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ABSTRACT

Cryptography is increasingly being used in mobile applica-
tions to provide various security services; from user authen-
tication, data privacy, to secure communications. However,
there are plenty of mistakes that developers could acciden-
tally make when using cryptography in their mobile apps
and such mistakes can lead to a false sense of security. Re-
cent research efforts indeed show that a significant portion
of mobile apps in both Android and iOS platforms misused
cryptographic APIs. In this paper, we present CDRep, a
tool for automatically repairing cryptographic misuse de-
fects in Android apps. We classify such defects into seven
types and manually assemble the corresponding fix patterns
based on the best practices in cryptographic implementa-
tions. CDRep consists of two phases, a detection phase
which identifies defect locations in a mobile app and a repair
phase which repairs the vulnerable app automatically. In
our validation, CDRep is able to successfully repair 94.5% of
1,262 vulnerable apps. Furthermore, CDRep is lightweight,
the average runtime to generate a patch is merely 19.3 sec-
onds and the size of a repaired app increases by only 0.667%
on average.

Keywords

Cryptographic Misuse, Vulnerability Detection, Automated
Program Repair

1. INTRODUCTION

In a remarkably short time, mobile computing has be-
come a fundamental feature in the lives of billions of peo-
ple, heralding an unprecedented reliance on smart phones
and tablets compared to any previous computing technology.
With the trend of Bring Your Own Device (BYOD), mobile
devices are increasingly used to access and store sensitive
corporate information. Malicious attacks to mobile devices
and applications therefore not only present a unique set of

risks to personal privacy, but also pose new security chal-
lenges to enterprise information systems. Many app devel-
opers today use cryptographic primitives, such as symmetric
key encryption and message authentication codes (MACs),
to provide various security services, from user authentica-
tion, data privacy, to secure communications. However, de-
velopers can easily make mistakes in implementing and us-
ing cryptography in their mobile applications due to either
a lack of cryptographic knowledge or human error, and such
mistakes often lead to a false sense of security.

There are a few efforts in the literature investigating the
problem of cryptographic misuses in mobile apps. Egele et
al. [11] examined if developers use cryptographic APIs in
a fashion that provides typical cryptographic notions of se-
curity, For example, indistinguishability under chosen plain-
text attack (IND-CPA) security and cracking resistance. They
found that about 90% of the 12,000 applications in the Google
Play marketplace that use cryptographic APIs make at least
one mistake. Shuai et al. [29] built a collection of cryptogra-
phy misuse models, and implemented an automatic misuse
detection tool, Crypto Misuse Analyzer (CMA). They found
that more than half of the apps they examined suffer from
cryptographic misuses. Li et al. [23] designed a tool called
iCryptoTracer which traces cryptographic usage in iOS apps,
extracts the trace log and judges whether apps have used
cryptography correctly. Veracode in 2013 detected crypto-
graphic usage problems in the source codes of mobile apps
and concluded that such problems affect 64% of Android
apps and 58% of i0S apps [5]. Given the significant portion
of mobile apps affected by cryptographic misuses, it is im-
perative that such misuses be rectified as soon as possible
to avert any potential attacks. Unfortunately, it may not be
realistic to expect developers who misused cryptography in
the first place to do a good job in fixing the misuses because
of their lack of cryptographic knowledge or that they are
simply unaware of the problem.

We aim to repair cryptographic misuses in Android apps
automatically. There exist a few efforts in automatically re-
pairing software code in the literature. Most of the previous
works have focused on fixing general bugs, such as repair-
ing null pointer dereferences. Goues et al. [21] introduced
an approach to repair software programs using genetic pro-
gramming. Kim et al. [18] proposed a novel patch generation
approach by first learning common fix patterns from human-
written patches and then generating program patches from
these common fix patterns. To our knowledge, very few
efforts focus on automatic repair of mobile app vulnerabili-



ties. Recently, Zhang et al. [33] proposed a technique which
generates a patch for component hijacking vulnerability in
Android apps; they performed static analysis on bytecode to
locate vulnerabilities, and then inserted new code to taint
data and tracked and blocked dangerous information flow
during runtime. Different from Goues et al. and Kim et al.,
we focus on specific bugs that correspond to cryptographic
misuses. Their generic approaches have low success rates
(e.g., only 27 out of 119 bugs are successfully fixed by Kim
et al.’s approach). In this work, we make use of specialized
domain knowledge to fix specialized bugs to achieve a high
success rate. Zhang et al.’s approach can also fix specialized
bugs with a high success rate, however, they focus on a dif-
ferent kind of vulnerability with a different analysis method,
namely, taint analysis, which is a dynamic analysis. In their
work, they used the tainted data to identify the vulnerable
sink by keeping track of the taint propagation at runtime.
Unfortunately, it is not a effective technique for fixing cryp-
tographic misuses that are considered in this work.

