5336 0.6285 0.5615 0.5188 0.6048
Libgdx 0.3448 0.2808 0.3711 0.6010 0.5107 0.6568 0.4668 0.3945 0.4981 0.4258 0.3740 0.4582
Robolectric 0.2368 0.1699 0.2536 0.4928 0.4115 0.5383 0.3654 0.2920 0.3851 0.3145 0.2662 0.3301
Storm 0.0971 0.0874 0.1748 0.3495 0.2524 0.3689 0.2062 0.1840 0.2789 0.1810 0.2338 0.2338
H2o 0.2584 0.2299 0.3057 0.5258 0.4483 0.5954 0.3854 0.3427 0.4427 0.3542 0.3197 0.3996
average 0.2844 0.2416 0.3169 0.5297 0.4571 0.5849 0.4022 0.3509 0.4430 0.3662 0.3197 0.3972
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

TABLE 5: The performance Cross-Project model vs. Within-Project model

Project Top-1 accuracy Top-5 accuracy MRR MAP
CP WP Improve CP WP Improve CP WP Improve CP WP Improve

Activemq 0.4154 0.4070 -2.01% 0.6181 0.6348 2.71% 0.5146 0.5117 -0.57% 0.4779 0.4749 -0.63%
Closure-compiler 0.2759 0.2774 0.54% 0.5017 0.4983 -0.68% 0.3962 0.3933 -0.73% 0.3743 0.3718 -0.66%
Deeplearning4j 0.3174 0.3184 0.30% 0.5879 0.5908 0.50% 0.4442 0.4464 0.50% 0.3720 0.3746 0.71%
Druid 0.2022 0.1966 -2.76% 0.4579 0.4663 1.83% 0.3249 0.3297 1.48% 0.2896 0.2975 2.74%
Flink 0.2498 0.2445 -2.12% 0.4951 0.4761 -3.84% 0.3640 0.3584 -1.54% 0.2900 0.2894 -0.21%
Graylog2-server 0.3908 0.3742 -4.25% 0.6731 0.6731 -0.01% 0.5169 0.5077 -1.78% 0.4536 0.4503 -0.73%
Jenkins 0.3592 0.3748 4.33% 0.6573 0.6699 1.92% 0.5002 0.5149 2.94% 0.4670 0.4792 2.62%
Jetty 0.2617 0.2773 5.97% 0.5298 0.5427 2.43% 0.3870 0.4022 3.93% 0.3434 0.3537 3.00%
Jitsi 0.3695 0.3634 -1.64% 0.6737 0.6798 0.91% 0.5068 0.5043 -0.50% 0.4428 0.4425 -0.08%
Jmeter 0.4830 0.4980 3.11% 0.7794 0.7968 2.24% 0.6146 0.6285 2.26% 0.5946 0.6048 1.71%
Libgdx 0.3744 0.3711 -0.88% 0.6355 0.6568 3.35% 0.4982 0.4981 -0.02% 0.4565 0.4582 0.38%
Robolectric 0.2512 0.2536 0.95% 0.5526 0.5383 -2.59% 0.3856 0.3851 -0.13% 0.3361 0.3301 -1.77%
Storm 0.1650 0.1748 5.91% 0.4078 0.3689 -9.53% 0.2758 0.2789 1.11% 0.2341 0.2338 -0.13%
H2o 0.3128 0.3057 -2.27% 0.5865 0.5954 1.52% 0.4453 0.4427 -0.58% 0.3975 0.3996 0.53%
average 0.3163 0.3169 0.19% 0.5826 0.5849 0.39% 0.4410 0.4430 0.45% 0.3950 0.3972 0.56%
p-value >0.05 <0.05 <0.001 <0.001

6 EMPIRICAL EVALUATION

We evaluate the performance of our new DEEPDL approach
on 14 open source projects. We attempt to answer the
following key research questions:
• RQ1: How effective is our approach compared with the

state-of-the-art baselines?
• RQ2: How effective is our approach when using cross-

project modeling?
• RQ3: How effective is our approach for using of context

information and BPE tokenization methods?

6.1 RQ1: Effectiveness Evaluation

6.1.1 Experimental Setup.

To evaluate the effectiveness of our model, we conducted
extensive experiments on the selected 14 projects. We use
our trained neural language model, DEEPDL, to predict the
locations of buggy lines within the test set. We compare
DEEPDL with the following state-of-the-art models for com-
parison purposes:
• Yan’s approach. Yan’s approach is currently the state-

of-the-art JIT defect localization approach. It estimates
software naturalness with the N-gram language model,
which can locate suspicious defective lines in a defect
change at check-in time. Different from building the n-
gram language model, in this study, we employ the

transformer based encoder and decoder to make an
neural language model.

• CC2Vec. CC2Vec is the state-of-the-art defect prediction
tool. CC2Vec is an embedding-based approach pro-
posed by Hoang et al. [17]. Different from the JIT defect
localization task, CC2Vec is designed for the JIT defect
prediction task. For a given commit, CC2Vec learns
two embedding vectors from the log message and code
change and outputs a probability to judge if this commit
is buggy or not. To adapt this JIT defect prediction tool
to our task of JIT defect localization, for a given commit,
we regard each added line of this commit as a single
commit, then the added line is passed through CC2Vec
to produce a probability indicating that this added
line is buggy. The added lines with highest probability
scores will be considered as potential buggy lines for
this commit. It is worth to mention that for a fair
comparison, we drop the log message related features
and only keep the code change part for CC2Vec, this
is reasonable because DEEPDL only model the source
code without considering additional information.

