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ABSTRACT

Improper management of software evolution, compounded
by imprecise, and changing requirements, along with the
“short time to market” requirement, commonly leads to a
lack of up-to-date specifications. This can result in software
that is characterized by bugs, anomalies and even security
threats. Software specification mining is a new technique
to address this concern by inferring specifications automat-
ically. In this paper, we propose a novel API specification
mining architecture called SMArTIC (Specification Mining
Architecture with Trace fIltering and Clustering) to improve
the accuracy, robustness and scalability of specification min-
ers. This architecture is constructed based on two hypothe-
ses: (1) Erroneous traces should be pruned from the in-
put traces to a miner, and (2) Clustering related traces
will localize inaccuracies and reduce over-generalizationin
learning. Correspondingly, SMArTIC comprises four com-
ponents: an erroneous-trace filtering block, a related-trace
clustering block, a learner, and a merger. We show through
experiments that the quality of specification mining can be
significantly improved using SMArTIC.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications;

1.2.5 [Artificial Intelligence]: Programming Languages
and Software— Temporal API Specification Mining

General Terms
Algorithms, Design, Reliability, Experimentation

Keywords

Clustering Traces, Filtering Errors, Specification Mining

1. INTRODUCTION

Improper management of software evolution commonly
leads to a lack of up-to-date specifications (cf. [8]). This sit-
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uation is further aggravated by imprecise, changing require-
ments, along with the “short time to market” requirement
[5]. Low coherence between specifications and implementa-
tions can result in software that are characterized by bugs,
anomalies and even security threats. There has been con-
tinual effort to develop techniques which aim to infer spec-
ifications automatically. In recent years, we have also seen
a surge within the software engineering research community
to adopt dynamic analysis, machine learning and statisti-
cal approaches to address these problems, especially in the
area of specification discovery [6, 12, 34, 1, 11, 39, 19, 3].
These methods are generally termed specification miners. In
[14], Fox illuminates the use of machine learning to bridge
the gap between high level abstractions expressing software
engineering problems and low level program behaviors. He
points out that some baseline models can be learned auto-
matically to aid in the characterization and monitoring of
systems.

Specification miners can be classified into two groups, de-
pending on how the mined specifications are represented:
automaton-based [1, 6, 39, 34, 3] and non-automaton based
[19, 11, 12, 33] specification miners.

The work by Ammons et al. is a pioneer in automaton-
based specification mining [1]. There, a machine-learning
approach is employed to discover program specifications by
analyzing program execution traces. Under the assumption
that the program being mined must “reveal strong hints
of correct protocols” during its execution, Ammons et al.
demonstrate that correct specifications can be obtained by
their technique. Specifically, their technique focuses on min-
ing of specifications which reflect temporal and data depen-
dency relations of a program through traces of its API-client
interaction. The specifications discovered model API-client
interaction protocols, which are expressed initially as a prob-
abilistic finite state automaton (PFSA). To reduce the effect
of errors in training traces, transitions with a low likelihood
of being traversed can later be pruned. After pruning, the
probabilities are dropped and an FSA is obtained.

In this paper, we leverage on the work performed by Am-
mons et al. in automaton-based specification mining, and
explore the art and science behind the construction of such
a miner. Specifically, we devise a novel architectural frame-
work that achieves specification mining through pipelining
of four functional components: Error-trace filtering, clus-
tering, learning, and automaton merging. We demonstrate
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mining result for two primary reasons:

1. Early identification and filtering of erroneous program



execution traces can improve the quality of specifica-
tion discovery.

2. Over-generalization which occurs at the learning stage
can be mitigated by localization of learning process to
groups of related program execution traces.

Contrary to other works done in automaton-based specifi-
cation mining, we choose probabilistic FSA (PFSA) instead
of (non-probabilistic) FSA as our learning target. PFSA
is more expressive than FSA since it provides details on
the probabilities of state transitions. This enables detection
of frequently-used interaction patterns (eg., “open (read)”
close” pattern in a resource-access protocol) or sub-protocols
within a specification, analogous to the idea of hotspots
found in program execution [18].

We conduct experiments to support our reasoning. Our
experiments aim at deriving the API interaction protocol
for a client of the Jakarta Commons Net open-source library
[28]. We adopt an objective measurement of the quality of
our mining architecture through introduction of accuracy,
robustness and scalability.

Accuracy refers to the extent of an inferred specification
being representative of the actual specification. Robustness
refers to its sensitivity to errors present in the input data.
Scalability determines a specification miner’s ability to infer
large specifications.

These measurements extend from the existing set of mea-
surements found in the literature; specifically, the measure-
ment of accuracy is supported by three kinds of metrics:
precision, recall and co-emission. Measurement of recall and
precision are suggested by Nimmer and Ernst [30]. They
have been used as a measurement of soundness and com-
pleteness of specification discovery. As our specification
miner manipulates specifications in PFSA format, it is nec-
essary to also measure if the mined PFSA generates the same
traces at similar frequencies, and thus places emphasis on
similar sub-protocols. This is commonly measured by a met-
ric known as co-emission [26].

The outline of the paper is as follows: In section 2, we
provide a brief introduction to issues pertaining to experi-
mentation on our specification miners. Section 3 lays down
the hypotheses which drive our construction of SMArTIC,
and discusses the detail components in SMArTIC. Section
4 describes our experiments on the Jakarta Commons Net
[28] open source library. Section 5 describes more com-
prehensive experiments and results using various simulated
models. We discuss related work in Section 6 and conclude
in Section 7.

2. PRELIMINARY

In order to assess the quality of SMArTIC, we need to
have an objective means of measuring an output automaton
against an expected automaton. To this ends, we devise
the following simulation model to facilitate experimenta-
tion with a variety of automata: We begin with a known
API-interaction specification of a software component. This
specification enables us to generate a set of simulated traces.
Each trace is simply a sequence of API method invocation
information. We set up a client to take in the simulated
traces, and issue the corresponding method calls to inter-
act with the component. The interactions are then recorded
as program execution traces. We next invoke our miner to

Figure 1: Sample Simulator Model

operate on this set of traces to produce an output specifi-
cation. Lastly, we compare the output specification against
the initial specification.