In this paper, we propose CDRep (Cryptographic-Misuse
Detection and Repair) which automatically detects and re-
pairs misuses of cryptographic APIs. We focus on the byte-
code level patch following the principle provided by Zhang
et al. [33], no source code. Thus, we enable to protect users
who only have access to the bytecode but not source code
of apps. CDRep is designed to repair seven types of misuses
identified in [11][29] and operates in two phases: detection
phase and repair phase. In the detection phase, CDRep lo-
cates misuses and classifies them following the light-weight
static analysis approach proposed by Egele et al. [11]. In the
repair phase, CDRep automatically applies and adapts a set
of manually created patch templates to repair a vulnerable
program. These patch templates can be created one time
and used to repair many vulnerable apps with cryptographic
misuses. We apply CDRep on 8,640 real-world Android apps
and it detects that 8,582 apps have cryptographic misuses.
We manually check a random sample of 1,262 apps from the
8,582 apps and among the 1,262 vulnerable apps, CDRep
successfully repairs 1,193 of them.

Overall, this paper makes the following contributions:

e We propose and implement CDRep to automatically
generate patches to fix cryptographic misuses in An-
droid apps. This is the first effort to repair crypto-
graphic misuses automatically.

e We apply CDRep to 8,640 real-world Android apps.
We ask members of our security research team to eval-
uate the correctness of the automatic repair. More-
over, we email the repaired apps to their developers to
check whether CDRep inadvertently changes behaviors
of repaired the apps. Our experimental results show
that CDRep is able to repair cryptographic misuses
effectively, achieving a successful repair rate of 94.5%.
A total of 230 developers responded to our emails and
87.0% of them accepted our patches.

1.1 Applications of CDRep

Indeed, the cryptographic misuses could happen due to
two reasons:

e Developer lacks the knowledge of cryptography.

e The Android app is developed by an attacker, which
means the app is a malicious one.

In view of the above reasons, the cryptographic misuse
vulnerability could not be repaired from the developer’s per-
spective. If the developer lacks the knowledge of cryptog-
raphy, then it might be unable for developer to repair the
cryptography misuses correctly. Further, if the Android de-
veloper is an attacker, the developer will definitely leave the
vulnerabilities which help the attacker collect users’ privacy.
These cirumstances explain that we are unable to obtain the
application source code, namely, the cryptographic misuse
could only be repaired on bytecode level.

Handling the repair by users and maintenance com-
panies. CDRep provides a reliable and easy way to repair
the cryptographic misuses. Users and maintenance com-
panies enable to repair the vulnerability without the source
code of an application. Moreover, CDRep provides the stan-
dard implementations for different cryptographic approach.
They do no need to have any knowledge of cryptography.

Processing the repair for a batch of apps. The
minimum overhead helps users and maintenance companies
to process a batch of apps. CDRep assures the minumum
changes of the app and the minmum overhead to process
the repair. There exist lots of apps that developers will not
upgrade or maintain. However, users might still use them.
The maintenance companies could use CDRep to fix the
cryptographic misuse of those apps.

1.2 Organization

The rest of this paper is organized as follows. Section 2 in-
troduces the types of misuses that CDRep intends to detect
and repair. Section 3 presents the overview of our approach.
Section 4 elaborates the repair phase of our approach. Ex-
perimental results are shown in Section 5. Section 6 dis-
cusses the limitation and future work of our approach. Re-
lated work is presented in Section 7. Section 8 concludes the

paper.

2. CRYPTOGRAPHIC MISUSES

In this section, we list the seven security rules that are
used in our work, and any application that violates any of
those rules cannot be secure [11][29].

Based on the precisely defined cryptographic algorithms,
seven rules are proposed by [11] [29] as follows:

Rule 1: Do not use electronic codebook (ECB) mode for
encryption.

Rule 2: Do not use a constant Initialized Vector (IV) for
ciphertext block chaining (CBC) encryption.

Rule 3: Do not use constant secret keys.

Rule 4: Do not use constant salts for password-based en-
cryption (PBE).

Rule 5: Do not use fewer than 1,000 iterations for PBE.
Rule 6: Do not use static seeds to seed SecureRandom.

Rule 7: Do not use reversible one-way hash (i.e. MD5
message-digest algorithm).

Encryption schemes are used to protect user privacy, en-
suring that attackers are unable to extract even a single
bit of plaintext from a ciphertext within a reasonable time



bound. Indistinguishability under a chosen plaintext attack
(IND-CPA) is proposed to formalized this notion, and an
encryption scheme could be defined as secure if and only if
it is IND-CPA secure [11]. However, some encryption mode
or wrong implementations make the encryption scheme be-
come non IND-CPA secure, such as using ECB mode and
using constant value. Therefore, seven rules are proposed
to keep the encryption scheme secure. Based on the seven
rules, we defined seven types of misuse, and each misuse vi-
olates one of the rules of security. To identify the misuse in
a bytecode, we first examine the instruction that is related
to the misuse, called Indicator Instruction. Then, we locate
the instruction that causes the misuse, called Root Cause
Instruction. We shows seven types of misuses below and the
corresponding example bytecode. The root cause of each
example is set in bold.

