
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2022

FFL: fine grained fault localization for student programs via FFL: fine grained fault localization for student programs via

syntactic and semantic reasoning syntactic and semantic reasoning

Thanh Dat NGUYEN
Singapore Management University, thanhdatn@smu.edu.sg

Cong Thanh LE
Singapore Management University, tlecong@smu.edu.sg

Duc-Minh LUONG

Van-Hai DUONG

Xuan Bach LE
Singapore Management University, xuanbachle@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
NGUYEN, Thanh Dat; LE, Cong Thanh; LUONG, Duc-Minh; DUONG, Van-Hai; LE, Xuan Bach; LO, David; and
HUYNH, Quyet-Thang. FFL: fine grained fault localization for student programs via syntactic and semantic
reasoning. (2022). Proceedings of the 38th IEEE International Conference on Software Maintenance and
Evolution, Limassol, Cyprus, 2022 October 02 - 07. 151-162. Research Collection School Of Computing
and Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7641

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7641&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Thanh Dat NGUYEN, Cong Thanh LE, Duc-Minh LUONG, Van-Hai DUONG, Xuan Bach LE, David LO, and
Quyet-Thang HUYNH

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7641

https://ink.library.smu.edu.sg/sis_research/7641

FFL: Fine-grained Fault Localization for Student
Programs via Syntactic and Semantic Reasoning

Thanh-Dat Nguyen †,Thanh Le-Cong‡, Duc-Minh Luong‡, Van-Hai Duong§,
Xuan-Bach D. Le†, David Lo ¶, Quyet-Thang Huynh‡

†The University of Melbourne
‡Hanoi University of Science and Technology

§Independent Researcher
¶Singapore Management University

Abstract—Fault localization has been used to provide feedback
for incorrect student programs since locations of faults can be
a valuable hint for students about what caused their programs
to crash. Unfortunately, existing fault localization techniques for
student programs are limited because they usually consider either
the program’s syntax or semantics alone. This motivates the new
design of fault localization techniques that use both semantic and
syntactical information of the program.

In this paper, we introduce FFL (Fine grained Fault
Localization), a novel technique using syntactic and semantic
reasoning for localizing bugs in student programs. The novelty
in FFL that allows it to capture both syntactic and semantic
of a program is three-fold: (1) A fine-grained graph-based
representation of a program that is adaptive for statement-level
fault localization; (2) an effective and efficient model to leverage
the designed representation for fault-localization task and (3) a
node-level training objective that allows deep learning model to
learn from fine-grained syntactic patterns. We compare FFL’s
effectiveness with state-of-the-art fault localization techniques
for student programs (NBL, Tarantula, Ochiai and DStar) on
two real-world datasets: Prutor and Codeflaws. Experimental
results show that FFL successfully localizes bug for 84.6% out
of 2136 programs on Prutor and 83.1% out of 780 programs
on Codeflaws concerning the top-10 suspicious statements. FFL
also remarkably outperforms the best baselines by 197%, 104%,
70%, 22% on Codeflaws dataset and 10%, 17%, 15% and 8% on
Prutor dataset, in term of top-1, top-3, top-5, top-10, respectively.

Index Terms—Fault Localization, Programming Education,
Graph Neural Network

I. INTRODUCTION

Fault localization is the problem of identifying faulty lo-

cations in source code which leads to erroneous behaviors

triggered when running a test suite. Due to large variability

of faulty causes, it is a challenging problem to narrow down

the possible root causes from the triggered failure. This is

especially hard for students, where they may have little famil-

iarity with the programming language for identifying faulty

locations as well as root causes.

Unfortunately, most of existing methods focusing on the

real-world programs are not optimized to be effective in

the student programs due to the differences between the

former and the latter. As an example, current state-of-the-

art techniques [20], [21], [23] aim to locate bugs only on

the method level, making them hard to be used for student

programs, since most of student programs would consists

only of a few methods. This motivates a research direction

of fault localization which focuses on students programs, as

proposed by recent studies [4], [10], [11], [16]. By providing

hints of potential bugs’ locations, fault localization techniques

give useful instructions to students. Indeed, the user studies

reported by Edmision et al., [10] have shown that fault

localization techniques enable students to make improvements

on their code from submission to submission, as well as

supporting students to spend less time achieving the maximum

score in overall.

Fault localization techniques for student program usually

fall into one of the following categories: learning-based ap-

proaches and spectrum-based approaches. The former leverage

historical data and a deep learning models to learn how

to localize bugs in student programs. Meanwhile, the latter

leverage spectrum-based fault localization techniques [3], [6],

[18], [39], that is widely used for industrial-scale programs, to

output the suspiciousness of code statements based on analysis

on the coverage data of failed/passed tests.

The learning-based approaches [16], [17], while have shown

capability on learning syntactic patterns from historical data,

ignore semantic information of programs such as test cov-

erage or execution traces. Meanwhile, the spectrum-based

approaches [3], [6], [18], [39] only consider test coverage

as the most effective input and ignore the information from

source code. This motivates the new design of fault localiza-

tion techniques that can utilize both syntactic and semantic

information present in student programs.

In this paper, we introduce FFL (Fine grained Fault

Localization), a novel technique using syntactic and seman-

tic reasoning for localizing bugs in student programs. FFL

utilizes both syntactic and semantic information of the pro-

gram for fault localization via our new design of three main

components: (1) graph-based representation, namely syntax-
coverage graph, of a program that comprises syntax and

program semantic information via Abstract Syntax Tree and

detailed coverage of given tests into one graph; (2) an effective
and efficient deep learning model (i.e., graph neural network

(GNN)) which is able to naturally deal with graph-based

representations; and (3) a node-level training objective that

allows deep learning model to learn from fine-grained syntax

151

2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSME55016.2022.00022

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
8-

1-
66

54
-7

95
6-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

50
16

.2
02

2.
00

02
2

patterns.