Our simulation model provides a controlled environment
for experiments (cf., [24]). Given a software component
under examination, we can alter the input API-interaction
specification and later compare it with the corresponding
output specification. This preliminary section provides a
summary of our work on a quality assurance framework for
automaton-based specification miners [9].

2.1 Specification Model

Input to our simulation is a specification model in the form
of PFSA, a sample of which is shown in Figure 1. Based on
this PFSA, we generate simulated traces. These simulated
traces are then used to instruct the client to interact with
the subject software, and the interactions are then recorded
as execution traces. We refer the reader to Section 4 for a
detailed description of this implementation.

Each node in the automaton represents a program state.
There are four types of nodes: start, end, normal and error
nodes. Each transition in the automaton represents a viable
API method call from that state. For every transition, a
probability will be attached to it. The probability attached
to a transition indicates how likely the associated method
call will be invoked from that source state. It is an invari-
ant of any PFSA under consideration that all transitions
emitting from a source, excluding error transitions (see the
following paragraph), must have their probabilities summed
up to 1.0.

The specification model can be “injected with error” by
including error nodes and error transitions. Error transi-
tions (drawn as dashed lines in Figure 1) model invalid API
method calls from the state represented by its source node.
This inclusion of error nodes and error transitions enable
generation of erroneous traces; it aids the evaluation of the
miner’s ability to learn in the presence of errors (i.e., ro-
bustness). The allocations of error nodes and transitions
will characterize the kind of errors allowed. Lastly, we do
not assign any probability to error transitions, as we do not
intend to micro-manage the generation of error traces.

Furthermore, large models (in terms of number of nodes
or transitions) can be inputted to test the scalability of a
miner. Hence, with injection of error and a variety of model
sizes different levels of quality assurance can be obtained.



2.2 Simulated-Trace Generation

In order to explore the effect of mining under different ini-
tial automata, we simulate the interaction with the software
from these automata.

An actual program trace can be mapped to a string over
an alphabet as shown by Ammons et al. through a “stan-
dardization” process [1]. Strings of symbols generated by
our specification model (aka., simulated traces) can be con-
sidered as an abstraction of actual program execution traces;
i.e. a symbol representing a particular method call. Based
on this abstraction, we generate simulated traces as strings
of symbols.

Simulated-trace generation will generate two types of out-
put - error, and normal traces. A trace is defined as a se-
quence of transition names that forms a path sourcing from
the start node and sinking at the end node of a PFSA. We
define an error trace as one that includes a transition sinking
at an error node.

For each trace generated from a PFSA, we can determine
its probability of being generated by multiplying together
the probability of its constituents. We write p(t) to denote
the probability of a trace t.

To generate traces, we perform a stratified random walk
guided by the probability of PFSA’s transitions [27]. This
ensures that highly probable traces (sentences) accepted by
the PFSA model will statistically be more likely to appear
in the multiset of generated traces. (We use the term “sen-
tence” and “trace” interchangeably.)

Traces will continue to be generated until all transitions
have been covered at least N times or M axz number of traces
have been generated. By adjusting the value N, we can
accommodate a slower learner that requires more than one
trace from a specification to infer the automata model. By
default we set N to 10 and Maz to 10000.

Our algorithm is akin to the “code and branch cover-
age” criterion used in generating program test cases [15,
31]. Given a PFSA M and a global percentage of error, our
algorithm generates a multiset of traces T possessing the
following property:

PROPERTY 1. For a sufficiently large T', there is a N > 0
such that all (non-error) transitions in the PFSA M occurs
at least N times in the traces of T.

This property ensures that all (non-error) transitions in
M have the opportunity to be used for trace generation.
The details of our trace generation algorithm can be found
in [9].

2.3 Precision, Recall and Co-emission

The terms precision and recall originated from the field
of information retrieval, where they are defined as “the pro-
portion of retrieved documents which are relevant” and “the
proportion of relevant documents retrieved’ respectively [37].

Analogously, traces can be considered as documents and
automata as a pool/population of documents. Let the orig-
inal automata be denoted by X and the inferred automata
by Y. Precision and recall can then be defined as the propor-
tion of traces in 'Y that is accepted by X and the proportion
of traces in X that is accepted by Y where X is the original
specification and Y is the inferred specification.

The total number of traces accepted by an automata can
possibly be infinite. Hence precision and recall can only be

statistically approximated; here, Property 1 ensures that the
set of traces generated are statistically sound.

In the context of PFSA, a trace might possibly be gen-
erated by both X and Y, but their probability (of how fre-
quently the trace will be generated) might differ greatly.
Co-emission is therefore used to address this probabilistic
concern.

Co-emission has been used in measuring similarity be-
tween two Hidden Markov Models. Lyngsg et al. pro-
pose several versions of similarity measurements [26]. One
such metric which is adopted here, denoted by PS, provides
an unbiased and normalized similarity measurement of two
models X and Y:

_ 24Pg p (X,Y)
PS(XY) = (PCE(Xv)g)E‘FPCE(Y,Y))
Pop(X,Y) = Zecrxny)(Px(s)Py(s)).

Here, Pcp(X,Y) denotes a co-emission probability, deter-
mining the probability that a sentence s is generated by
both X and Y independently. It measures how similar are
the probabilities assigned to traces accepted by both X and
Y. Px(s) and Py (s) denote the probability of generating
sentence s by X and by Y respectively.

3. SMAITIC STRUCTURE

SMArTIC aims to increase a miner’s precision, robust-
ness and scalability by employing several novel techniques
in specification mining. It leverages on the lessons learnt
and experience accumulated from the past work done in
this and related areas (eg., [1], [12], [22], etc.). The suc-
cess of SMArTIC hinges on the affirmation of the following
two hypotheses:

HYPOTHESIS 1. Mined specifications will be more accu-
rate when erroneous behavior is removed before learning than
when they are removed after learning.