6.1.2 Experimental Results.

Table 4 illustrates the Top-1 and Top-5 accuracy, MRR, MAP
of our approach and the baselines. We can observe the
following points from the table:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

1) The CC2Vec model achieves the worst performance
regarding different evaluation measurements. The
CC2Vec model is originally designed for the task of JIT
defect prediction. It formulates the JIT defect prediction
task as a binary classification problem, that is given a
commit, CC2Vec outputs a probability score to judge
this commit is buggy or not. We transfer their approach
from predicting a buggy commit to predicting a buggy
line (treating each separate line as a commit). The
suboptimal performance of CC2Vec indicates that the
binary classification strategy is not suitable for the task
of JIT defect localization. This is because CC2Vec treats
a single added line as input, it is thus unable to consider
the preference relationship among different code lines.
By contrast, the language model based approaches (in-
cluding Yan’s approach and ours) models the historical
clean code lines, which can estimate the naturalness of
the source code.

2) Our approach outperforms Yan’s approach in terms of
all measures on average. From the table 4, we can see
that our approach can achieve a higher accuracy than
Yan’s approach with the defect localization task. For
example, the improvement of our approach over Yan’s
approach is 11.42% for Top-1 accuracy and 9.69% for
Top-5 accuracy, while 11.35% for MAP and 9.55% for
MRR scores. We attribute this to the following reasons:
First, both DEEPDL and Yan’s approach adopt the
language model, however, Yan’s approach builds the
language model with n-grams, which can only capture
the lexical level features. In this study, we use the
transformer based encoder and decoder to construct a
neural language model, which not only considers the
lexical level features but also semantic level features.
Second, we adopt the BPE algorithm for tokenization,
which can solve the OOV problem when dealing with
the testing set.

3) Regarding all the 14 projects, the improvements of
our proposed model over baseline are significant. To
test the statistical significance, we employ the Wilcoxon
signed-rank test [38] with a Bonferroni correction [39] at
95% confidence level. The Wilcoxon signed-rank test is
a non-parametric hypothesis test that used to compare
two matched samples to assess whether their popula-
tion mean ranks differ, while Bonferroni correction is
used to counteract the problem of multiple compar-
isons. From the table, we can see that on average all
the p-values are substantially smaller than 0.05, which
shows that the improvements of our proposed model
are statistically significant.

4) Only for the project ”Druid” is the Top-1 accuracy of
our approach is lower than the baseline. This is because
the number of bug introducing changes in this project is
small and the bug introducing lines are relatively low
in the added lines in most bug introducing changes.
Both our approach and the baseline do not perform
well on the top-1 accuracy. Except for this indicator,
Our approach outperforms the baseline in terms of all
the measures, we argue that the improvement of our
approach is significant.

Answer to RQ1: How effective is our approach compared
with the state-of-the-art baseline? – we conclude that
our approach significantly outperforms the baseline and
achieves a new state-of-the-art performance for just-in-
time defect localization.

6.2 RQ2: Cross-Project Evaluation
6.2.1 Experimental Setup
A cross-project defect localization technique trains the local-
ization model by using data from other source projects and
uses the trained model to perform defect localization for the
target project. To measure the performance of our approach
in cross-project defect localization, we build our DEEPDL
model by learning from all other projects. To identify defects
in the target project, it follows a two-step process, model
building step and model application step. In the model
building step, we first combine all the training data of other
projects except the target one as a multi-project training set.
A specific localization model is then built based on this
corpus using the same setting in RQ1. During the model
application step, we choose the target project as testing set
and run the model on this set. Finally, we compare the
performance of the cross-project model with the within-
project model.

6.2.2 Experimental Results
Table 5 shows the performance of the cross-project model
and corresponding within-project model. From the table, we
can see that the cross-project model achieves a comparable
performance to the within-project model. In all projects,
the within-project model achieves a slightly better perfor-
mance on average compared with the cross-project model.
For example, the average Top-1, Top-5, MRR and MAP score
of cross-project model are 0.3163, 0.5826, 0.441, 0.395, while
the within-project model achieves very close performance of
0.3169, 0.5849, 0.4430 and 0.3972 respectively.

We can conclude that a cross-project defect prediction
model is feasible. This is because the training corpus in
the cross-project is much larger than the corpus used for
the within-project. For example, in our cross-project setting,
the size of training corpus is about 236MB on average. In
our within-project setting, the size of training corpus is
about 18MB on average. The cross-project training corpus
is 13 times larger than the within-project training corpus.
When our DEEPDL model is trained with the larger cross-
project data, it successfully capture the program semantics
and automatically learns the naturalness of the code from
different types of projects, this also justifies the robustness
and generalize ability of our model. This enlightens us that
we can train a defect localization model with a large training
corpus, and then apply it to new projects in future applica-
tions. While the model has achieved good performance, we
have saved a lot of training time and the model is more
versatile.