Compared to other learning-based fault localization tech-

niques (e.g., NBL [16], DeepFix [17]), our technique is highly

customizable by design, enabling an easy inclusion of both

syntactic and semantic information of a program. DeepFix

[17] represents a student program as a sequence of tokens

and uses Recurrent Neural Network (RNN) to develop deep

learning model to fix syntactic (compilation) errors. This type

of errors is different from our method’s aim of fixing logical

errors that fail on certain test cases. Low et al. [23] aim for

method-level fault localization and thus leverage statement-

level AST to represent syntactical information. Our aim is

more aligned to NBL [16], in which we both address the

problem of fault localization of student programs. The main

characteristic of student programs is that they are often small

in size and errors often lie in sub-statement level (e.g., small

AST nodes). Thus, the goal here is to accurately pinpoint

error locations at fine-grained level. NBL [16] converts each

program’s AST into an adjacency-list-like representation, train

a Convolutional Neural Networks to predict test cases’ out-

come, and leverage neural attribution techniques to obtain

each line’s suspiciousness score. Incorporating richer semantic

information such as test coverage into these representations is

difficult because it requires to encode structural information

into a single sequence or list of sequences. It can be seen that

for both of these representations, it is difficult to incorporate

semantic information such as code coverage and can suffer the

loss of code structure information.

To address the aforementioned problem, a potential solution

is by using a graph-based coverage representation. For exam-

ple, Lou et al. [23] represents both program statements and

their coverage relationships to test cases in one unified graph.

However, we observe that student errors often lies on sub-

statement-level e.g., if statement conditions, logical operators

or type cast operators, as reported by Tan et al. [33] (see

Codeflaws site for additional details1). Hence, these recently

introduced graph-based program representations which usually

focus on method-level, may be not suitable for our focus,

i.e., student program. Thus, we leverage fine-grained syntax

representation, i.e., AST-node level instead of statement-level

in conjunction with code coverage as semantic information

by connecting each node belonging to a statement to test

cases which cover the statement. We design a graph neural

network (GNN) along with a node-level training objective to

extract features from the proposed representation. FFL learns

to detect the combination of intra-syntax and inter syntax-

coverage pattern that is likely to be faulty. By this way,

our approach can effectively capture fine-grained patterns for

localizing bugs in student-written programs.

Given a student program and a set of test cases (passing

and failing), FFL works in two main phases. In the first phase

of input preparation, we leverage the program syntax (i.e.,

the Abstract Syntax Tree (AST)) and augment this syntax

representation with code coverage information using test cases,

1https://codeflaws.github.io/

resulting in a new representation, which we call syntax-
coverage graph. In the second phase, we first leverage a graph

neural network to predict suspiciousness scores at AST node

level (i.e., the probability of each AST node being modified to

fix bugs). We then aggregate AST-node-level results to obtain

the statement-level faulty score.

We evaluated FFL on 2,136 buggy programs from the

Prutor dataset [7] and 780 programs from Codeflaws dataset

[33]. We compare FFL against the state-of-the-art spectrum-

based and learning-based fault localization techniques for

student programs, consisting of NBL [16], Tarantula [18],

Ochiai [3] and DStar [38]. Experimental results show that FFL

successfully localizes bugs for 84.6% out of 2,136 programs

on Prutor and 83.1% out of 780 programs on Codeflaws when

reporting the top-10 suspicious lines. FFL also remarkably

outperforms the best baselines by 197%, 104%, 70%, 22%

on the Codeflaws dataset and 26%, 17%, 22% and 38% on

the Prutor dataset, in term of top-1, top-3, top-5, top-10.

In summary, our contributions include:

• We propose a novel technique, namely FFL, that is the

first to combine syntactic and semantic information to

automatically localize bugs in student programs.

• We propose syntax-coverage graph that can capture fine-

grained syntax-semantic representation of programs at

AST node-level.

• We design a graph-based deep learning model and a

novel training objective to effectively and efficiently

learn the proposed graph-based representation for ranking

suspicious program statements.

• We conduct evaluations on two popular datasets of stu-

dent programs. Experiment results show that the unique

combination fine-grained syntactic and semantic infor-

mantion at AST node-level empowers FFL to achieve

significant improvements over state-of-the-art baselines.

The remainder of this paper is structured as follows. Section

II introduces background and related works on the fault

localization and graph neural network, followed by Section III

that presents our approach in detail. Section IV describes our

experimental setup and our findings. Section V presents threats

to validity of our approach. Finally, Section VI concludes and

presents future work.

II. BACKGROUND & RELATED WORK

A. Fault Localization

Problem formulation In this work, we formulate the fault-

localization in student programs as follows:

• Input: A student program and a set of failing and passing

test cases.

• Output: Suspiciousness score indicating the likelihood of

a statement being faulty.

To address this problem, we build a deep neural network

model to classify whether each node in the AST of the

student program source code is faulty. We take the output

probability of this model to calculate suspiciousness score

of each statement in the aforementioned program. Note that,

152

different from repair-based feedback generation for student

program [35] our problem formulation does not require the

existence of reference programs i.e., a correct implementation

provided by teachers/tutors.

Spectrum-based Fault Localization Spectrum-based fault

localization (SBFL) [3], [18], [19], [22], [24], [27], [40],

one of the most popular FL techniques, which considers

program entities (e.g., statements, methods, classes) executed

by test cases. These techniques take a buggy program and

coverage information of all tests as the input and return a

ranked list of program entities according to their descending

order of suspicious scores. These scores can be calculated

by specific formulae, which mainly rely on: (1) the set of

all failed/passed tests, i.e., Tf/Tp, (2) the set of failed/passed

tests executing code element e, i.e., Tf (e)/Tp(e), and (3)

the set of failed/passed tests that do not execute code ele-

ment e, i.e., Tf (ē)/Tp(ē). For example, Ochiai formula can

computes the suspiciousness score of the program entity e

as Susp(e) =
|Tf (e)|√

|Tf |×(|Tf (e)|+|Tp(e)|)
. While SBFL has been

widely adopted, recent studies [4], [9]–[11] proposed to apply

SBFL for providing feedback about the root cause of failure in

student programs. Edmison et al. [11] have demonstrated that

this feedback help students find it easier to make improvements

on their code, as well as spending less time overall achieving

the maximum score on the instructor assessments. While these

techniques have shown their usefulness in providing feedback

for students, their effectiveness still needs to be further im-

proved to localize bugs more accurately. Compared to their

approaches, FFL supplements syntactic patterns learned from

historical bugs using a novel graph-based learning technique

to improve effectiveness in localizing bugs. Our experiments

demonstrate that FFL outperforms the well-known SBFL

techniques (i.e., Tarantula [18], Ochiai [3] and DStar [38])

by a significant margin (see details in section IV-C).