HYPOTHESIS 2. Mined specifications will be more accu-
rate when they are obtained by merging the specifications
learned from clusters of related traces than when they are
obtained from learning the entire traces.

Hypothesis 1 is made from observing the system built
by Ammons et al. [1]. In their work, a coring method is
employed to remove erroneous transitions from the mined
automaton. As this is performed on the output automa-
ton, erroneous transitions are included during mining. Con-
sequently, the performance of learning may be degraded.
Moreover, pruning of transitions in an automaton may cause
damage to the automaton, such as breaking an automaton
into parts. This may then require substantial repairing of
the automaton, and negate the effect of learning.

We believe that pruning of erroneous transitions should
be done before learning. Consequently, we include a filtering
process before the learning process in SMArTIC, as we shall
describe in Section 3.1.

Hypothesis 2 is derived from the observation that the ex-
istence of unrelated traces may negate the effect of learning
via generalization; ie., they can lead to over-generalization.
Therefore, by clustering related traces and performing learn-
ing on each cluster, the effect of inaccuracies in learning can
be localized to within a cluster. We believe this will result in
a more accurate mined specification. Consequently, we in-
clude a clustering process in SMArTIC, as we shall describe
in Section 3.2.
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The overall structure of SMArTIC is as shown in Figure 2.
It comprises 4 major blocks, namely filtering, clustering,
learning and merging blocks. Each block is in turn com-
posed of several major elements. The filtering block filters
erroneous traces to address the robustness issue. The clus-
tering block divides traces into groups of “similar” traces
to address scalability issue. The learning block generates
specifications in the form of automata. The merging block
merges the automatons generated from each cluster into a
unified one.

3.1 Filtering Block

The filtering block aims to filter out erroneous traces based
on common behavior found in a multi-set of program traces.
To filter well, we need a representation of common behavior
which is intuitive enough to be used for filtering. Since a
trace is a temporal or sequential ordering of events, repre-
senting common behavior by “statistically significant” tem-
poral rules will be appropriate. Certainly, temporal rules
based on full set of temporal logics will be a good candidate,
but it is desirable to have a more light-weight solution.

Given a set of traces, we would like to generate, through
mining, rules of the form pre — post, where both pre and
post are sequences of alphabets occurring in traces. Seman-
tically, such a rule has the following temporal interpretation:
Given pre = a1 ...am and post = by ... by, the temporal in-
terpretation of pre — post is expressed in Linear Temporal
Logic (LTL) notation [17] as

G(XF(ay — ... — XF(am — XF(by A... AXF by))))

As an example, a rule a — bc asserts that at any trace point
when a occurs, b must eventually occur after a, and ¢ must
also eventually occur after b.

There are two commonly used measures of “statistical sig-
nificance” namely, support and confidence (c.f [16]). Sup-
port of a rule pre—post is the number of trace points ex-
hibiting the property pre — post. Confidence of the rule is
the ratio of the number of trace points exhibiting the prop-
erty pre — post to those exhibiting the property pre.

Rules having high confidence and reasonable support can
be considered as “statistical” invariants. They thus charac-
terize some general behaviors of a subgroup of traces. To
detect outliers, only rules with high but less than 100% con-
fidence will be useful. = We call rules of pre—post format
and exhibiting the above properties outlier detection rules.

Mined outlier detection rules will be used to filter out
likely errors or unlikely behaviors. Any trace t, of the fol-

Sequential Pattern
Miner

Traces

Trace Pre-processor

Frequent
Sequential

Pattern
Temporal

Rule Generator
Rules

Filtered l
Traces ST o of ™
4 Specifications :

(Optional)

Filter
R

Figure 3: Filtering Block Structure

lowing format a1 ... a; . .. aenq Will be filtered out (as an out-
lier) by a rule-set RS iff the following holds:

3G (pre — post) € RS.
(Jai,a;. (1 <i<j)A-(a;...aj_1 satisfies pre)
A(ai . ..a; satisfies pre)
A=(@j41 - . - Gena satisfies post))

Implementation-wise, the structure of the filtering block
is as shown in Figure 3. Outlier detection rules can be ex-
tracted efficiently by adding pre and post processing steps
to a closed sequential pattern miner, BIDE [38]. The end
result of the filtering block is a multi-set of filtered traces.
The algorithmic details can be found in our technical report
[25].

3.2 Clustering Block

Input traces might be “mixed up” from several unrelated
scenarios, e.g. a group of related traces that represent a
usage pattern of an API/component. Grouping unrelated
traces together for a learner to learn might multiply the ef-
fect of inaccuracies in learning a scenario. Such inaccuracies
can be further permeated into other scenarios through gen-
eralization.

The clustering block converts a set of traces into groups of
related traces. Clustering is meant to localize inaccuracies
in learning one sub-specification and prevent the inaccura-
cies from being permeated to other sub-specifications. Fur-
thermore, by grouping related traces together, better gen-
eralization (aka., less over-generalization) can be achieved
when learning from each cluster.

Two major issues pertaining to clustering are: the choice
of clustering algorithm and an appropriate similarity met-
ric; ie., measurement of similarity between two traces. The
performance of the clustering algorithm is affected by appro-
priate similarity/distance metric. Different clustering algo-
rithms learn differently in terms of accuracy, efficiency and
the level of user interaction required. (c.f. [16]) The general
structure of the clustering block is as shown in Figure 4.
Clustering Algorithm We use a classical off-the-shelf clus-
tering algorithm for our purpose, namely the k-medoid al-
gorithm [21]." The k-medoid algorithm works by computing

! Another algorithm is K-means algorithm. It is not used
here since we would be required to define the average/mean
of a group of strings which might not be meaningful. Also, k-
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the distance between pairs of data items based on a similar-
ity metric; this corresponds to computing the distance be-
tween pairs of traces. It then groups the traces with small
distances apart into the same cluster. The k£ in k-medoid is
the number of clusters to be created.