Answer to RQ2: How effective is our approach when us-
ing cross-project modeling? – we conclude that training
our approach with cross-project data is feasible and can
achieve comparable performance as the within-project
setting.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

TABLE 6: The performance without BPE model vs. enhanced model

Project Top-1 accuracy Top-5 accuracy MRR MAP
WB Original Improve WB Original Improve WB Original Improve WB Original Improve

Activemq 0.3735 0.4070 8.97% 0.5796 0.6348 9.54% 0.4762 0.5117 7.44% 0.4580 0.4749 3.68%
Closure-compiler 0.2894 0.2774 -4.14% 0.5086 0.4983 -2.02% 0.3960 0.3933 -0.67% 0.3701 0.3718 0.47%
Deeplearning4j 0.2988 0.3184 6.54% 0.5518 0.5908 7.08% 0.4215 0.4464 5.91% 0.3546 0.3746 5.65%
Druid 0.2360 0.1966 -16.67% 0.4522 0.4663 3.11% 0.3449 0.3297 -4.42% 0.2968 0.2975 0.26%
Flink 0.2103 0.2445 16.25% 0.4366 0.4761 9.04% 0.3250 0.3584 10.28% 0.2668 0.2894 8.47%
Graylog2-server 0.3729 0.3742 0.34% 0.6054 0.6731 11.18% 0.4843 0.5077 4.84% 0.4314 0.4503 4.38%
Jenkins 0.3670 0.3748 2.12% 0.6379 0.6699 5.02% 0.4950 0.5149 4.02% 0.4517 0.4792 6.09%
Jetty 0.2525 0.2773 9.82% 0.4995 0.5427 8.64% 0.3756 0.4022 7.09% 0.3272 0.3537 8.10%
Jitsi 0.3422 0.3634 6.21% 0.6351 0.6798 7.05% 0.4798 0.5043 5.09% 0.4211 0.4425 5.07%
Jmeter 0.4957 0.4980 0.48% 0.7897 0.7968 0.90% 0.6285 0.6285 0.00% 0.5992 0.6048 0.93%
Libgdx 0.3415 0.3711 8.65% 0.6190 0.6568 6.10% 0.4647 0.4981 7.19% 0.4238 0.4582 8.13%
Robolectric 0.2297 0.2536 10.42% 0.4785 0.5383 12.50% 0.3529 0.3851 9.13% 0.3089 0.3301 6.87%
Storm 0.1650 0.1748 5.88% 0.3883 0.3689 -5.00% 0.2726 0.2789 2.30% 0.2137 0.2338 9.42%
H2o 0.2941 0.3057 3.94% 0.5793 0.5954 2.78% 0.4306 0.4427 2.81% 0.3814 0.3996 4.77%
average 0.3049 0.3169 3.94% 0.5544 0.5849 5.50% 0.4248 0.4430 4.27% 0.3789 0.3972 4.82%
p-value <0.001 <0.001 <0.001 <0.001

TABLE 7: The performance Without context learning model vs. enhanced model

Top-1 accuracy Top-5 accuracy MRR MAPProject WC Original Improve WC Original Improve WC Original Improve WC Original Improve
Activemq 0.3819 0.4070 6.58% 0.6147 0.6348 3.27% 0.4930 0.5117 3.79% 0.4612 0.4749 2.96%
Closure-compiler 0.2723 0.2774 1.89% 0.5188 0.4983 -3.96% 0.3932 0.3933 0.04% 0.3687 0.3718 0.85%
Deeplearning4j 0.2734 0.3184 16.43% 0.5566 0.5908 6.14% 0.4100 0.4464 8.88% 0.3588 0.3746 4.41%
Druid 0.1798 0.1966 9.38% 0.4466 0.4663 4.40% 0.3101 0.3297 6.32% 0.2837 0.2975 4.89%
Flink 0.2422 0.2445 0.94% 0.4655 0.4761 2.28% 0.3515 0.3584 1.95% 0.2866 0.2894 0.98%
Graylog2-server 0.3678 0.3742 1.74% 0.6807 0.6731 -1.13% 0.5058 0.5077 0.37% 0.4541 0.4503 -0.84%
Jenkins 0.3699 0.3748 1.31% 0.6563 0.6699 2.07% 0.5064 0.5149 1.67% 0.4714 0.4792 1.66%
Jetty 0.2498 0.2773 11.03% 0.5271 0.5427 2.96% 0.3797 0.4022 5.94% 0.3364 0.3537 5.12%
Jitsi 0.3680 0.3634 -1.24% 0.6715 0.6798 1.24% 0.5073 0.5043 -0.60% 0.4451 0.4425 -0.60%
Jmeter 0.4964 0.4980 0.32% 0.7834 0.7968 1.72% 0.6241 0.6285 0.71% 0.5986 0.6048 1.03%
Libgdx 0.3662 0.3711 1.35% 0.6289 0.6568 4.44% 0.4898 0.4981 1.70% 0.4487 0.4582 2.12%
Robolectric 0.2368 0.2536 7.07% 0.5144 0.5383 4.65% 0.3693 0.3851 4.27% 0.3247 0.3301 1.66%
Storm 0.1845 0.1748 -5.26% 0.4466 0.3689 -17.39% 0.2988 0.2789 -6.68% 0.2382 0.2338 -1.84%
H2o 0.2825 0.3057 8.20% 0.5517 0.5954 7.92% 0.4143 0.4427 6.86% 0.3770 0.3996 5.99%
average 0.3068 0.3169 3.28% 0.5778 0.5849 1.23% 0.4338 0.4430 2.13% 0.3905 0.3972 1.71%
p-value <0.001 <0.001 <0.001 <0.001

6.3 RQ3: Ablation Evaluation

6.3.1 Experimental Setup

Our approach adds two enhancements to the original
Seq2Seq model: using BPE method in the tokenization step
for solving the OOV problems, and using the code line’s
context for better representing the program semantics. To
evaluate the performance of our approach of incorporating
these two techniques, we also perform an ablation analysis
to investigate if such enhancements significantly improve
the performance of our approach. To do this we compare the
performance of DEEPDL with its two variants as follows:

• WB (Without BP) Model: WB model drops the BPE
tokenization technique in data processing stage, and
replaces it with the traditional tokenization method.