Learning-based Fault Localization. While Machine/Deep

learning has recently emerged as a powerful framework in

solving real-world problems, it can be adopted to improve

the effectiveness of fault localization for student programs as

pioneered by NBL [16]. The basic idea of NBL is to learn the

potential faulty locations via frequent buggy patterns from his-

torical bugs. Toward this, NBL first represents a program in the

form of Abstract Syntax Tree; then, it converts the AST into

an adjacency list-like representation via performing breadth-

first traversal. Finally, NBL utilizes a Convolutional Neural

Network (CNN), and neural prediction attribution [32] to

predict bug locations. Compared to NBL, our approach designs

graph-based representations, allowing FFL to easily include

both program syntax and semantic information (i.e., code

coverage). Furthermore, we also proposed to use Graph Neural

Network (GNN), which demonstrated its superior effectiveness

on rich-structured data like source code of programs [8], [13],

[15], [41]. Less relevant to our work in this paper are recent

research efforts in learning-based fault localization for real-

world programs [5], [20], [21], [23], [31]. The current state-of-

the-arts among these works, however, [21], [23] only focus on

Fig. 1: GNN message passing illustration for two nodes. Each

node The rounded rectangular nodes represent test cases, and

the ellipsis node represents AST nodes. The target node of

message passing process (highlighted in yellow) takes into

account its neighbor information as well as the edge type for

updating it own hidden features.

method-level fault localization and ignore statement-level fault

localization. This makes it difficult to apply these techniques

to student programs, which require a finer-grained localization

at statement level due to their small size.

B. Graph Neural Network

Graph Neural Networks (GNNs) is family of a widely-used

deep learning techniques for processing data represented by

graph-structured data such as knowledge graphs [34], social

networks [42] and images recognition [37]. The basic intuition

of GNNs is that each node in a graph G = (V,E) can be

characterized in terms of: (i) its own features, (ii) the relations

it has with its neighboring nodes, and (iii) the features of its

neighbors. Toward this, GNNs learn representations of nodes

via the message passing process [13], in which each node

features are updated via a message that gathers information

from its own features and the neighbors’ features. The message

passing operation works with all nodes in parallel, updating

each node feature of the graph as a result. By stacking T
consecutive message passing process, a T -layered GNNs is

obtained, where each layer enriches graph node representations

while allowing aggregation of features from an extra neighbor

hop.

Formally, suppose we have a graph G = (V,E) where V
is the set of nodes, and E is the set of edges. Each node

in G retains a node feature x, and each edge is assigned an

edge feature e. More specifically, at layer t, each existing node

i with assigned feature x
(t)
i will be updated to new feature

x
(t+1)
i as follows:

m
(t+1)
i =

∑
j∈N (i)

fmess(x
(t)
i ,x

(t)
j , eij) (1)

x
(t+1)
i = fupd

(
x
(t)
i ,mi

)
(2)

where fmess and fupd is the message function and update

function for t-th layer and N (i) is node i’s set of neighbor.

The message passing mechanism is applied to the GNN

of FFL in order to aggregate information from both syntax

and coverage neighbor nodes, 1 hop at a time for each node

153

Fig. 2: The overview framework of FFL

in parallel as shown in Figure 1. At each message passing

operations, every node takes into account the type of edge as

well as information of neighboring nodes to update its own

hidden representation.

III. OUR APPROACH

In this section, we introduce a deep learning model over

syntactic and semantic features for fault localization in student

programs. Toward this goal, we describe a graph-based rep-

resentation comprising of both program syntax (i.e., Abstract

Syntax Tree) and semantic features (i.e., coverage informa-

tion) with a tailored graph neural network (GNN) to identify

buggy locations based on this representation. The key idea

is that by leveraging the graph-based representation, we can

treat fault localization problems as node classification on a

graph, in which we predict whether each node in a graph is

erroneous. Furthermore, while aiming for statement-level fault

localization is a straightforward option, we hypothesize that a

node-level feedback signal would boost model performance.

Thus, we design a training objective based on node-level AST

differencing as the label for graph node classification.

A. Syntactic and Semantic Program Representation

GNN is widely known for its effectiveness in dealing with

structured data. However, in order to leverage the power of

GNN, designing an expressive representation of the input data

is crucial.

To achieve this, we propose to use both syntax and semantic

information to build a graph-based representation of input

programs that empowers GNN to learn effectively.

Fig. 3: Syntax-Coverage graph: Program syntactic is repre-

sented by AST while the semantic is represented via coverage

information

Finally, we obtain a representation that combines both

syntactic and semantic information, namely syntax-coverage
graph. We lay out the details of our syntax-coverage graph

construction below.

1) Syntactic Representation via Abstract Syntax Tree: In

the syntax-coverage graph, we incorporate program syntax by

leveraging AST as a subgraph in our representation. In detail,

154

given an abstract syntax tree in the form of a graph Gast =
(Vast, East), where each node v ∈ V represents a node in the

abstract syntax tree, a directed edge (vi, vj) ∈ East exists for

every parent-child in the AST, we incorporate every node in

the abstract syntax tree as a part of our syntax-coverage graph

(i.e. Vast ⊆ VH and East ⊆ EH). As an illustration, AST

nodes are represented as ellipse-shaped nodes in Figure 3.
2) Semantic Representation via coverage information: As

another part of the syntax-semantic representation, we include

semantic features via test coverage information. Given a test

suite T = {t1, t2, t3, . . . tNT
} where ti for i ∈ 1..NT is

a test case, we represent each test case as a node in the

syntax-coverage graph. In order to enrich the syntax-coverage

representation, we obtain the outcome for each of these test

cases by running the test suite and embed the outcome of into

their corresponding edges between their test nodes and the

covered AST nodes: For the example in Figure 3), since test

t0’s outcome is passed, its connections towards the covered

AST nodes are passing edges (dotted edges), for the failed test

t1, the edges will be of failing type (dashed edges in Figure 3).