In our implementation, we adapt the Turn* algorithm pre-
sented by Foss et al. [13] into the k-medoid algorithm. The
Turn® algorithm can automatically determine the number of
clusters to be created by considering the similarities within
each cluster and differences among clusters. Our algorithm
will repetitively increase the number of clusters. For each
repetition, it will divide datasets into clusters and evaluate
a measure of similarities within each cluster and differences
among different clusters. The algorithm will terminate once
a local maximum is reached. A detailed discussion of the
implementation is available in our technical report [25].
Similarity Metric In many applications, comparisons be-
tween two data items are relatively clear — sometimes it only
involves a simple subtraction of two numbers — eg., (Avg.
profit for company x) - (Avg. profit for company y) , etc.
However, a comparison of two program traces is neither so
clear cut nor easily obtained.

Our first idea is to use global sequence alignment [36] to
measure the distance between two traces. This alignment
is frequently used to obtain similarity metrics of two DNA
sequences. Its main idea is to insert “dash” or spaces within
strings to obtain the most accurate matching of two strings.
Different from the Knuth-Morris-Prat (KMP) algorithm [7],
the sequence alignment algorithm finds the best approxi-
mated alignment(s) rather than the occurrence of an exact
match. Alongside the best alignment(s), an overall similar-
ity score will also be reported. We use this score as the
similarity metric between the two program traces.

This first idea does not work well in practice because, con-
trary to normal strings, program traces exhibit some char-
acteristics which make it difficult to measure similarity by
a simple alignment of two traces. Specifically, a trace might
only be different to another due to different numbers of loop
iterations during program execution. As an example, con-
sider the following program segment:

medoid algorithm has been found to be more accurate than
k-means since it is less susceptible to outliers [16].

function APICLIENT_ABCD (outer_iter, inner_iter[]) {
for (int j=0;j<outer_iter;j++) {
int k=0; Call API.A ();
do{ k++;
Call API.BQ);
Call API.CQ);
}while (k<inner_iter[j]);
Call API.D ();

Suppose that APICLIENT_ABCD is a client function of an API.
It is conceivable that the API interaction patterns for var-
ious runs via the function call APICLIENT_ABCD with differ-
ent input parameters should be grouped together. So, for a
run with parameters outer_iter = 2 and inner_iter = [2,3],
the generated trace is ABCBCDABCBCBCD. For another run with
outer_iter = 1 and inner iter = [1], the generated trace is
ABCD. Now, if we simply align these two strings, even in their
best alignment their similarity score will be too low for them
to be grouped into the same cluster.

Our solution to the above problem is to instead compare
the regular expression representations (only parentheses and
“4+” quantifier are used) of the two traces rather than their
actual sequence of alphabets. Converting to its regular ex-
pression, the first trace will be (A(BC)+D)+ which corresponds
closely to ABCD.

We obtain the regular expression representation by con-
verting a trace to its hierarchical grammar representation
using Sequitur [29]. The output of sequitur will be post-
processed to construct the regular expression representation
and then be fed in as input to global sequence alignment.
With these we obtain a method to find a reasonable dis-
tance metric for the similarity of program traces. We refer
the readers to our technical report [25] for implementation
details.

3.3 Learning Block

Although temporal rules have also been used ([41]) to
capture certain information of a program specification, au-
tomata have been commonly used in capturing specifica-
tions, especially protocol specifications. The purpose of this
learning block is to learn automatons from clusters of filtered
traces.

This block is actually a placeholder in our architecture.
Different PFSA specification miners can be placed into this
block, as long as they meet the input-output specification
of a learner. Once a learner is plugged in, it will be used to
mine the traces obtained from each cluster. At the end, the
learner produces one mined automaton for each cluster.

In the current experiment, we choose to use a PFSA spec-
ification miner that has been used for software specification
mining earlier, i.e. sk-strings learner [32].

Sk-strings learner is used by Ammons et al. to mine the
specification of the X11 windowing library [1]. It is an ex-
tension of the k-tails heuristic algorithm of Biermann and
Feldman [4] for learning stochastic automata. In k-tails,
two nodes in a constructed automata are checked for equiv-
alence by looking at subsequent k-length strings that can be
generated from them. Different from k-tails, in sk-strings,
subsequent strings need not necessarily end at an end node,
except for strings of length less than k. Furthermore, only
the top s% of the most probable strings that can be gener-
ated from both nodes are considered. Implementation-wise,
the sk-strings learner first builds a canonical “machine” sim-
ilar to a prefix-tree acceptor from the traces. The nodes in



this canonical machine are later merged if they are indistin-
guishable with respect to the top s% of the most probable
strings of length at most k& that can be generated starting
from them.

3.4 Merging Block

The merging process aims to merge multiple PFSAs pro-
duced by the learner into one such that there is no loss in
precision, recall and likelihood before and after the merge.
Equivalently, the merged PFSA accepts exactly the same set
of sentences as the combined set (i.e., union) of sentences
accepted by the multiple PFSAs.

The primary purpose of the merging process is to reduce
the number of states residing in the output PFSA by col-
lapsing those transitions behaving “equivalently” in two or
more input PFSAs, thus improving scalability.?

Merging of two PFSAs involves identification of equivalent
transitions between the two PFSAs. The output PFSA con-
tains all transitions available in the input PFSAs, with each
set of equivalent transitions represented by a single transi-
tion. T'wo identically-labelled transitions from two different
PFSAs are considered equivalent if one the following condi-
tions holds: (1) Both their source nodes share the same set
of suffixes, (2) Both their sink nodes share the same set of
prefixes.

Given a node n in a PFSA and a string accepted by PFSA
that involves a transition, ¢ say, emitted from n, we define
a suffix of n with respect to the string as the suffix of that
string beginning with §. Similarly, we define a prefix of n as
the prefix of that string ended just before 4. For instance,

given the transition n; LN nz2, and a string
tita -t 10tmy1 - bps

A suffix of n is the string dt,41 - - - tp, and a prefix of ny is
the string t1ta - - tm—1.