Misuse 1: Using ECB mode to encrypt. ECB mode is
not IND-CPA secure in symmetric encryption scheme.
The bytecode below shows such misuse. According to
the indicator instruction, Ljava/crypto/Cipher;—
getInstance, we can identify that register vl holds
the value of encryption type. Therefore, we are able to
find that value of v1 is “AES/ECB/PKCS5Padding”
based on the root cause, which means that the devel-
oper uses ECB mode for encryption. Due to that ECB
is the default encryption mode set by Android, the de-
veloper also uses ECB mode if they only define “AES”
in their code.

1.const-string v1, “AES/ECB/PKCSPadding”
2.invoke-static {v1}, Ljava/crypto/Cipher;—
getInstance(Ljava/lang/String;)
Ljava/crypto/Cipher

Misuse 2: Using a constant IV in CBC encryption.
In CBC encryption scheme, a constant IV will gener-
ate a deterministic, stateless cipher, which is not IND-
CPA secure. The bytecode snippet below shows such
misuse. Instruction, Ljava/crypto/spec/
IvParameterSpec, is the indicator instruction of this
misuse, and we can conclude that register v7 is the IV
parameter. However, v7 receives the value from reg-
ister v10. Thus, v10 holds the original value of the
IV, which is set as constant based on the root cause,
“1234567898765432”. However, the IV should always
be set as random based on the CBC encryption con-
struction.

1.new-instance v7,
Ljavax/crypto/spec/IvParameterSpec;

2.const-string v10, “1234567898765432”

3.invoke-virtual v10, Ljava/lang/String/;—
getBytes () [B

4 .move-result-object v10

5.invoke-direct {v7, v10}, Ljava/crypto/spec/
IvParameterSpec; —<init>([B)V

Misuse 3: Using a constant secret key. In a symmet-
ric encryption scheme, if an user uses a secret key with
insufficient key length, then the attacker can extract
the secret key by using dictionary attack. Moreover,

LAES is the cryptography algorithm chosen by developers.
PKCS5Padding is the padding scheme

if secret key is constant, it will be extracted by using
brute force attack. The sample bytecode with a con-
stant secret key is illustrated as below. According to
the indicator instruction, Ljava/crypto/spec/
SecretKeySpec, we are able to define that register v2
holds the value of secret key, and the value of register
v2 is “0x0”, which is constant.

l.const/4 v2, 0x0

2.invoke-virtual v2, Ljava/lang/String/;—
getBytes () [B

3.move-result-object v2

4.const-string/jumbo v4, "AES"

5.invoke-direct {v3, v2, v4},
Ljava/crypto/spec/SecretKeySpec; —
<init>([BLjava/lang/String;)V

Misuse 4: Using a constant salt in PBE. According to
[11], a randomized salt can make PBE perform better.
A constant salt makes the algorithm with salt reduce to
an algorithm without salt. According to the indicator
instruction, Ljava/crypto/spec/PBEParameterSpec in
the sample bytecode shown as below, we observe that
it uses PBE encryption scheme, and register v2 holds
a constant salt value, “0x0”.

1.const/4 v2, 0x0

2.new-instance v3, Ljava/crypto/spec/
PBEParameterSpec; —<init>([BI)V

3.const/16 v4, 0x64

4.invoke-direct {v3, v2, v4},
Ljava/crypto/spec/PBEParameterSpec;
—<init>([BI)V

Misuse 5: Setting iterations < 1,000 in PBE. Based on
the suggestion given by PKCS#52, the iteration should
be at least 1,000 (i.e. 0x3e8 in hexadecimal). Accord-
ing to the indicator instruction, Ljava/crypto/spec/
PBEParameterSpec in the sample bytecode of misuse
4, it describes the situation where iteration is set inap-
propriately. Register v4 holds the hexadecimal value
of iteration, “0x64” (i.e. 100 in decimal).

Misuse 6: Using a constant seed to seed SecureRandom
In [3], they show that seeding SecureRandom may be
insecure since seeding may cause the instance to return
a predictable sequence of numbers. If the same seed is
reused, the returned number will become repeatable.
The indicator instruction in the code shown as below is
Ljava/security/SecureRandom; —getInstance. Based
on the indicator instruction, we can identify the root
cause instruction and conclude that SecureRandom is
seeded by a constant seed, that is, the value of register
p0.

ZPKCS#5: Password-Based Cryptography Standard,
http://www.emc.com/emc-plus/rsa-labs/standards-
initiatives/pkes-5-password-based-cryptography-
standard.htm.
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1.p0, [B

2....

3.const-string/jumbo v1, "SHA1PRNG"

4 .invoke-static {v2, vi},
Ljava/security/SecureRandom; —getInstance
(Ljava/lang/String;Ljava/lang/String;)
Ljava/security/SecureRandom;

5.move-result-object vl

6.invoke-virtual {v1, p0}, Ljava/security/
SecureRandom;—setSeed([B)V

Misuse 7: Using MD5 hash function. Wang et al. [31]
have found many collisions in MD5 and created a pow-
erful attack that can efficiently find MD5 collisions.
Based on the indicator instruction, Ljava/security/
MessageDigest in the sample bytecode below, we in-
fer the root cause instruction and identify that register
v2 contains the string of encryption scheme, that is,
“MD5”, allowing us to conclude that it uses MD5 hash
function.