This aids the GNN model in distinguishing test case types (i.e.

passed or failed) and aggregating this information towards its

covered AST node. Subsequently, this representation allows

FFL learning to make use of both faulty syntax patterns

and syntax-coverage patterns that frequently presents in the

dataset.

B. Proposed Model

An overview of FFL’s architecture is shown in Figure 2.

FFL works in two phases. In the training phase, it learns a

deep learning model to determine whether each AST node in

the syntax-coverage graph is faulty. The training data consists

of a set of historical bugs, consisting of a buggy program, a set

of tests (failing and passing), and ground truth bug locations.

The training phase of FFL consists of two main steps:

• Input Preparation. (Section III-B1) FFL first uses AST

parser and coverage analysis tool to produce AST tree

and coverage information of program. Then, it uses a

graph builder to construct syntax-coverage graph of input

program.

• Node classification via GNN. (Section III-B2 and III-B3)

FFL takes the syntax-coverage graphs and the ground

truth locations to train a graph neural networks that

determines whether a syntax-coverage graph’s AST node

is faulty. This model is the overall output of the training

phase that is passed to the deployment phase.

In the deployment phase (Section III-B4), FFL takes as

input a set of test cases (including both failing and passing

tests) and a buggy program, and constructs syntax-coverage

graphs through input preparation. After that, FFL uses the

pre-trained model to produce a suspiciousness score for each

node of syntax-coverage graphs. Then, FFL computes the

suspiciousness score of a statement by aggregating the score of

each node that belongs to the statement. Finally, FFL produces

a ranked list of statements that are likely responsible for the

failing test cases.

1) Input Preparation: Given a buggy program and a set

of tests (passing and failing), FFL constructs syntax-coverage

graph G as follows. We first parse the buggy program by

pycparser 2 to obtain AST representations Gast for the

program. Simultaneously, we run the buggy program over the

given tests and perform coverage analysis by using gcov 3 to

obtain coverage information.

Note that, gcov only provides coverage information at

statement level. Hence, we associate the line-level coverage

information obtained by gcov to the AST nodes by connecting

each node in a statement to test cases that cover the statement.

Then, FFL connects Gast of each program into one graph

by including test nodes and coverage edges according to

coverage information. Finally, we annotate each node and

edge with its attributes in the graph. As mentioned in Section

III-A, we annotate nodes and edges of AST following its

type generated by pycparser. Meanwhile, test nodes and

coverage edges types are determined based on test outcomes.

More specifically, the edge will be of passing type if the test

outcome is passed; otherwise, the edge will be of failing type.

2) Graph Neural Network Architechture: Given heteroge-

neous syntax-coverage graph GH = (VH , EH) where VH =
Vast∪Vtest and EH = East∪Ecov . We proposed a GNN that

takes input as GH and provides a prediction label for each

node v ∈ Vast. As input representation of GNN, we use an

embedding layer to retrieve numerical feature representation

of each node and each edge. This input is then fed through

several message passing layers, with each layer updating each

node feature. We take each node’s representation output of

the last layer and calculate node label prediction. Finally, we

aggregate the node-level predictions to retrieve statement-level

suspicious scores from them.

Embedding layer. Each node in the syntax-coverage graph

should be assigned with a corresponding node type t ∈
Tnodes where Tnodes is the set of all node labels (e.g.

FuncCall, If , T est etc.), which we leverage to obtain the

numerical feature of each node in the input graph. In de-

tail, each node type t is encoded using an one-hot vector

xt ∈ {0, 1}|Tnodes|, where each dimension in the vector is set

to 1 if the node is of corresponding type. We stack these node

features to obtain the feature matrix X0
H ∈ {0, 1}|VH |×|Tnodes|.

Finally, we apply a linear transformation to X0
H to obtain

hidden representation H(0) ∈ R
F (0)

where F (0) is a chosen

hyper-parameter for embedding. Each row of h
(0)
i = H

(0)
i,:

corresponds to a node’s embedding.

Message-passing layer. Given node embedding, we leverage

graph input structure to update hidden node features through

layer via widely-used message passing mechanism [13]. The

specifically chosen message passing mechanism has to be

flexible towards multiple types of edges. For this task, we

choose R-GCN [30] which has been known for its capability

in dealing with heterogeneous graph, its form is shown below:

2https://github.com/eliben/pycparser
3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

155

h
(l+1)
i = σ

⎛
⎝ ∑

r∈Tedges

∑

j∈N te
i

W(l)
r h

(l)
j +W

(l)
0 h

(l)
i + b(l)

⎞
⎠

(3)

Where l is the layer index, σ is ReLU activation function

[26], W
(l)
r ,W

(l)
0 ∈ R

F (l)

,b(l) is layer l’s learnable parameter,

R
F (l)

is a hyper parameter of choice and N r
i is 1−hop

neighbor having relation of type r with the node of target.

Intuitively, each node feature is updated in parallel.

After passing through L GNN message passing layers [13],

we obtain L-th hidden feature matrix of each node: H(L) ∈
R

F (L)

Output layer. Each of node’s classes probabilities are obtained

by applying a linear transformation followed by class-wise

softmax:

O = softmax
(
WoH

(L) + bo

)
∈ [0, 1]|VH |×C (4)

Where Wo and bo are learnable parameters and C is the

number of classes. Each row oi = O[i, :] ∈ R
C represent

each node’s probability of belong to each class. In our case

C is set to 3, with classes 0, 1, 2 correspond to unmodified,
modified, and inserted respectively.