• WC (Without Context) Model: WC model drops the
context information we added to the code lines, and
trains the DEEPDL with a single line instead.

6.3.2 Experimental Results

Table 6 and Table 7 demonstrates the performance of our
approach compared with WB and WC respectively. From
the tables, we can see that the DEEPDL outperforms the
WB model and the WC model by a large margin on
average. Regarding the Top-1 accuracy, The improvement of
our approach over WB is 3.94% and the improvement over
WC is 3.28% on average. The evaluation result verifies the
importance and necessity of these two techniques incorpo-

rated within DEEPDL, and further confirms their usefulness
for enhancing the performance of defect localization.

By dropping the BPE tokenization method from data
processing, the average number of unknown words sharply
increases from 68 to 6215 (about 100 times larger). When
there are too many OOV tokens in the testing set, the
naturalness score estimated by DEEPDL will be greatly af-
fected by these unknown words. It can no longer effectively
calculate the likelihood of a buggy code line. Under such
conditions, the bug probability score we calculated is also
inaccurate and unreliable.

By dropping the context of the code line and treating
each single code line as input, the model loses much valu-
able information of this code line. However, the adjacent
code lines are often closely connected with each other and
should be considered as an united block. The performance
drop between our approach and WC further justifies our
assumption, that the context information do have contribu-
tions on the overall performance of our approach.

Answer to RQ3: How effective is our approach for using
of context information and BPE tokenization methods?
– we conclude that both the context information and
BPE method are effective and helpful to enhance the
performance of our approach.

6.4 Threats to Validity
Threats to internal validity refer to errors in our experi-
ments. For each task, we carefully reuse existing imple-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

mentations of the baseline approach [12]. We have double
checked our code and implementation, but errors may re-
main.

Threats to external validity concern the generalizabil-
ity of our approach. In our experiment, we only consider
Java software projects. Although the results on Java have
proved the effectiveness of our approach, we do not verify
the generality of our approach to projects written in other
programming languages, which may be a threat to external
validity. When doing further research in other programming
languages, some steps should be carefully adapted. For ex-
ample, removing testing files, removing comments and code
tokenization should follow different programming language
rules. In the future, we will extend our approach to other
programming languages to mitigate this threat.

Threats to the quality of collected dataset. We collected
the bug introducing changes and bug introducing code
lines from the open source projects as other work does.
Although the mining method RA-SZZ [33] can deal with
noise including blank/comment lines, format modifications
and refactoring modifications, there is some noise in our
dataset. In the future, we will investigate a better technique
to build a better dataset.

Threats to the model validity relates to model structure
that could affect the learning performance of our approach.
In this study, we choose the transformer-based encoder and
decoder to build a neural language model for capturing
the naturalness of the source code. Recent research has
proposed new models, such as BERT [40], ALBERT [41],
GPT [42], that can achieve better performance than trans-
former. However, our results do not shed light on the effec-
tiveness of employing other advanced models with respect
to different structures and new features. We will try to use
other deep learning models for our tasks in future work.

7 DISCUSSION

7.1 Impact of Different Methods for Using Entropy

When submitting code changes, in order to detect the local-
ization of the possible buggy line, our tool DEEPDL sorts all
of the added lines according to their line entropy. Therefore,
the way we calculate the line entropy is an important
factor to affect the performance of our approach. For a
given line, it is intuitive to represent the line entropy by
averaging the entropy of all tokens within this line, In our
preliminary study, we employed this calculation method for
DEEPDL. However, there are some other ways to estimate
the line entropy. For example, a common way is to use
the max entropy as the representation. Yan et al. propose
that sum average with max entropy is useful for describing
the entire naturalness of the line, especially when the max
entropy of different lines might be equal. To investigate the
performance of our approach under different line entropy
calculation methods, we combine the average entropy and
max entropy as follows:

Hp(s) =
1

|s|

|s|∑
n=1

Hp(ti) +max(Hp(t1), . . . Hp(ts)) (12)

Table 8 presents the performance of our approach with
respect to the three different line entropy calculating meth-
ods. From the table, we can see that the average entropy
method can achieve a better performance in most of the
cases, and average entropy method outperforms the other
method by a large margin in average. This is the reason why
we choose average entropy as the line entropy calculating
method for our approach.

7.2 Time Efficiency
To analyze the complexity of our proposed model, DEEPDL,
we further measure the time complexity of DEEPDL in
terms of training and application process. Considering Yan’s
approach is highly efficient for JIT defect localization, we
compare DEEPDL with Yan’s approach for time efficiency
analysis. In particular, regarding the model training process,
we record the time cost for training our DEEPDL model
and Yan’s approach on each selected project respectively.
Regarding the model application process, we sequentially
input the commits in the test set to the model and record the
time it takes to obtain the results. To reduce the bias of the
experimental results, we repeat the testing process 5 times
on each project and calculate the average time for processing
a buggy commit. Both models are trained and tested on the
same machine, which contains an Intel i9-9900k CPU and
four RTX 2080Ti GPU.