1.const-string v2, “MD5”
2.invoke-static {v2}, Ljava/security/

MessageDigest; —getInstance(Ljava/lang/String;)

Ljava/security/MessageDigest
3.move-result-object vl

3. OVERVIEW OF CDREP

In this section, we introduce the overview of our automatic
repair technique, CDRep (Cryptographic-Misuse Detection
and Repair). Figure 1 shows the workflow of CDRep. It has
two phases, detection and repair:

Detection: In this phase, CDRep follows the detection
steps of CRYPTOLINT [11], which include decompilation
and fault identification. After decompiling an Android app,
in the fault identification phase, CDRep checks if vulner-
abilities exist in the app; if they exist, CDRep identifies
vulnerable Java classes as well as their vulnerability types.

Vulnerabilities are found by first locating indicator in-
structions (see Section 2) in the decompiled code. Next,

for each indicator instruction, CDRep identifies other in-
structions that the indicator instruction is data dependent
on. CDRep then checks all such instructions to identify root
causes that correspond to cryptographic misuses. For each
misuse, CDRep records its type and the Java class that con-
tains it. Since this step closely follows CRYPTOLINT, we
only briefly describe its intuition. Details are available in
the original CRYPTOLINT paper [11]. CRYPTOLINT de-
tects six kinds of vulnerabilities (misuses 1-6); in this work,
we add one more vulnerability (misuse 7). The procedure
to identify the seventh vulnerability is the same as the one
used to identify the other six.

Repair: In this phase, CDRep fixes the vulnerable program
by performing a series of program transformations specified
in a set of manually created patch templates. Details of this
phase is presented in Section 4.

4. CRYPTOGRAPHIC MISUSES:
AUTOMATIC REPAIR

In this section, we elaborate the repair phase of CDRep.
This phase requires a set of manually created patch tem-
plates, which we describe in Section 4.1. Given a vulnerable
Java class and a vulnerability type, CDRep applies a cor-
responding patch template to repair the class (described in
Section 4.2).

4.1 Patch Templates

We manually create seven patch templates, each for a mis-
use type. To generate these templates, we take a set of pro-
grams with cryptographic misuses and manually fix them.
Next, for each pair of correct and faulty program pairs (i.e.,
with and without cryptographic misuses), we examine code
that needs to be added and removed to transform the faulty
program to the correct one. We then generalize the added
and removed code as a generic patch. A generic patch con-
sists of a series of code transformations. Each transforma-
tion corresponds to a series of code removal and addition
given a particular context. To make the patch generic, we re-



Table 1: Patch overview
Misuse | Patch Overview

1 Using CTR mode.

using a randomized IV for CBC encryption.
Using a randomized secret key.

Using a randomized salt in PBE.

Setting iterations = 1,000.

Calling SecureRandom.nextBytes().

Using SHA-256 hash funtion.

N O Ok WD

place actual register/variable names, with placeholders. We
also replace each constant value with a wildcard character
(“*”) that can match any constant.

Figure 2 presents a sample template for transforming a
Java class Target containing cryptographic misuse 2, i.e., it
uses a constant IV for CBC encryption. The template con-
tains 4 transformations: i, i1, iii, v. Transformation ¢ speci-

fies the insertion of the bytecode of java.security.SecureRandom

class to the app (if it does not exist). Transformation iz spec-
ifies the insertion of a field IvParameterSpec to Target.
Transformations 3¢ and v specifies code additions (marked
by “4”) and code deletions (marked by “”) along with a
context (marked by “="). Each transformation specifies that
whenever a piece of code matches with the context, the lines
of code marked by “-” will be replaced with the lines of code
marked by “+”. In the two transformations, we have place-
holders (e.g., Pli, ... Plg in transformation 4¢7) and wildcard
characters (e.g., “*” at line 1 of transformation 4i7).

It is worth mentioning that cryptographic algorithms al-
ways appear in pairs (i.e. encrypt and decrypt). Transfor-
mation ¢ is to fix the encryption method in the vulnerable
class and transformation iv fixes the decryption method. In
transformation #ii, we match for code Ljava/crypto/spec/
IvParameterSpec to locate indicator instruction (line 5).
Then, we replace code that is the root cause of the mis-
use (line 1) with code that generates the randomized value
(line 6-20). The randomized value is stored in the field iv-
Params (line 8). Then we check the length of the ran-
domized value (line 11). Due to that the length is longer
than the required length, we only take the sub-length of
the randomized value (line 15-18). Finally, the sub-length
of randomized value is transformed to the placeholder of
IV. Similar to transformation #ii, we also match the indi-
ator instruction Ljava/crypto/spec/IvParameterSpec first
in transformation v (line 5). Then, we locate the root cause
in line 1 and replace it with codes that are used to generate
the randomized value. Instead of generating a randomized
value, we extract the value from the field ivParams in line
6. We take the same steps as tranformation iii to check the
length of randomized value and take the required length of
randomized value (line 9-16).