3) Training objective: To prepare labeling for training, we

make use of Gumtree fine-grained AST differencing algorithm

[12]. Taking as input the source code of two versions, one

buggy and one fixed source code, Gumtree output mapping

between AST nodes of the source code to a fixed version.

We determine the unmodified, modified, inserted nodes via the

following procedure:

• Modified nodes are either removed or changed in con-

tent: In the former case, we search nodes having no

correspondence from the buggy to fixed version whereas

to identify the latter, we find nodes having its content

changed between the buggy and fixed version.

• Inserted nodes are nodes that have no correspondence

from the fixed version to the buggy version.

We perform automated annotation on the buggy source code

version based on the aforementioned procedure. Inserted node

is tricky to annotate due to its lack of appearance in the under-

annotation buggy source AST; for this, we further use these

annotations:

• For token/expression-level modification, we would take

the parent that has not been modified in the buggy version

and label the parent node as insertion.

• For statement-level insertion, we take the previous state-

ment for annotation of modification the common parent

to be annotated as inserted
With this, we obtain fine-grained annotation for training and

evaluation (see Figure 4 for an illustration).

Since our final objective is statement-level suspicious score,

a straightforward approach might be performing classification

on statement nodes: where we classify whether each statement

contains modified or inserted element. However, since we wish

to learn fine-grained AST transformation, we instead adopt

node-level classification to predict which of the aforemen-

tioned classes each node belong, then aggregate these detailed

prediction to obtain statement-level prediction. We show the

effectiveness of node-level classification in comparison with

statement-level classification in Section IV-C.
In order to classify each node to one of the aforementioned

classes, cross entropy objective is a popular objective function,

which we leverage to learn node-level classification on each

graph:

Lθ(O,L) = −
∑
c∈C

i∈1..|VH |

Li,c log oi,c (5)

Where L ∈ 0, 1|VH |×C is label annotation obtained from

aforementioned annotation process for each node and oi,c is

the probability of node i belonging to class c. For our main

approach, class c can be either unmodified, modified or inserted
and i indicate each node in AST Tree. For statement-level ver-

sion used for comparison in Section IV-B, the class c is either

unmodified or modified and i indicate each statement node

in the AST tree. As mentioned, since node-level prediction

is different from our final objective of statement-level fault

localization, we introduce the process of obtaining statement-

level fault localization from node-level prediction below.
4) Applications: After the training phase, users can lever-

age the trained FFL to determine statements that are likely

to be responsible for the failure of their programs. Given a

student program that is failing in the grading system (i.e. it

fails at least one test case), FFL first constructs a syntax-

coverage graph via input preparation and combines the trained

GNN model’s node level output wih a statement-level Ranking
Model as follows to provide statement-level suspicious score:

• Node suspiciousness. In this step, FFL uses the trained

GNN model from training phase to produce a suspicious-

ness score scorei for a node i of the syntax-coverage

graph as follows:

scorei = 1− oi,0 (6)

Here, oi,0 represents the probability that node i should

be unmodified.

• Statement Prediction Aggregator. Since our target is

statement-level prediction, as our current GNN prediction

targeted AST nodes in general (i.e. expression/token are

also included), we introduce our method to convert from

the AST-node prediction to the corresponding statement

suspiciousness score. In detail, the suspiciousness score

of a statement is calculated by taking the maximum of

all nodes in its correspoding subtree S in AST. More

formally, given a statement s with correspoding subtree S
in AST, we computed its suspiciousness score as follows:

Susp(s) = max
i∈S

{scorei} (7)

Where scorei is the node’s suspicious score calculated

in Equation 6.

Finally, we use the scores from Statement Aggregator to rank

statements’ suspiciousness.

156

(a) Buggy code
(b) Corresponding AST of buggy version

(c) Fixed code
(d) Corresponding AST of fixed version

Fig. 4: Illustration example for fine-grained annotation.

IV. EMPIRICAL EVALUATIONS

A. Experimental Methodology

1) Dataset: To evaluate the effectiveness of fault localiza-

tion techniques in the student program, we use two bench-

marks introduced in previous works [16], [33], which contain

student-written programs for programming assignments from

real-world tutoring systems, Prutor [7], and Codeforces [25].

The type of test provided in both 2 datasets is system-

level testing, the tests are presented in the form of input-

output examples. In order to construct the dataset, we leverage

Gumtree [12] to capture the changes between the AST tree of

buggy and fixed programs. Note that, since Prutor does not

originally contain the buggy-fixed pairs as Codeflaws [33],

we construct these pairs using the implementation4 provided

by [16]. The details of dataset distribution are shown in Table

I.

TABLE I: The statistics of datasets.“# Programs” represents

the number of buggy programs in each datasets. “# KLOC”

and “# Test” correspond to average size of the program and

number of test cases, respectively.

Dataset #Programs #KLOC #Test
Prutor 6,171 25 8
Codeflaws 3,902 36 43

Prutor was collected from an introductory programming

course at the Indian Institute of Technology, Kanpur, India

using a programming tutoring system called Prutor [7]. The

dataset contains 6,171 buggy programs across these 29 algo-

rithmic implementation tasks with a total of 231 tests. Each

4https://bitbucket.org/iiscseal/nbl

program in Prutor datasets contains about 25 lines of code on

average.

Codeflaws was extracted from submissions in Codeforces

[25], a well-known programming contest website. The dataset

contains 3,902 buggy programs across these 1,284 algorithmic

implementation tasks with 43 tests on average. Each program

in Codeflaws datasets contains about 36 lines of code on

average.

2) Evaluation Metrics: In this paper, we use top-n which

counts the number of bugs successfully localized within top-n
position of the resultant ranked list as our evaluation metric,

which is also commonly used in prior works [5], [16], [20],

[21] following findings of Parnin and Orso [29] that program-

mers will only inspect the first few positions in a ranked list

of potentially buggy statements. Followings prior studies [16],

[21], we report top-1, top-3, top-5 and top-10. Note that if two

statements share the same suspicious score, we break the tie.

Higher is better for this metric.