Table 9 shows the results of our time cost experiment.
From the table, we can observe the following points: (i)
Yan’s approach is highly efficient for training and testing.
For example, it costs only 25s for training a project and
5ms for checking a buggy commit, this is reasonable because
Yan’s approach uses the n-gram language model to estimate
the naturalness of the source code, which requires little
computing resources and calculation time. (ii) The time cost
of DEEPDL is mostly for training process. DEEPDL takes
1,660s on average for training a project, which is much
slower than Yan’s approach. This is because DEEPDL is
based on the neural language model, which is heavily de-
pendent on the sizes of the source code database. However,
we argue that since training DEEPDL is a one-time cost,
after the training process is completed, the trained DEEPDL
model can be easily loaded and reused. (iii) The average
application time of DEEPDL only costs 8ms, which means
DEEPDL takes 8ms on average to check a given commit.
The gap between our model and Yan’s approach is 3ms for
application, which is difficult to notice the time difference
between the two models in actual applications. Considering
that checking a buggy commit using DEEPDL is highly
efficient, we argue that DEEPDL is efficient enough for
practical use.

7.3 Impact of Different Tokenizer
One of the key challenges in JIT defect localization is the
out-of-vocabulary (OOV) problem. To alleviate the OOV
problem, we adopt the BPE algorithm for tokenizing the
source code. Two advantages can be obtained by employing
the BPE algorithm as the tokenizer: (i) The BPE tokenizer
can alleviate the OOV problem in the testing set, (ii) The BPE
tokenizer can greatly reduce the source code vocabulary
size. To quantitatively investigate the effectiveness of using

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

TABLE 8: The performance of different methods for calculating the line entropy

Project Top-1 accuracy Top-5 accuracy MRR MAP
Avg+Max Max Avg Avg+Max Max Avg Avg+Max Max Avg Avg+Max Max Avg

Activemq 0.3836 0.3769 0.4070 0.6131 0.5829 0.6348 0.4939 0.4757 0.5117 0.4628 0.4452 0.4749
Closure-compiler 0.2723 0.2654 0.2774 0.5257 0.5240 0.4983 0.3979 0.3909 0.3933 0.3762 0.3677 0.3718
Deeplearning4j 0.2861 0.2539 0.3184 0.5771 0.5273 0.5908 0.4199 0.3848 0.4464 0.3565 0.3280 0.3746
Druid 0.1910 0.1573 0.1966 0.4466 0.4017 0.4663 0.3162 0.2782 0.3297 0.2819 0.2563 0.2975
Flink 0.2187 0.1913 0.2445 0.4351 0.3933 0.4761 0.3314 0.2965 0.3584 0.2710 0.2500 0.2894
Graylog2-server 0.3436 0.3333 0.3742 0.6450 0.6143 0.6731 0.4860 0.4644 0.5077 0.4415 0.4221 0.4503
Jenkins 0.3835 0.3485 0.3748 0.6650 0.6447 0.6699 0.5139 0.4861 0.5149 0.4776 0.4548 0.4792
Jetty 0.2626 0.2323 0.2773 0.5124 0.4830 0.5427 0.3840 0.3586 0.4022 0.3366 0.3186 0.3537
Jitsi 0.3627 0.3323 0.3634 0.6707 0.6396 0.6798 0.4983 0.4727 0.5043 0.4362 0.4186 0.4425
Jmeter 0.4949 0.4648 0.4980 0.7794 0.7502 0.7968 0.6219 0.5944 0.6285 0.5938 0.5679 0.6048
Libgdx 0.3432 0.3350 0.3711 0.6371 0.6141 0.6568 0.4748 0.4625 0.4981 0.4444 0.4265 0.4582
Robolectric 0.2464 0.2273 0.2536 0.5144 0.4665 0.5383 0.3762 0.3458 0.3851 0.3183 0.2946 0.3301
Storm 0.1650 0.1456 0.1748 0.4078 0.3883 0.3689 0.2872 0.2612 0.2789 0.2397 0.2200 0.2338
H2o 0.2977 0.2549 0.3057 0.5927 0.5294 0.5954 0.4345 0.3847 0.4427 0.3900 0.3474 0.3996
average 0.3037 0.2799 0.3169 0.5730 0.5400 0.5849 0.4311 0.4040 0.4430 0.3876 0.3655 0.3972
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

TABLE 9: Time Cost Analysis

Project
Yan’s
Training
Time /s

Yan’s
Application
Time /s

DeepDL
Training
Time /s

DeepDL
Application
Time /s

Activemq 23 0.004 2437 0.009
Closure-compiler 26 0.005 1873 0.007
Deeplearning4j 30 0.005 2621 0.008
Druid 23 0.004 972 0.007
Flink 25 0.005 5312 0.008
Graylog2-server 23 0.005 1135 0.007
Jenkins 25 0.004 887 0.007
Jetty.project 26 0.006 1175 0.007
Jitsi 23 0.006 1378 0.007
Jmeter 24 0.007 687 0.008
Libgdx 27 0.005 1206 0.007
Robolectric 23 0.005 762 0.008
Storm 23 0.005 1456 0.007
H2o 26 0.008 1351 0.008
Average 25 0.005 1660 0.008

BPE tokenizer for solving the OOV problem, we counted the
number of OOV words and the vocabulary size by using
BPE tokenizer and the traditional tokenizer.