Another sample template for transforming a Java class
target containing cryptographic misuse 5 is shown in Figure
3, i.e., it sets iterations < 1,000. The template only has one
transformation, modification. However, the modification
transformation should be applied on both encryption and de-
cryption method. We first match the code Ljava/crypto/
spec/PBEParameterSpec; —<init> in line 4. Then, we lo-
cate the root cause in line 3 and replace it with line 5 to
modify the iterations to 1,000.

Due to space constraint, we cannot show all the 7 tem-

plates. A brief description of these templates is given in Ta-
ble 1. We describe another two templates in the Appendix,
and the other three in the technical report [4]. Although
the generation of these patch templates is manual, it is a
one-time cost and the patch templates can be reused to au-
tomatically fix many cryptographic misuses.

4.2 Patch Generation

In this step, CDRep takes a vulnerable Java class along
with a misuse type as inputs, and generates a patched class.
To generate the patched class, CDRep picks the correspond-
ing patch template, runs a series of program transformations
specified in the template, and replaces placeholders with ac-
tual register/variable names.

Given a transformation, CDRep matches the lines of code
marked by “=" and “-” in the vulnerable Java class. In the
process, the mappings between placeholders and actual vari-
able/register names are identified. The lines of code marked
with “-” are then replaced with the lines of code marked
with “4”. Placeholders in these newly added lines of code
are then replaced with actual register names based on the
mappings that are identified earlier. Other placeholders in
the newly added code that do not appear in the mapping
are replaced with new variable/register names that do not
appear in the vulnerable Java class.

An automatic code fix example for misuse 2 (i.e., using a
constant IV for CBC encryption) is shown in Figure 4. Ac-
cording to the transformation ¢i7 given in the template, Fig-
ure 2, CDRep first matches the line of code marked by “="
(i.e., lines 1, 3, 4, 5 in the vulnerable code of Figure 4(a)).
Then, CDRep performs mapping between the placeholders
and the actual variable/register shown in Figure 4(b). It is
apparently that register v10 is mapped to placeholder Pl;,
which is the root cause. Register v7 is mapped to place-
holder Pls, which represents the IvParamterSpec. After
mapping the actual registers, CDRep replaces the placehold-
ers that are mapped with the actual registers. For those
placeholders that are not mapped with any actual registers,
we replace them with other available registers (i.e., v1, v2
shown in Figure 4(c)).

5. EVALUATION

In this section, we present the details and results of our
experiments that evaluate the performance of CDRep. Our
experiments are designed to answer the following questions:

RQ1 (Success rate) How many misuses can CDRep re-
pair successfully?

RQ2 (Runtime) What is the average time needed for CDRep

to generate a patch?

RQ3 (Size) What is the average increase in size of repaired
apps?

RQ4 (Failed cases) Why can’t some apps be repaired suc-

cessfully?

5.1 Experiment Setup

Dataset. To evaluate CDRep, we crawled apps from two
app stores, Google play® and SlideMe* (a third-party store).

3Google Play Store: https://play.google.com /store?hl=en
“Third-Party store: SlideMe (http://slideme.org/)



Misuse 2:

Using a constant IV for CBC encryption

Input:

Vulnerable Java class Target

Transformation:

i

A,

Insert SecureR class to the default package of the app

ii

Insert a new public IV addition
Sfield public static ivParams:Ljavax/crypto/spec/IvParameterSpec;.

iii

[Encryption:]

1 § new-instance Plp, Ljavax/crypto/spec/IvParameterSpec;

— const Ply, *

§ invoke-virtual {Pl,}, Ljava/lang/String;->getBytes()[B

§ move-result-object P1,

§ invoke-direct {Pl,, P1;}, Ljava/crypto/spec/IvParameterSpec;-><init>([B)V

+ invoke-static {}, SecureRandom;
->gen_ivParams()Ljavax/crypto/spec/IvParameterSpec;

7 + move-result-object Pl3

8  + sput-object Pls, Target;->ivParams:Ljavax/crypto/spec/IvParameterSpec;

9  +invoke-virtual {Pls}, Ljava/lang/Object;->toString()Ljava/lang/String;

10+ move-result-object Pl;

11 +invoke-virtual { Pl3}, Ljava/lang/String;->length()I

12+ move-result Pl

13+ move Ply, Pl3

14+ .local Ply, "iv_length":I

15 + move Pls, Ply

16 + const/16 Plg, 0x10

17+ add-int/lit8 Pls, Pls, -0x10

18 +invoke-virtual { Pls, Pls}, Ljava/lang/String;->substring(I)Ljava/lang/String;

19+ move-result-object Pl;

20 4+ move-object Pl;, Pl3

(o NNV N SRV S ]