3) Experimental Settings: We implement the proposed

model by DGL [36] library and Python programming lan-

guage. The model is trained and evaluated on an NVIDIA

GTX 1080 Ti GPU with 11GB of graphics memory. We

train the model from scratch using Adam optimizer with the

learning rate of 0.0001. We randomly selected 60% samples

for the Codeflaws dataset as the training set, 20% samples as

the evaluation set, and 20% for validation. For Prutor dataset,

we follow settings of NBL [16], which use 2,136 samples

as evaluation set and 4,035 samples for the training set and

validation.

157

B. Research Question

RQ1: How effective is FFL? In this research question,

we evaluate how effectively FFL successfully localize bugs

for 2,136 program in Prutor datasets and 780 programs in

Codeflaws datasets, computing top-n with n ∈ {1, 3, 5, 10}.
RQ2. How does FFL compare to previous approaches?
In this research question, we compare FFL to four previous

techniques, including:

• NBL [16]: the current state-of-the-art of bug localization

on student program.

• Ochiai [3], Tarantula [18] and DStar [38]: well-known

bug localization techniques for industrial-scale programs.

RQ3: How efficient is FFL? In this research question, we

measure the average running time needed for FFL to output a

ranked list of statements for a given bug.

RQ4: How effective is our approach using fine-grained
representation and loss function at AST node level? In this

research question, we study the effect of representation and

loss function on the overall performance of our approach. In

particular, we evaluate the use of statement-level and node-

level representions, as well as, statement-level and node-level

loss functions. Note that, by default, our approach uses node-

level representation and loss function. For all experiments in

this study, we use the same model described in Section III-B2,

which consists of a single linear encoding layer followed by

5 R-GCN layers.

C. Findings

1) RQ1: Overall Effectiveness: As shown in Table II, FFL

is able to localize bug for more than 80%, concerning the top-

10 suspicious lines per program, for both evaluation datasets:

Codeflaws and Prutors. In detail, FFL successfully localizes

83.1%, 67.6%, 46.2% and 31% out of 780 bugs of Codeflaws

datasets in terms of average top-10, top-4, top-3 and top-
1 positions, respectively; whereas the results for Prutor are

84.6%, 64.7%, 51.6%, 29.6% respectively.

TABLE II: Overall effectiveness of FFL on Codeflaws and

Prutor datasets in term of top− n(%).

Dataset top-10 top-5 top-3 top-1
Codeflaws 83.1 67.6 46.2 31
Prutor 84.6 64.7 51.6 29.6

We emphasize that there exists significant differences in

distribution between the two datasets: In particular, Prutor con-

tains about 6,200 student programs for 29 programming tasks,

which is equivalent to 213.8 programs per task. Meanwhile,

Codeflaws only provide 2.7 programs per task (3,902 student

programs for 1,428 programming tasks), nearly 50 times lower

than Prutor. Moreover, Prutor only provide 8 tests per program

while each program of Codeflaws contains 43 tests on average.

Despite of these differences, we note that FFL’s performance

remains stable while consistently outperforms the varied per-

formance of the baselines as proven in RQ2.

Answers to RQ1: FFL has promising performance

in bug localization on student programs. FFL is able

to localize at least one bug for 84.6% on Prutor and

83.1% on Codeflaws when considering the top-10

suspicious statements.

2) RQ2: Comparison with Baselines: Figure 5a and 5b

show the effectiveness of FFL and four baselines on the

two evaluation datasets: Codeflaws and Prutors. Among the

techniques, FFL outperforms baselines in all metrics.

FFL vs. Learning-based Fault Localization. FFL outper-

forms NBL by 38%, 22%, 17% and 26% on Prutor dataset

and 24%, 71%, 272% and 780% on Codeflaws dataset, in

terms of average top-10, top-5, top-3, top-1. It can be seen that

FFL shows an improvement of at least 20% on most metrics,

especially our approach achieves 3 and 8 times higher top

than NBL on Codeflaws dataset concerning top-3 and top-1
suspicious lines, respectively. Furthermore, the performance

of NBL drops remarkably when switching from Prutor to

Codeflaws. The reason behind this slide is the difference

between two datasets (as discussed in RQ1). It shows that

NBL is less effective on datasets where programs are diverse

and almost different. Meanwhile, the effectiveness of FFL is

almost stationary, showing that FFL is able to deal with various

types of datasets due to the ability of capturing frequent buggy

patterns.

FFL vs. Spectrum-based Fault Localization. The evaluation

result shows that FFL perform stably in both datasets while

spectrum-based techniques are only effective in Prutor dataset

and achieve much more lower result in Codeflaws. Hence,

although FFL only perform better than spectrum-based tech-

niques by 8%, 15%, 17%, and 10% on Prutor dataset, our

approach remarkably outperforms these techniques by 22%,

70%, 104% and 197% on Codeflaws dataset, in terms of top-
10, top-5, top-3, top-1, respectively.

Answers to RQ2: Overall, FFL outperform ev-

ery baseline approach, including the state-of-the-art

learning-based approach for student programs, NBL.

As compared to the best baseline, our approach

achieves an improvement of 197%, 104%, 70%, 22%

on Codeflaws dataset and 10%, 17%, 15% and 8% on

Prutor dataset, in term of top-1, top-3, top-5, top-10.

3) RQ3: Efficiency: The average time to output a ranked list

of statements for a given program from Prutor is 0.009 seconds

with a standard deviation of 0.001 seconds. Meanwhile, these

numbers for Codeflaws are 0.0014 and 0.012, respectively. In

particular, FFL required only 0.009 seconds for localizing bugs

in the best case in both datasets. In the worst case, FFL also

consumes less than 0.3 second (0.253 seconds). In conclusion,

it can be seen that the inference time of FFL is reasonable in

practice.
Table III shows the average inference time for FFL on two

evaluation datasets: Prutor and Codeflaws.

158

(a) Results on Codeflaws (b) Results on Prutor

Fig. 5: Comparison of FFL with four baseline techniques on the 2 datasets, in term of top− n(%)

TABLE III: Inference time of FFL (in seconds)

Dataset Mean Std Max Min
Prutor 0.009 0.001 0.010 0.009
Codeflaws 0.014 0.012 0.253 0.009

Answers to RQ3: FFL has reasonable inference time

in practice with 0.009 and 0.014 seconds on average

for localizing bugs from Prutor and Codeflaws, respec-

tively. In the worst cases, FFL also consumes less than

0.3 second for prediction.