Table 10 shows the results of adopting different tokeniz-
ers for tokenizing source code. From the table, several points
stand out: (i) By applying the BPE tokenizer instead of the
traditional tokenizer in data processing step, the vocabulary
size of the source code sharply decreases from 43,410 to
5,809 on average, which shows the ability of our approach
for reducing the vocabulary size. (ii) The vocabulary size
of the traditional tokenizer heavily depends on the specific
project, while the BPE tokenizer can keep a relatively small
vocabulary size. For example, the maximum and minimum
vocabulary size of using traditional tokenizer are 84,875 and
25,253 respectively, while by using BPE tokenizer, the max-
imum and minimum vocabulary size are 6,367 and 5,427
respectively. This shows the robustness of BPE tokenizer for
maintaining a stable code vocabulary. (iii) The advantage of
using BPE tokenizer for solving the OOV problem is more
obvious. For example, the average number OOV tokens in
the test set is 556 by applying the BPE tokenizer, this number
rockets up to 242,195 by using the traditional tokenizer.
This further confirms the power of the BPE tokenizer for
alleviating the OOV problem.

TABLE 10: The performance of different Tokenizer

Vocabulary Size OOV in Test SetProject Traditional BPE Traditional BPE
Activemq 38,900 5,581 148,879 109
Closure-compiler 42,979 5,493 127,066 265
Deeplearning4j 44,841 6,367 349,601 144
Druid 27,650 5,758 289,007 575
Flink 84,875 6,192 416,437 203
Graylog2-server 28,253 5,646 157,463 1271
Jenkins 32,296 5,855 260,513 234
Jetty.project 63,688 5,474 320,502 677
Jitsi 53,360 6,192 154,862 604
Jmeter 30,861 5,999 68,134 231
Libgdx 49,825 5,726 208,954 1435
Robolectric 32,864 6,082 211,605 537
Storm 30,086 5,427 226,368 966
H2o 47,268 5,533 451,340 538
Average 43,410 5,809 242,195 556

8 RELATED WORK

We divide our related work into three parts: defect localiza-
tion, Just-in-Time defect localization and deep learning in
defect prediction.

8.1 Defect Localization

8.1.1 Program Spectrum-based Techniques

A program spectrum describes the execution information of
a program from certain perspectives, which can be used to
track program behavior [43], [44]. Collofello and Cousins
suggested that the program spectrum can be used for soft-
ware fault localization [45]. Jones and Harrold [46] proposed
the ESHS-based similarity coefficient-based Tarantula tech-
nique that uses a suspiciousness score which is provided by
the information of successful and failed test cases to locate
buggy elements. Abreu proposed the Ochiai a similarity
coefficient-based technique [47]. It is generally considered
more effective than Tarantula. W. Eric Wong proposed a
technique using both single-fault and multi-fault programs
named DStar, which outperforms Tarantula and Ochiai
techniques in most cases [48]. However, spectrum-based
techniques require test cases that are often unavailable [7]–
[9].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

8.1.2 Machine Learning-based Techniques
Li et al. proposed that it can be quite challenging for the
traditional Learning-to-Rank algorithms to automatically
identify effective existing/latent features. They introduce
a deep learning-based approach named DeepFL to auto-
matically learn the most effective existing/latent features
for precise fault localization. The experimental results show
DeepFL can significantly outperform the state-of-the-art
TraPT/FLUCCS [5], [6]. Chaleshtari et al. proposed a new
mutation-based fault localization approach called SMBFL
to reduce the execution cost by reducing the number of
statements to be mutated [49]. In the SMBFL method, the
suspiciousness score of program statements is measured
based on the entropy of their mutants. Recently, Lou et
al. proposed a coverage-based fault localization technique,
Grace, which fully utilizes detailed coverage information
with graph-based representation learning [50]. But these
machine learning-based techniques are employed after the
defect is discovered. Our defect localization approach is
applied at code check-in time.

8.2 Just-in-Time Defect Localization
Yan et al. propose a two-phase framework, i.e., Just-in-Time
defect identification and Just-in-Time defect localization
[12]. Especially the Just-in-Time defect localization phase
is the first Just-in-Time defect localization approach. They
leverage software naturalness with the N-gram model. Their
model will rank the source code lines introduced by the
new change according to their suspiciousness scores. The
source code lines ranked at the top of the list are estimated
as the defect location. They conduct an empirical study on
14 open source Java projects. Their model outperforms the
PMD [51] (PMD is a commonly used static bug-finder tool
and has been used in prior related studies, such as “Software
defect prediction via convolutional neural network”. PMD
produces line-level warnings and assigns a priority for each
warning.) in terms of Top-1 accuracy, Top-5 accuracy, MAP
and MRR measures.

Our work is inspired by their work that locates buggy
programs prior to the appearance of the defect symptoms.
Yan’s method use N-gram as the language model. Al-
though they have fine-tuned the model, there are still many
shortcomings of their model (e.g. containing many OOV
problems, localness of the source code are not considered).
Therefore, we can make more improvements in the Just-in-
Time defect localization field. So we proposed a new model
and the experimental results also prove that our approach
outperforms Yan’s.

8.3 Deep Learning in Source Code
8.3.1 Deep Learning in Defect Prediction
Deep learning algorithms have been adopted to improve
research tasks in software engineering. Yang et al. propose
a defect prediction model that leverages deep learning to
generate new features from existing ones and then use these
new features [10]. They used a Deep Belief Network (DBN)
to generate features from 14 traditional change level fea-
tures. Li et al. propose a framework called Defect Prediction
via Convolutional Neural Network (DP-CNN) [11]. They ex-
tract token vectors based on the programs’ Abstract Syntax

Trees (ASTs) and feed the numerical vectors into DP-CNN
to automatically learn semantic and structural features of
programs. Finally, They combine the learned features with
traditional hand-crafted features to predict defect. Wang
et. alleverage Deep Belief Network (DBN) to automatically
learn semantic features from token vectors extracted from
programs’ Abstract Syntax Trees (ASTs) [52].