[Decryption:]
§ new-instance Pl,, Ljavax/crypto/spec/IvParameterSpec;
2 — const P1;, *
3§ invoke-virtual {Pl;}, Ljava/lang/String;->getBytes()[B
4§ move-result-object P,
5§ invoke-direct {Pl,, P1,}, Ljava/crypto/spec/IvParameterSpec;-><init>([B]V
6+ sget-object Pl; Target;->ivParams:Ljavax/crypto/spec/IvParameterSpec;
7 +invoke-virtual { Pl3}, Ljava/lang/Object;->toString()Ljava/lang/String;
8  + move-result-object Pls
9  +invoke-virtual { Pl3}, Ljava/lang/String;->length()I
10+ move-result Pl3
11+ move Ply, Pl
12 + local Ply, "iv_length":I
13+ move Pls, Pl
14+ const/16 Plg, 0x10
15+ add-int/lit8 Pls, Pls, -0x10
16  +invoke-virtual { Pl3, Pls}, Ljava/lang/String;->substring(I)Ljava/lang/String;
17+ move-result-object Pl;
18+ move-object Pl;, Pl3

Figure 2: Patch template for misuse 2: this template fixes the misuse that use a constant IV for

encryption

Misuse 5:

Set iteration < 1,000

Input:

Vulnerable Java class Target

Transformation:

[Modification]

1§ new-instance Pl;, Ljavax/crypto/spec/PBEParameterSpec;

2§ sget-object Ply, Target;->salt:[B

3 —constPl3, *

4 §invoke-direct { Pl;, Pl,, P13}, Ljava/crypto/spec/PBEParameterSpec;
-><init>([B[]V

5 +const/16 Pls, 0x3e8

Figure 3: Patch template for

be less than 1,000

In total, we collected 8,640 free apps (2,114 apps from Google
Play, and 6,526 apps from SlideMe), sampled from all cat-

CBC

misuse 5: this template fixes the misuse that sets the number of iterations to

egories. Since some sensitive categories (e.g., finance, re-
tail, etc.) are more likely to use cryptography algorithms,



—

. new-instance v7,

2. const-string v10,
“1234567898765432”
3. invoke-virtual {v10},

A) Ljava/lang/String;->getBytes()[B

4. move-result-object v10

Ljavax/crypto/spec/IvParameterSpec;

5. invoke-direct {v7, v10}, Ljava/crypto
/spec/IvParameterSpec;-><init>([B)V

—

. new-instance Plz,
Ljavax/crypto/spec/IvParameterSpec;
2. const Ply, *
3. invoke-virtual {Pli},
<:> Ljava/lang/String;->getBytes()[B
4. move-result-object Pli

5. invoke-direct {Pl2, Pli}, Ljava/crypto
/spec/IvParameterSpec;-><init>([B)V

B)

O

U

Actual Placeholders
variable/register
v10 Pli
v7 Pl
“12345678987654 *
327

1. new-instance v7,

Ljavax/crypto/spec/IvParameterSpec;

2. invoke-static {}, SecureRandom;
->gen_ivParams()Ljavax/crypto/spec/IvParameterSpec;

3. move-result-object v1

4. sput-object v1, Target;
->jvParams:Ljavax/crypto/spec/IvParameterSpec;

5. invoke-virtual {v1},
Ljava/lang/Object;->toString()Ljava/lang/String;

6. move-result-object v1

7. add-int/1it8 v2, v2, -0x10
8. invoke-virtual { v1, v2},
Ljava/lang/String;->substring(I)Ljava/lang/String;
9. move-result-object v1
11. move-object v10, v1
12. invoke-virtual v10,
Ljava/lang/String;->getBytes()[B

13. move-result-object v10
14. invoke-direct {v7, v10},
Ljava/crypto/spec/IvParameterSpec;-><init>([B)V

Figure 4: Fix procedure for misuse 2: it uses a constant IV for CBC encryption. A) shows the vulnerable
code with misuse 2, and the template of misuse 2. B) describes the mapping procedure between the actual
variable/register extracted from the vulnerable code and placeholders given in the template. C) is the fixed
code by replacing the placeholders by the actual registers that are mapped

we sample more applications from these sensitive categories
than others (in a ratio of 5.5 to 1).

Detected Cryptographic Misuses.
both detection and fix of cryptographic misuses.

CDRep performs
Table 2

shows the number of cryptographic misuses detected by CDRep

across the seven misuse types.

Experiment Design. We evaluate the effectiveness of
our approach from three aspects: acceptance rate, patching
speed, and size of repaired apps. Acceptance rate evaluates
whether our patches are acceptable by security experts and
app developers. Patching speed evaluates the efficiency of
our approach; if our approach takes a long time to complete,
users are less likely to use it. Size of repaired apps is also

an important factor that affects usability; if the size of the
patched app increases too much, users are less likely to use
it.

To measure acceptance rate, we ask our security research
team and application developers to examine the repaired
programs. Our research team can examine whether the
repaired implementations of the cryptographic functional-
ities are correct. However, they will not be able to con-
clude whether our patch inadvertently modifies any other
behaviours of the app in a bad way. Thus, we also email the
repaired apps to their corresponding developers to get feed-
back on the app behaviours. To measure patching speed, we
simply measure the average time that our approach takes to



Table 2: CDRep: Detection result

# | Misuse Type ## of Apps | Percentage | Google Play | SlideMe
1 | Use ECB mode 887 10% 402 485

2 | Use a constant IV for CBC encryption 979 11% 379 600

3 | Use a constant secret key 882 10% 357 525

4 | Use a constant salt for PBE 7 0.08% 4 3

5 | Set # iterations < 1,000 10 0.1% 7 3

6 | Use a constant to seed SecureRandom 235 2% 17 218

7 | Use MD5 hash function 5582 65% 1359 4223

generate a patch. To measure repaired app size, we measure
the percentage of increase in app size after an app has been
patched.