4) RQ4: How effective is FFL using fine-grained represen-
tation and loss function at AST node level?: As shown in

Table IV, the model trained with node-level training objective

outperforms the one trained with statement-level objective on

evaluation metrics in both evaluation datasets.

It can be seen that, node-level training objective shows

improvement of 32%, 8%, 20%, 13% on Codeflaws dataset

in terms of top-1, top-3, top-4, top-10. On Prutor dataset,

however, statement-level training objective nearly approximate

node-level training objective in top-5, top-1 and even outper-

formed in top-3 for node-level AST and top-10 for statement-

level AST respectively. Additionally, statement-level AST

performs much better in Prutor while exhibiting a decrease

in recall on Codeflaws. The rationale behind this may be

attributed to the ratio of sub-statement-level insertion/modi-

fication between the two datasets. On Codeflaws, we find the

the number of sub-statement-level insertion and modification is

3, 692 over 3, 902 buggy-fixed program pairs (about 94 percent

of fixing is sub-statement level) while this ratio is slightly

decreased to 4, 863 over 6, 171 buggy-fixed program pairs of

Prutor (only 78 percent of fixing is sub-statement level).

Overall, experiment results demonstrate that node-level rep-

resentation and loss function help FFL better capture finer

granularity of syntactic transformations and improve the per-

formance in general.

Answers to RQ4: Representation and loss function at

node level is empirically better than any combinations

of those at statement level and contributed to the sig-

nificantly better results of our approach in comparison

with the best baselines.

V. DISCUSSION

A. FFL performance on cases where almost all test fails

Since FFL does not require a correct implementation at

runtime and instead uses pass/fail and coverage information

in conjunction with the source code, we believe it would give

further insight to FFL’s applicability to evaluate the method’s

performance in the cases of which the program fails almost

completely (i.e., where most of the test fails). Towards this

assessment, we first collect the programs matching the criteria

(i.e., the ratio of failing tests is over 90%) in the Codeflaws

and Prutor dataset. The result is that there are no programs

provided Codeflaws [33] dataset that meets this specification

(i.e., most of the program would fail only 1-2 test cases over

the total of 30-40 test cases) and a total of 36 programs

matches the criteria in the Prutor [7]. The performance of the

trained FFL on these program are top-1: 8.82%, top-3: 26.4%,

top-5: 50% and top-10: 88.2% respectively. This hint that FFL

might experience a performance drop in cases lacking positive

coverage information associated with the source code, the

comparable top-10 recall might be due to the relatively smaller

number of statements in these provided programs (21.805 lines

of code on average) in comparison with the average 25 lines

on the full dataset [7].

159

TABLE IV: Overall performance of FFL with statement-level and node-level training objective. Baseline shows best results

of our baseline. Statement and Node shows the results of statement-level and node-level training objective, respectively. The

bold numbers denote the best result for each metric.

Dataset Metrics Baseline Statement Loss Statement Loss Node Loss
+ Node-level AST + Statement-level AST + Node-level AST

Codeflaws

top-1 10.4 (Ochiai) 23.5 22.4 31
top-3 22.6 (Dstar) 42.7 41.6 46.2
top-5 39.6 (Ochiai) 56.4 53.2 67.6
top-10 68.2 (Ochiai) 73.5 73.1 83.1

Prutor

top-1 27 (Dstar) 28.0 27.3 29.6
top-3 44.1 (NBL) 52.5 50.9 51.6
top-5 58.8 (Dstar) 65.4 64.7 67.6
top-10 78.6 (Dstar) 84.6 86.7 84.6

B. Threats to validity

Threats to internal validity refer to possible errors in our

implementation and experiments. To mitigate this risk, we

have carefully checked our implementation to the best of our

abilities. Moreover, we also use externally created datasets:

Codeflaws and Prutors. Since these datasets are created by

others, it reduces experimenter bias.

Threats to external validity correspond to the generalizability

of our findings. We have evaluated our approach on 2,916 real-

world student program from 2 well-known programming tu-

toring system: Codeflaws and Prutor. These evaluation dataset

only includes C programs. In the future, we plan to further

mitigate this threat by evaluating FFL on more bugs from other

programming systems in various programming languages.

Threats to construct validity relate to the suitability of our

evaluation metrics. To mitigate this threat, we make use of top-
n (n ∈ {1, 3, 5, 10}), which is widely used in prior works in the

field of fault localization [5], [16], [20], [21], [23] following

findings by Parnin and Orso [29] which recommend the use of

absolute ranks rather than percentages of program inspected.

VI. CONCLUSION AND FUTURE WORK

Providing feedback on student-written programs is an in-

tegral part of the programming tutoring system for program-

ming. However, this task is tedious, error-prone, and time-

consuming and requires a lot of effort from the teaching

personnel [14]. Recent studies [11] have shown that fault

localization is useful in providing feedback for students.

Unfortunately, existing fault localization techniques for student

programs are limited because they usually consider either

the program’s syntax or semantics alone. This motivates the

new design of fault localization techniques that can utilize

both syntactic and semantic information of programs. In this

paper, we introduce FFL (Fine-grained Fault Localization),

a novel technique using syntactic and semantic reasoning

for localizing bugs in student program. To realize FFL, we

first propose a novel program representation (that combines

AST and program spectra), followed by a graph-based deep

learning model and trained using a novel training objective.

Our evaluation on 2,916 real-world student programs from

two well-known programming tutoring systems has shown that

FFL successfully localizes at least one bug for more than 83%

programs when reporting the top-10 suspicious lines. FFL also

remarkably outperforms the best baselines 197%, 144%, 70%,

22% on Codeflaws dataset and 26%, 17%, 22% and 38%

on Prutor dataset, in term of top-1, top-3, top-5, top-10. The

results hint that FFL’s better performance benefited from the

combination of the graph-based representation, i.e., syntax-

coverage graph, in conjunction with the graph neural network

and finally, fine-grained training objective based on node-level

AST differencing while FFL execution time is empirically

evaluated to be within a reasonable performance, hinting its

practicality. Overall, the evaluations indicate that our approach

may provide useful feedback for students about the root cause

of the failures that they encounter.