In the case where no transition emitting from n appears
in the string, both the prefix and suffix of n with respect to
that string are just null.

Extending from the definitions above, the set of prefixes/
suffixes of n in a PFSA is the set of prefixes/suffixes of n
with respect to all strings accepted by the PFSA.

The definition of equivalent transitions above admits clo-
sure property: If two transitions are equivalent as defined
by sharing the same set of suffixes, then each of the transi-
tions in the suffix-set is also an equivalent transition. The
same behavior can be observed from equivalent transitions
sharing the same set of prefixes.

The merging process also ensures that the likelihood of
traces generated by the output PFSA remains the same as
that of the combined input PFSAs. More specifically, let A
be the output PFSA and A; (i = 1..n) be the input PFSAs.
Let ¢ be a transition in A, then

Pad) = > wipa (9)

where pa(¢) and pa,(¢) represent the probabilities of the
transition £ located in PFSA A and its equivalent transitions
occurring in A;. pa,(¢) is assigned to 0 if no equivalent
transitions occur in A;. w; is the weightage given to each

2 A secondary objective is to enable comparison of the struc-
tural similarity between the mined PFSA and the original
PFSA. We omit the detail in this paper.
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C — changeWorkingDirectory
L —listFiles

T —setFileType

Info
| - listNames

Probabilities are

Prol D - deletefFile
distributed equally M — makeDirectory
over outgoing R —removeDirectory
transitions

Figure 5: CVS Protocol

cluster hosting their own input PFSA; it is the ratio of the
number of traces in the cluster to the number of total traces
in the entire system.

Implementation-wise, the closure property of equivalent
transitions enables an incremental detection of such transi-
tions, starting from either the start node (for finding pre-
fixes) or the end node (for finding suffixes) of a PFSA. The
detailed merging process is described in our technical report.

4. JAKARTA COMMONS NET

Jakarta Commons Net [28] is a set of reusable open source
java code implementing the client side of many commonly
used network protocols. We built a simple CVS (Concurrent
Versions System) functionality on top of an FTP library
provided by Jakarta Commons Net.

4.1 Protocol for CVS-FTP API Interaction

This CVS functionality can be considered a client of Jakarta
Commons Net with a certain protocol pattern. Our CVS
class and Commons Net library can be instrumented to gen-
erate traces which were then inputted to SMArTIC and
sk-strings. The resultant models are then compared with
the original CVS specification to evaluate the feasibility of
SMATTIC in improving the accuracy of the results over the
sk-strings learner.

There are six common FTP interaction scenarios in our
CVS implementation: Initialization, multiple-file upload, down-
load, and deletion, multiple-directory creation and deletion.
All scenarios begin by connecting and logging-in to the FTP
server. They end by logging-off and disconnecting from the
FTP server. The client side only maintains a record of files
backed-up in the FTP server.

All these scenarios are depicted in the automata shown
in Figure 5. The dashed boxes, from top to bottom, repre-
sent upload files, initialization, delete files, make directories,
remove directories and download files scenario respectively.

4.2 Instrumenting Jakarta Commons Net

We instrument Jakarta Commons Net with JRat, the Java



runtime analysis toolkit [20]. The instrumentation is com-
posed of an instrumentation byte code injection and a trace
collection part. By default, JRat logs execution traces by
associating them with a localized context. This context is
simply a list of method calls in the runtime stack (ie., main
() -> FTPClient.<init> -> TelnetClient.<init>). Infor-
mation having the same context is grouped together. Given
a class file to instrument, JRat will add instrumentation
code to all methods except the constructor.

We modified JRat core classes and added a plug-in to it.
The following features were added:

Capturing order of method calls along with con-
text. We would like to capture the temporal order of method
calls together with the context. However, JRat may destroy
the order of method calls in the context. Information on
calls to a method at two different times under the same
context but with different temporal ordering should not be
grouped together.

Instrumentation of class constructor. In order to
capture the hierarchy of method calls well, we need to in-
strument the class constructor as well. The class constructor
might call other methods. We would like to capture the in-
formation that their context are the same but different from
method calls called at constructor context.

Thread slicing and Scalability. We slice traces into
threads and generate a separate trace file for each of them.
For scalability, no large trace related information is stored
in memory. They are always outputted incrementally.

The result of JRat instrumentation is an injection of trac-
ing byte code into java classes. Running the instrumented
code will produce a tree of method calls capturing their or-
der and context represented as an XML document. Methods
called earlier will print earlier in the XML document, each
method will have its context as its ancestors in the XML
tree.

4.3 Trace Collection and processing

We construct a wrapper class that takes in the automata
shown in Figure 5 and invokes org.apache.commons.net.ftp.
FTPClient accordingly. The wrapper class will generate a
list of sequences of method invocations by traversing the
automata from the start to the end node multiple times
until coverage criteria is met. The result is a simulation of
a regression testing of CVS-FTP API interaction.

Each invocation of a method of FTPClient may gener-
ate exceptions, especially FTPConnectionClosedException and
I0Exception. Hence the code accessing the FTPClient meth-
ods need to be enclosed in a try..catch..finally block. Ev-
ery time such an exception happens we simply logout and
disconnect from the FTP server. This is simulated by adding
error transitions as shown in Figure 6. Ten percent error is
assumed and erroneous trace will be injected to 10% of the
generated list of sequences of method invocations.

The trace file generated is likely to be huge because of the
wrapper effect and long class hierarchies. On the other hand,
what we really need are the traces capturing interaction be-
tween our own CVS classes and FTPClient. To get that,
we process the trace file as follows : (1) Traverse the XML
trace file depth-first, and locate all the first invocations of
the client method calls. Each such location will correspond
to a scenario trace sequence. (2) From the above locations,
traverse depth-first, and locate all the first invocations of
the API method calls. The API method calls might not be

Info

X —Connect

G—Login O
O- Logout o
Y — Disconnect

W - <init> o

E
4

Info

I - listNames

D - deleteFile

M —makeDirectory
R —removeDirectory
A- appendFile

For other scenarios, error transitions
(dashed lines) are added similarly.