To measure acceptance rate, manual inspection (performed
by our security research team and app developers) is needed.
Since this inspection is a time consuming process, and many
apps suffer from cryptographic misuses (see Table 2), it is
not possible to check all of the apps that we have repaired
(especially for apps that exhibit misuse 1-3, and 7). Thus,
except for misuse 4-6 (for which we evaluate all repaired
apps), for each other misuse type, we randomly sample apps
for manual inspection. For misuse 1, 2, 3, and 7, we se-
lect 100, 110, 100, and 700 apps respectively. We vary the
number of apps selected for each misuse type, based on the
number of apps with cryptographic misuses of that type (we
pick around 12% of apps of a particular misuse type).

5.2 RQ1: Success Rate

In this section, we measure how many vulnerable apps are
repaired successfully. To make it easier for cryptographers
and developers to examine the patch, we not only give them
the original vulnerable app and the repaired app that we
have repacked, but also provide the bytecode of the vulner-
able and repaired apps. In addition, we describe the misuses
in the app, and explain why the cryptographic code in the
app is not secure.

Table 3 presents the acceptance result of our repaired
apps. Overall, our research team accept more than 94.5%
of the repaired apps. Considering the email responses, 87%
of the repaired program are accepted, which means that the
app behaviors are not impacted by the repaired program.
According to the result, the patch for misuse 5 and misuse 7
are better than the other types. Our repaired apps are not
accepted by all the developers, we explain the reasons in the
following section (Section 6).

5.3 RQ2 and RQ3: Runtime and Size

The average runtime needed by our approach to identify a
misuse and generate a patch, excluding decompilation time,
is only about 19.3 seconds. The bulk of the cost is in the
generation of a patch which on average takes 14.6 seconds.

The increase in the size of the patched apps is negligible.
Table 4 shows the average increase in the size of patched
apps for different misuse types. Across the 7 apps the aver-
age increase in size is only 0.667% of the original app size.

5.4 RQ4: Unsuccessful Cases

From Table 3, there are apps that are not repaired suc-
cessfully by our approach. We discuss the main causes as
follows:

Popular libraries. For some apps, developers may call pop-

ular libraries. CDRep identifies some misuses that ex-
ist in these libraries. For example, several MD5 mis-
uses occur in the classes that are provided by Google,
that are, several classes in the “com.google.android.gms.
package. Although we have repaired those misuses,
some app developers rejected our changes since they
still prefer to use the standard classes provided by
Google.

E3)

Incomplete repair: CDRep assumes that each method only
contains code that uses one cryptographic scheme. For
cases where this assumption does not hold (i.e., a method
contains code that uses multiple cryptographic schemes),
CDRep could only repair misuses of the first crypto-
graphic scheme. We find that a few apps define more
than one encryption scheme in a single method, which
causes the patch generated by our approach to be in-
complete.

Incomplete decompilation: We use apktool to decompile
vulnerable apps. However, we find that some apps
with complex behaviours cannot be decompiled well.
Moreover, some apps reject decompilation. For such
cases, CDRep cannot generate patches.

6. LIMITATION

In this section, we discuss the threats to validity. Aside
from the limitations corresponding to the unsuccessful cases
highlighted in Section 5.4, there are a few other limitations
of our approach and its evaluation:

Focus on Android. CDRep is only able to detect and fix
cryptographic misuses involving cryptographic classes
that come with the Android API. An app may use
other third-party cryptographic libraries or implement
their own. CDRep is not able to detect and fix crypto-
graphic misuses for such apps. To detect these misuses,
there is a need to create new templates. This effort
will pay off if the third party cryptographic libraries
are used by many Android apps.

Focus on Free Apps. In our experiment, we only evalu-
ate the effectiveness of CDRep on free apps. These
apps might not be representative of paid apps. The
implementations of paid applications could be differ-
ent from those of free apps and these differences may
impact the effectiveness of our approach. In the future,
we plan to expand our study to evaluate the effective-
ness of CDRep on paid apps.

Focus on the Interaction. For some apps, they upload
user’s data to their server instead of keeping it locally.
CDRep only ensures that an app could work normally



Table 3: St

1ccess Rate

# of # of
Selected apps | Team Acceptance | Developer Response | Developer Acceptance
Misuse 1 100 91(91%) 21 13(61.9%)
Misuse 2 110 92(83.6%) 16 10(62.5%)
Misuse 3 100 83(83%) 23 18(78.2%)
Misuse 4 7 5(71.4%) 3 2(66.7%)
Misuse 5 10 10(100%) 4 4(100%)
Misuse 6 235 212(90.2%) 20 15(75%)
Misuse 7 700 700(100%) 143 138(96.5%)
Total 1262 1193(94.5%) 230 200(87.0%)
Table 4: Average Patch Overhead of different misuse type
Misuse 1 | Misuse 2 | Misuse 3 | Misuse 4 | Misuse 5 | Misuse 6 | Misuse 7
Overhead | 0.749% 0.640% 0.632% 0.742% 0.634% 0.526% 0.748%

if it processes encryption and decryption on the client
side. It might break if this app shares the crypto-
graphic paramters with its server, once we modify the
cryptographic method the client side.