In future work, we plan to improve FFL by extending the

training datasets, incorporating student programsfrom other

programming tutoring systems such as Hackerrank [1] or

LeetCode [2] in addition to Prutor [7] and Codeforces [25].

Moreover, even though our trained model has achieved decent

performance without the tuning of models’ hyper-parameters

(e.g., number of layers, hidden-dimensions, etc.), additional

effort in selections of the hyper-parameters or leveraging graph

neural networks oriented techniques [28], [43] may further im-

prove task performance, model robustness and explainability.

Additionally, we plan to extend FFL to localize bugs from

other programming languages and in challenging scenarios

such as the discussed case where the majority of test cases

fails. Finally, we plan to extend this work for automated

program repair. Specifically, it will be interesting to see if

our graph-based representation and deep learning model can

be adapted to the generative modeling of patches

Dataset and Tool Release. FFL’s dataset and implementation

are publicly available at https://github.com/FFL2022/FFL.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for helpful comments.

This material is based in part upon work supported by the Aus-

tralian Research Council’s Discovery Early Career Researcher

Award under project number DE220101057.

REFERENCES

[1] “Hackerrank,” http://hackerrank.com/, accessed: 2021-09-28.

160

[2] “Leetcode: The world’s leading online programming learning platform,”
http://leetcode.com/, accessed: 2021-09-28.

[3] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006, pp. 39–46.

[4] E. Araujo, M. Gaudencio, D. Serey, and J. Figueiredo, “Applying
spectrum-based fault localization on novice’s programs,” Proceedings
- Frontiers in Education Conference, FIE, vol. 2016-Novem, 2016.

[5] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 177–188.

[6] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2012, pp. 378–381.

[7] R. Das, U. Z. Ahmed, A. Karkare, and S. Gulwani, “Prutor: A system
for tutoring cs1 and collecting student programs for analysis,” arXiv
preprint arXiv:1608.03828, 2016.

[8] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations (ICLR), 2020.

[9] B. Edmison and S. H. Edwards, “Applying spectrum-based fault local-
ization to generate debugging suggestions for student programmers,” in
2015 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW). IEEE, 2015, pp. 93–99.

[10] ——, “Experiences using heat maps to help students find their bugs:
Problems and solutions,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 2019, pp. 260–266.

[11] ——, “Turn up the heat!: Using heat maps to visualize suspicious
code to help students successfully complete programming problems
faster,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-
SEET). IEEE, 2020, pp. 34–44.

[12] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering, vol. 85, no. 1. New York, NY, USA: ACM, sep 2014, pp.
313–324. [Online]. Available: https://dl.acm.org/doi/10.1145/2642937.
2642982

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural Message Passing for Quantum Chemistry,” apr 2017. [Online].
Available: http://arxiv.org/abs/1704.01212

[14] S. Gulwani, I. Radiček, and F. Zuleger, “Automated clustering and pro-
gram repair for introductory programming assignments,” ACM SIGPLAN
Notices, vol. 53, no. 4, pp. 465–480, 2018.

[15] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[16] R. Gupta, A. Kanade, and S. K. Shevade, “Neural attribution for
semantic bug-localization in student programs,” in NeurIPS, 2019.

[17] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[18] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[19] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2017, pp.
114–125.

[20] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[21] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization with code
coverage representation learning,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 661–673.

[22] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” Acm Sigplan Notices, vol. 40, no. 6, pp. 15–26,
2005.

[23] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 664–676.

[24] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[25] M. Mizayanov, “Codeforces: The only programming contests web 2.0
platform,” http://codeforces.com/, accessed: 2021-09-28.

[26] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, ser. ICML’10.
Madison, WI, USA: Omnipress, 2010, p. 807–814.

[27] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[28] T.-D. Nguyen, T. Le-Cong, T. Le, Nguyen H., X. B. D, and Q. T.
Huynh, “Towards the analysis of graph neural network,” in ACM/IEEE
44nd International Conference on Software Engineering: New Ideas
and Emerging Results, ser. ICSE ’22. Association for Computing
Machinery, 2022.

[29] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis, 2011, pp. 199–209.

[30] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling Relational Data with Graph Convolutional
Networks,” 2017.

[31] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017, pp.
273–283.

[32] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International Conference on Machine Learning. PMLR,
2017, pp. 3319–3328.

[33] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 180–
182.

[34] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-Task Learning for Dense
Prediction Tasks: A Survey,” pp. 1–20, 2020. [Online]. Available:
http://arxiv.org/abs/2004.13379

[35] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-driven
feedback generation for introductory programming exercises,” ACM
SIGPLAN Notices, vol. 53, no. 4, pp. 481–495, 2018.

[36] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and
Z. Zhang, “Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks,” sep 2019. [Online]. Available:
http://arxiv.org/abs/1909.01315

[37] X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic em-
beddings and knowledge graphs,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 6857–6866.

[38] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013.

[39] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using dstar (d*),” in 2012 IEEE Sixth International Conference on
Software Security and Reliability. IEEE, 2012, pp. 21–30.

[40] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), vol. 1. IEEE, 2007,
pp. 449–456.

[41] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in International conference
on machine learning. PMLR, 2019, pp. 6861–6871.

[42] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

161

[43] X. Zhang and M. Zitnik, “GNNGuard: Defending Graph Neural Net-
works against Adversarial Attacks,” Advances in Neural Information
Processing Systems, vol. 2020-Decem, no. NeurIPS, jun 2020.

162

	FFL: fine grained fault localization for student programs via syntactic and semantic reasoning
	Citation
	Author

	FFL: Fine-grained Fault Localization for Student Programs via Syntactic and Semantic Reasoning