Figure 6: CVS Protocol With Error

directly below the client method calls in the trace file XML
hierarchy.

4.4 Protocol Specification Generation and Re-
sults

The collected traces are inputted to different miners: SMAr-
TIC (with sk-strings in the learner block), SMArTIC with-
out filtering, SMArTIC without clustering, sk-strings with
coring and standalone sk-strings. The coring threshold is set
at 0.2 level. SMArTIC filtering confidence and support is
set at 0.8 and 0.1 respectively. Default parameter settings
are used for sk-strings both when standalone and within
SMArTIC.

A protocol specification is then produced and compared
against the original one (as shown in Figure 5) in terms of
precision and recall. We repeat the above experiments 100
times using different lists of scenario trace sequences.

The following table shows the results of our experiment.
The columns Precs, Recall and PS correspond to precision,
recall and unbiased, normalized co-emission respectively (as
defined in subsection 2.3).

Precs | Recall PS

SMArTIC 0.484 0.981 0.653
SMArTIC w/o filtering 0.426 1 0.616
SMArTIC w/o clustering | 0.263 0.984 0.532
sk-strings(coring) 0.289 0.581 | 0.447
sk-strings 0.225 1.000 0.533

As shown in the table, SMArTIC improves the precision
and co-emission while maintaining good recall of CVS pro-
tocol inference. The precision of SMArTIC are more than
double the precision of sk-strings.

Both filtering and clustering help in increasing precision
while maintaining good recall and equivalent or even better
co-emission.

The drawback of coring is shown in the results where re-
call drops by almost half. Although precision is increased,
there is a heavy penalty in recall: Pruning erroneous behav-
iors unavoidably removes a significant proportion of correct
behaviors.

It is also of interest to know the number of erroneous
traces our filtering algorithm filters out. On the average it
filters out 43% of erroneous traces while only 4% of valid
ones.

We have conducted thorough experiments using this ap-
plication to verify both our hypotheses. The results show
that significant improvement (with at least 95% confidence



level) in SMArTIC over the Sk-strings. Interested readers
may refer to our technical report [25] for detail.

5. FURTHER EXPERIMENTS

The experiment with CVS specification in Section 4 pro-
vides positive evidence that SMArTIC is a feasible architec-
ture for improving mining accuracy; it also provides strong
evidence to support our hypotheses stated in Section 3.

In this section, we perform further experiments on SMAr-
TIC, not just on its accuracy, but also on its robustness
and scalability. To this end, we have conducted almost 2000
experiments to support the superiority of SMArTIC.

Our experiments use the same set of miners, with sk-
strings learner being employed either in standalone mode
or in co-operation with other processes, especially as the
learner block of SMArTIC.

5.1 Material

In the first set of experiments, two sets of sub-experiments
using different types of error injection were performed to
evaluate the two learners’ performance in terms of robust-
ness. These experiments are performed on sk-strings (stan-
dalone), sk-strings (with coring) and SMArTIC. For SMAr-
TIC case, we disable the clustering sub-system to measure
the effect of the filtering block.

We simulated the automaton generated by Ammons et
al. in their analysis of the X11 windowing library (cf. [1])
— as shown in Figure 7. However, we modified the model
slightly so that it was without any non-determinism and re-
peated use of alphabet assigned to transitions and we added
probabilities. Probabilities are distributed equally to transi-
tions from the same source node (not shown in the diagram).
This is meant to produce a base model that can be learned
perfectly. Error nodes and transitions were then injected
to the automaton to conduct robustness tests. The mod-
els with different injections of errors (nodes and transitions
labelled as Z and shown with dashed lines) are shown in Fig-
ure 8(a) & (b). Each of the two types of injections of errors
shown in Figures 8(a) and (b) respectively corresponds to a
separate set of sub-experiments.

Figure 7: X11 Windowing Library Model

We expect the specification miners to be able to filter out
errors. We compared the inferred automaton with the sim-
ulator model shown in Figures 8(a) and (b) without error
nodes and transitions and recorded the similarity and dif-
ference metrics. We generated traces using trace generation
algorithm (briefly mentioned in subsection 2.1) and capped
the maximum number of traces generated to 10,000. Four,
eight and ten percent levels of error were injected to the sys-
tem (ie., 4, 8 and 10 percent of generated traces respectively

(a) (b)

Figure 8: Models of Specification with Error

will be erroneous). We assume the error level is unknown
to the learner except that it is low. Hence, the threshold
used for coring was set to 0.2. SMArTIC’s filter confidence
is also set at an equivalent level of 0.8 while its support is
set at 0.1. In each case, we ran a hundred experiments and
recorded the average performance.

In the second experiment, we evaluated the scalability of
the learners by generating distinct models of various sizes.
Two sets of sub-experiments were conducted, each with a
different independent variable. In the first set, we varied the
number of nodes (by 10, 20, 30 and 40) in the specification
model and maintained the number of outgoing transitions
per node to at most four. In the second set, we varied the
number of outgoing transitions per node (by 3, 5, 7 and 9)
and maintained the number of nodes at 10. For each case,
we performed 10 experiments and recorded their average
performance.

We automatically generated distinct models having n nodes
and a maximum of m transitions per state with common
start and end nodes. Transition labels were chosen from a
pool of a fixed number of labels randomly. Loops were intro-
duced based on the principle of locality where loops between
child and parent/ancestor nodes (including self-loop) occur
with higher probability than those connecting to distant sib-
ling nodes. The above properties are meant to generate rea-
sonably complex models that are more likely to mimic rea-
sonable protocols even in a large system (eg., business logic
of an enterprise application). Details of our model genera-
tion algorithm can be found in our technical report [25].

These experiments were performed on sk-strings (stan-
dalone) and SMArTIC. In the SMArTIC case, we measure
the effect of the clustering block by disabling the filtering
sub-system.

We generated traces and capped the maximum number
of traces at 10,000. No error was injected to the system.
Since we imposed a cap of 10,000 traces, there might be a
concern that training traces might not satisfy the coverage
criterion for a model of large size. This was not the case in
our experiments, as only once was the cap reached; for the
other 159 experiments, the coverage criterion was met first.