Despite the above techniques being successfully used in
defect prediction, there is no attempt yet at applying deep
learning methods to Just-in-Time defect localization. Thus,
in this paper, we leverage the deep learning based Seq2Seq
model to Just-in-Time defect localization.

8.3.2 Deep Learning in Automatic Program Repair
SEQUENCER proposed by Chen et al. [53], CoCoNuT pro-
posed by Lutellier et al. [54] and CURE proposed by Jiang et
al. [55], have been developed to automatically repair source
code. They all apply sequence-to-sequence model to fix
bugs. However, our usage of sequence-to-sequence model
is different. DEEPDL analyzes the rationality (naturalness)
of the specific code line based on this line and its context
and gives a risk score of suspicious buggy code lines.

8.3.3 Deep Learning in Code Representation
There are many papers on the representation of source
code [17], [56]–[59]. Code2vec [56] is an example of learning
distributed representations of source code. It represents
snippets of code as continuous distributed vectors. Besides,
Alon et al. proposed code2seq [57], which leverages the syn-
tactic structure of programming languages to encode source
code. Hoang et al. proposed CC2Vec [17], which produces a
distributed representation of code changes. Although these
studies completed the code representation task, they cannot
complete the JIT defect location task well. DEEPDL learns
the associations between clean code and its context to calcu-
late the risk of code that contains bugs.

9 CONCLUSIONS AND FUTURE WORK

We propose a novel approach, DEEPDL, to locate buggy
source code lines in a defect change at check-in time.
DEEPDL takes added code lines in the defect change as
input. Then DEEPDL will assign a suspiciousness score to
each code line and sort these code lines in descending order
of this score. The source code lines at the top of the list
are considered to be a possible defect location. Our exper-
imental results show that DEEPDL outperforms the state-
of-the-art approach and achieves better results in terms of
four ranking measures. In future work, we plan to improve
the effectiveness of our proposed approach by adding more
information (e.g. source code history) to the model. We also
plan to apply our proposed approach to other programming
languages (e.g. C#, Python, etc). We want to evaluate our
approach with developers to see if it helps them address
just-in-time detected defects.

ACKNOWLEDGEMENTS

This research is supported by National Key R&D Program
of China under Grant No.2019YFB1600700, ARC Laureate

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

Fellowship FL190100035 and the National Research Foun-
dation, Singapore under its Industry Alignment Fund –
Pre-positioning (IAF-PP) Funding Initiative. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore.

REFERENCES

[1] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl:
Integrating multiple fault diagnosis dimensions for deep fault
localization. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 169–180.

[2] Iris Vessey. Expertise in debugging computer programs: A process
analysis. International Journal of Man-Machine Studies, 23(5):459–
494, 1985.

[3] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. Bug lo-
calization using latent dirichlet allocation. Information and Software
Technology, 52(9):972–990, 2010.

[4] Klaus Changsun Youm, June Ahn, and Eunseok Lee. Improved
bug localization based on code change histories and bug reports.
Information and Software Technology, 82:177–192, 2017.

[5] Xia Li and Lingming Zhang. Transforming programs and tests in
tandem for fault localization. Proceedings of the ACM on Program-
ming Languages, 1(OOPSLA):1–30, 2017.

[6] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics
to improve fault localization. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 273–283.

[7] Pavneet Singh Kochhar, Ferdian Thung, David Lo, and Julia
Lawall. An empirical study on the adequacy of testing in open
source projects. In 2014 21st Asia-Pacific Software Engineering
Conference, volume 1, pages 215–222. IEEE.

[8] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and
Lingxiao Jiang. An empirical study of adoption of software testing
in open source projects. In 2013 13th International Conference on
Quality Software, pages 103–112. IEEE.

[9] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. Understanding the test
automation culture of app developers. In 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation
(ICST), pages 1–10. IEEE.

[10] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun.
Deep learning for just-in-time defect prediction. In 2015 IEEE
International Conference on Software Quality, Reliability and Security,
pages 17–26. IEEE.

[11] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software
defect prediction via convolutional neural network. In 2017 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), pages 318–328. IEEE.

[12] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E. Hassan, David Lo, and
Shanping Li. Just-in-time defect identification and localization: A
two-phase framework. IEEE Transactions on Software Engineering,
pages 1–1, 2020.

[13] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and
Premkumar Devanbu. On the naturalness of software. In 2012
34th International Conference on Software Engineering (ICSE), pages
837–847. IEEE.

[14] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng
Tu, Alberto Bacchelli, and Premkumar Devanbu. On the” nat-
uralness” of buggy code. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 428–439. IEEE.

[15] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural
networks the best choice for modeling source code? In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 763–773, 2017.

[16] Philip Gage. A new algorithm for data compression. C Users
Journal, 12(2):23–38, 1994.

[17] Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo.
Cc2vec: Distributed representations of code changes. arXiv preprint
arXiv:2003.05620, 2020.

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to
sequence learning with neural networks. In Advances in neural
information processing systems, pages 3104–3112.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

[20] Hongyuan Mei, Mohit Bansal, and Matthew Walter. Coherent
dialogue with attention-based language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31.