5.2 Experiment 1 Findings

Here, we evaluated the robustness of sk-strings, sk-strings
(coring) and SMArTIC with two different injections of er-
rors. The models with different injection of errors are shown
in Figures 8(a) and (b).

Results. The experiment results for ErrModell and Er-
rModel2 are captured below. Column E% corresponds to the



percentage of erroneous traces. Columns Precs,Recall and

PS correspond to precision, recall and unbiased, normalized

co-emission respectively (as defined in subsection 2.3).

Error Model 1
sk-strings sk-strings(coring)

E% | Precs | Recall PS E% | Precs | Recall
4 0.946 | 1.000 | 0.946 4 0.999 | 0.823 | 0.864
8 0.908 | 1.000 | 0.948 8 0.998 | 0.828 | 0.867
10 | 0.883 | 1.000 | 0.950 | 10 | 0.990 | 0.845 | 0.875

SMArTIC

E% | Precs | Recall PS E% | Precs | Recall PS
4 0.999 | 1.000 | 0.946 10 | 0.981 1.000 | 0.948
8 0.993 | 1.000 | 0.946

Error Model 2

sk-strings sk-strings(coring)

E% | Precs | Recall PS E% | Precs | Recall PS
4 0.947 | 1.000 | 0.947 4 0.829 | 0.962 | 0.863
8 0.898 | 1.000 | 0.947 8 0.812 | 0.909 | 0.848
10 | 0.875 | 1.000 | 0.948 10 | 0.816 | 0.886 | 0.849

SMArTIC

E% | Precs | Recall PS E% | Precs | Recall PS
4 0.994 | 1.000 | 0.946 10 | 0.974 | 1.000 | 0.949
8 0.986 | 1.000 | 0.946

Analysis. For sk-strings, all traces generated by the sim-
ulator model X were accepted by the inferred model Y.
On the other hand, we noted a drop in the acceptance of
traces generated by Y. This drop is slightly larger to the
noise injected ((5.4%,5.3%) vs. 4%, (9.2%,10.2%) vs. 8%
and (11.7%,12.5%) vs. 10%); learner precision degrades in
the presence of erroneous traces. We conclude that the sk-
strings learner is not robust.

The SMArTIC result is similar to sk-strings in that all
traces generated by the simulator model X was accepted by
the inferred model Y. Different from sk-strings, we noted
only a slight drop in the acceptance of traces generated by
Y. This drop is far less than the noise injected ((0.1%,0.6%)
vs. 4%, (0.7%,1.4%) vs. 8% and (1.9%,2.6%) vs. 10%).
These indicates that filtering of erroneous traces is effective
in preventing loss of precision.

The most important observation here is that: Having cor-
ing as post-processing to sk-strings removes not just erro-
neous transitions but also quite a fair number of correct
transitions. Consequently, the accuracy of the mined spec-
ification degraded. This result strongly supports our first
hypothesis.

Another limitation of coring is due to the fact that tran-
sition labels are being ignored during the coring operation.
The coring method only searches for the pair of nodes (4, 7)
where there is a low “heat transmission” from node ¢ to
node j [1]; it ignores the detail of how the node j is reached
(which can be a single transition, a set of transitions, a sin-
gle path or a set of paths). In the second sub-experiment,
erroneous transitions go to valid nodes instead of the special
error node. This results in little/no filtering when coring is
used.

5.3 Experiment 2 Findings

We performed two sets of scalability sub-experiments. In
the first set of sub-experiments, we generated distinct mod-
els by varying the number of nodes while keeping the max-
imum transitions per node at 4. In the second set of sub-
experiments, we varied the maximum number of transitions
while keeping the total number of nodes constant at 10.
Results. The experiment results are shown below for sk-
strings and SMArTIC. Columns X.N and X.TN correspond

to the number of nodes and maximum number of transitions
per node in the specification model.

Varying No of Nodes
sk-strings SMArTIC
X.N/X.TN | Precs | Recall PS Precs | Recall PS
10/4 0.437 | 1.000 | 0.560 | 0.584 | 0.988 | 0.690
20/4 0.003 | 1.000 | 0.015 | 0.185 | 0.998 | 0.227
30/4 0.0004 | 1.000 | 0.005 | 0.059 | 0.999 | 0.090
40/4 0.0004 | 1.000 | 0.004 | 0.014 | 1.000 | 0.007
Varying Max No.Of Transitions
sk-strings SMArTIC
X.N/X.TN | Precs | Recall PS Precs | Recall PS
10/3 0.113 1.000 | 0.218 | 0.453 | 0.984 | 0.504
10/5 0.187 1.000 | 0.284 | 0.578 | 0.993 | 0.424
10/7 0.084 1.000 | 0.213 | 0.500 | 0.984 | 0.508
10/9 0.073 0.997 | 0.087 | 0.514 | 0.990 | 0.329

Analysis The above results shows that sk-strings and SMAr-
TIC were affected when we scaled up the model size. Com-
paring the two set of experiments, we observe that the pre-
cision is adversely affected in all cases when we increase the
number of nodes, whereas the impact is less severe when we
increase the number of transitions.

SMArTIC is generally better in terms of precision up to
a factor of over 147.5 (ie., 30-node case). In the second set
of experiments (i.e. when we increase the mazimum num-
ber of transitions), SMArTIC maintains its precision while
sk-strings loses it as the maximum number of transitions
increased.

6. RELATED WORK

There have been numerous work in the area of specifica-
tion mining. They can be classified into two groups, de-
pending on how the mined specifications are represented:
automaton-based [1, 6, 39, 34, 3] and non-automaton based
[41, 11, 12, 33] specification mining.

The specification miner described in [1] has been exten-
sively referenced in this paper. In other work, Whaley et al.
extract object-oriented component interface sequencing con-
straints to form multiple finite state automatons [39]. Reiss
et al. encode program execution traces as directed acylic
graphs to aid visualization and understanding of programs
[34]. Arts et al. dynamically extract program models from
Erlang programs as state graph models for model checking
and visualization [3]. We believe that these and other sim-
ilar miners can benefit from our architecture with minimal
changes.

Separating Error and Normal Traces. Weimer and
Necula contrasted (previously labelled) error and normal
traces to statically mine and filter temporal specifications for
error detection in the form of 2 event rules [40]. In our case,
we use dynamic analysis to mine automaton-based specifi-
cation, also unsupervised learning is used to identify and
filter erroneous traces. In [2], Ammons et al. utilizes hier-
archical filtering to aid a specification miner user to detect
and delete clusters of error traces en masse. Their method
heavily depends on user input while the method proposed
in this paper is automatic.

Mining Rules for Software Engineering Tasks. In [11],
association rules (ze., describing association of items rather
than the sequence of events) based on frequent itemset min-
ing have been used to describe user interaction behavior for
web-based GUIs.

In [41], Yang et al. present their work in mining a re-
stricted form of response pattern [10] called an “alternating”



pattern using a set of templates. They only consider rules
involving two events; ie., of the form a — b. In order to
handle longer rules, Yang et al. introduce “chaining”. For
example, if both A — B and B — C are significant, they
can be concatenated to form A — B — C which will be sig-
nificant too. However, the reverse may not be always true:
A — B — C might be significant although only rule A — B
is significant while B — C' is not. For such cases, the rule
A — B — (C cannot be generated by inferring from two-
event rules and chaining them. Hence, chaining only gives
a partial solution rule set for multi-event (> 2) sequential
patterns.

SMATTIC also mines a temporal response pattern [10] but

for the purpose of generating rules for outlier detection. In
our case, expressivity is required. Thus, the pre- and post-
condition of our mined outliers detection rules can take in
any number of events. This pattern is also referred to as a
chain response pattern in [10]. Moreover, rather than min-
ing all possible statistically significant rules, we only mine
those useful for outlier detection.
Program Trace Characterization. Larus proposes us-
ing whole program path (WPP) to represent a program’s
dynamic control flow [23]. Sequitur [29] is used to compact
acyclic program traces into WPP which is its corresponding
grammar. WPP is later used to find hot subpaths — heavily
executed code — for optimization purpose.

Reiss et. al present a system for analyzing java trace data
[35]. Sequitur [29] is used during path analysis to compact
a trace into its grammar representation which serves as its
identifier.

Similar to Larus and Reiss et. al, we used Sequitur to get
a representation of program traces. In many applications,
Sequitur is able to infer reasonable hierarchical structure
from a sequence of discrete symbols. Different from Larus
and Reiss et.al, our purpose is to obtain an intuitive measure
of similarity between two traces while taking their inherent
structure into consideration. Hence, rather than taking the
grammar output of sequitur directly, we post-process it into
a regular expression (regex) format. The regex representa-
tion “flattens” the grammar while retaining its structure.
Two regex representations can then be easily compared by
global sequence alignment which produces their best align-
ment.

7. CONCLUSION

In this paper, we began with two hypotheses about how
specification miners should be organized to alleviate the im-
pact of erroneous transitions and to localize and minimize

over-generalization. We then presented our novel Specification

Mining Architecture with Trace flltering and Clustering,
(SMArTIC) to support our hypotheses. SMArTIC com-
prises four major blocks — clustering, filtering, learning and
merging. Filtering and clustering is meant to address the
issue of robustness and scalability respectively.

Traces deviating from common trace population rules are
removed. The resultant filtered traces are then separated
into multiple clusters. By clustering common traces to-
gether, it is expected that the learner is able to learn better
and over-generalization of a subset of traces is not prop-
agated to other clusters. These clusters of filtered traces
are then inputted to a specification miner. The sk-strings
learner is used for learning, and each cluster is considered
an independent (sub-)protocol. Lastly, a merger sub-system

produces a merged automaton without sacrificing accuracy.

Along with the architecture, we have also proposed a novel
trace clustering technique based on grammatical similarity,
a novel outlier detection rule mining technique and a novel
automaton merging method. Besides having automaton as
specification, the outlier-detection rules produced by the fil-
tering block can also be viewed as sets of simple specifica-
tions based on strong properties of significant trace groups
useful for filtering. They can effectively capture those prop-
erty patterns proposed in [10] which are interesting for pro-
gram traces and useful for identifying potential bugs.

We experimented with the Jakarta Commons Net open-
source library. Our experiments aim at deriving API inter-
action protocols for client applications of Jakarta Commons
Net open-source library [28]. From one hundred experiments
performed, the following are noted: (1) SMArTIC improves
precision (more than double) and co-emission while main-
taining good recall (2) Both clustering and filtering help
in improving precision while maintaining good recall and
equivalent co-emission (3) Coring removes erroneous behav-
ior together with a significant proportion of valid behavior
— recall is reduced by more than 40% (4) Outlier detection
rules are able to filter on average 43% of erroneous traces
while only wrongly filter 4% of valid ones.

Further experiments using simulation measuring precision
and recall in the two dimensions of increasing percentage of
error (i.e. robustness) and increasing model size (i.e. scal-
ability) of sk-strings and SMArTIC were performed. 1,800
tests on three percentage of error levels and 160 tests on dif-
ferent configurations of the number of nodes and the maxi-
mum number of transitions of the specification model were
performed.

From the robustness experiments, the precision of sk-strings
is reduced proportionally to the error induced. On the other
hand, only a slight reduction of precision is observed for
SMATrTIC. Our experiments also show the limitation of the
coring method in removing errors. From the scalability ex-
periments, both sk-strings and SMArTIC are adversely af-
fected by the increase in model scale (number of nodes).
However, SMArTIC is able to retain better precision as com-
pared to sk-strings up to factor of over 100.

Our experiments have strongly supported our belief that
SMATrTIC can produce more precise results with good recall
and equivalent, or even better, co-emission in the presence
of errors and increasingly large model.
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