[21] Stefan Kombrink, Tomáš Mikolov, Martin Karafiát, and Lukáš
Burget. Recurrent neural network based language modeling in
meeting recognition. In Twelfth annual conference of the international
speech communication association.

[22] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm
neural networks for language modeling. In Thirteenth annual
conference of the international speech communication association.

[23] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neu-
ral networks. IEEE transactions on Signal Processing, 45(11):2673–
2681, 1997.

[24] Hoa Khanh Dam, Truyen Tran, and Trang Pham. A deep language
model for software code. arXiv preprint arXiv:1608.02715, 2016.

[25] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel,
Abram Hindle, and José Nelson Amaral. Syntax and sensibility:
Using language models to detect and correct syntax errors. In 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 311–322. IEEE.

[26] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon
Brakel, and Yoshua Bengio. End-to-end attention-based large vo-
cabulary speech recognition. In 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pages 4945–4949.
IEEE.

[27] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code com-
ment generation. In 2018 IEEE/ACM 26th International Conference
on Program Comprehension (ICPC), pages 200–20010. IEEE.

[28] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Moham-
mad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin
Gao, and Klaus Macherey. Google’s neural machine translation
system: Bridging the gap between human and machine transla-
tion. arXiv preprint arXiv:1609.08144, 2016.

[29] Xin Li, Piji Li, Wei Bi, Xiaojiang Liu, and Wai Lam. Relevance-
promoting language model for short-text conversation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 8253–8260.

[30] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prab-
havalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J
Weiss, Kanishka Rao, and Ekaterina Gonina. State-of-the-art
speech recognition with sequence-to-sequence models. In 2018
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 4774–4778. IEEE.

[31] Volodymyr Mnih, Nicolas Heess, and Alex Graves. Recurrent
models of visual attention. pages 2204–2212.

[32] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and
Yann N Dauphin. Convolutional sequence to sequence learning.
In International Conference on Machine Learning, pages 1243–1252.
PMLR.

[33] Edmilson Campos Neto, Daniel Alencar Da Costa, and Uirá
Kulesza. The impact of refactoring changes on the szz algorithm:
An empirical study. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 380–
390. IEEE.

[34] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural
machine translation of rare words with subword units. pages
1715–1725.

[35] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles
Sutton, and Andrea Janes. Big code!= big vocabulary: Open-
vocabulary models for source code. pages 1073–1085.

[36] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-
Wei Chang. A transformer-based approach for source code sum-
marization. arXiv preprint arXiv:2005.00653, 2020.

[37] Hinrich Schütze, Christopher D Manning, and Prabhakar Ragha-
van. Introduction to information retrieval, volume 39. Cambridge
University Press Cambridge, 2008.

[38] Frank Wilcoxon. Individual comparisons by ranking methods, pages
196–202. Springer, 1992.

[39] Hervé Abdi. Bonferroni and Šidák corrections for multiple com-
parisons. Encyclopedia of measurement and statistics, 3:103–107, 2007.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

[41] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-
supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative pre-
training.

[43] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu
Yi. An empirical investigation of the relationship between spectra
differences and regression faults. Software Testing, Verification and
Reliability, 10(3):171–194, 2000.

[44] Nicholas Kidd, Thomas Reps, Julian Dolby, and Mandana Vaziri.
Finding concurrency-related bugs using random isolation. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 198–213. Springer.

[45] James S Collofello and Larry Cousins. Towards automatic soft-
ware fault location through decision-to-decision path analysis. In
Managing Requirements Knowledge, International Workshop on, pages
539–539. IEEE Computer Society.

[46] James A Jones and Mary Jean Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering, pages 273–282.

[47] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. An
evaluation of similarity coefficients for software fault localization.
In 2006 12th Pacific Rim International Symposium on Dependable
Computing (PRDC’06), pages 39–46. IEEE.

[48] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The dstar
method for effective software fault localization. IEEE Transactions
on Reliability, 63(1):290–308, 2013.

[49] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl:
Integrating multiple fault diagnosis dimensions for deep fault
localization. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 169–180.

[50] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao,
Lu Zhang, and Lingming Zhang. Boosting coverage-based fault
localization via graph-based representation learning. In Proceed-

ings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 664–676.

[51] Tom Copeland. PMD applied, volume 10. Centennial Books
Arexandria, Va, USA, 2005.

[52] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning
semantic features for defect prediction. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pages 297–
308. IEEE.

[53] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-
Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus. Se-
quencer: Sequence-to-sequence learning for end-to-end program
repair. IEEE Transactions on Software Engineering, 2019.

[54] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li,
Moshi Wei, and Lin Tan. Coconut: combining context-aware
neural translation models using ensemble for program repair. In
Proceedings of the 29th ACM SIGSOFT international symposium on
software testing and analysis, pages 101–114.

[55] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware
neural machine translation for automatic program repair. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 1161–1173. IEEE.

[56] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
code2vec: Learning distributed representations of code. Proceed-
ings of the ACM on Programming Languages, 3(POPL):1–29, 2019.

[57] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code.
arXiv preprint arXiv:1808.01400, 2018.

[58] Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and John Grundy.
Checking smart contracts with structural code embedding. IEEE
Transactions on Software Engineering, 2020.

[59] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zim-
mermann. Automating the removal of obsolete todo comments.
In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 218–229, 2021.