7. RELATED WORK

In this section, we discuss the previous works that are
related to vulnerability detection, malware detection, and
automatic program repair.

7.1 Vulnerability Detection

There are many research efforts focusing on different types
of vulnerabilities, such as component hijacking vulnerabil-
ity [27][28][34], cryptographic misuses [11][29][23], and SSL
misuses [12][10][19]. Component hijacking vulnerability is
related to the threats among the components in Android ar-
chitecture that implement the access control improperly on
external requests and leak the privacy accidentally. CHEX
[27] is proposed to detect the component hijacking vulner-
ability. It identifies the entry points of an app, and splits
the app code into subset of code according to the identified
entry points. In our paper, we also split the vulnerable code
into methods, which makes the repair more effective. The
component vulnerability detection of [28] and [34] focus on
detecting the intent and permission use behaviour among
the components, respectively. Another type of vulnerabili-
ties is SSL misuses. MalloDroid [12] detects the SSL/TLS in
the apps that require INTERNET connection. It detection
scheme focuses on the certificate, hostname, and SSL pro-
tocol checking. As the HTML5-based application becom-
ing popular, code injection on HTML5-based applications
[15][16][14] has caught attentions. Approaches are proposed
to detect the privacy leakage and permission leakage caused
by using Javascript.

Our work is built upon CRYPTOLINT [11], which is able
to detect the misuses of cryptographic primitives (misuse 1-6
in our paper). We follow the same steps as CRYPTOLINT
to identify the misuses of cryptographic APIs investigated in
this work. CMA [29] can identify additional cryptographic
misuses that CRYPTOLINT cannot identify (including mis-
use 7 in our paper). Li et al. proposed iCryptoTracer [23]
which performs dynamic and static analysis to detect cryp-
tographic misuses in i0OS apps. In this work, we extend the

above mentioned studies by proposing an approach that can
not only detect but also fix cryptographic misuses.

7.2 Malware Detection

Malware detection is also a significant part in the re-
search. Android malware detection approaches are grouped
into three categories, dynamic analysis (e.g., [9], [6]), static
analysis (e.g., [30], [13]), and hybrid analysis (e.g., [7]). Bur-
guera et al. [9] proposed an approach that could distinguish
the malware from the normal applications by analyzing the
application behaviors, although they share the same appli-
cation information (i.e, version, name). Different from pre-
vious detection approach, Arora et al. [6] proposed a novel
approach that uses the network traffic analysis to detect
malwares. Based on the network traffic features collected
from chatting, browsing, and mailing, the authors enabled
to build a rule-based classifier to detect malwares. Tuvell
and Venugopal [9] summarized the search string features
identified from compressed executables based on a family
of malware. Through the search string features, it enables
to identify those malwares that belong to the existing mal-
ware family. Feng et al. [13] presented a new approach,
Apposcopy, which identifies a type of Android malware that
steals user’s private information. It identifies the malware
features through Inter-Component Call Graph. FlowDroid
[7] provides a novel static taint analysis to extract the call-
backs and detect the data leakage in Android apps.

7.3 Automatic Program Repair

GenProg [21], PAR [18], and the state-of-the-art, recently
proposed HDRepair [20] are three techniques that are able
to repair general software bugs automatically. GenProg per-
forms genetic programming to generate patches. PAR gen-
erates patches based on prior human-written patches. PAR
authors collect a large number of human-written patches and
manually generate 10 patch templates. HDRepair automat-
ically analyzes bug fix history to infer many graph-based
fix patterns, which are then used to guide a genetic pro-
gramming solution to generate high-quality patches. These
studies focus on generic bugs and have low success rates
— the best approach (i.e., HDRepair) can only fix 23 out
of the 90 bugs in their experiment study. Our approach
focuses on a special family of software bugs, i.e., crypto-
graphic misuses. We leverage specialized domain knowledge



(i.e., how to fix cryptographic misuses) and achieve a much
higher success rate. Furthermore, GenProg requires many
hours to generate a patch while our approach just requires
less than a minute to generate a patch. Additionally, none
of PAR patch templates and the mutation operators used
in HDRepair are designed for cryptographic misuses. More-
over, fixes of cryptographic misuses appear rarely in fix his-
tory and thus HDRepair, which relies on fix history, would
not be able to fix them well.

Our patch templates are created based on the correct set-
ting of the cryptographic primitives. Most of automated re-
pair approaches are based on the static analysis, Azim et al.
[8] proposed a self-healing approach by using dynamic anal-
ysis and static analysis. They performed dynamic analysis
on the apps’ behaviours and detect the crashes. Then, they
generated static activity transition graph (SATG) model to
seal the point that caused the crash . To test the repaired
program, they rollbacked to the nearest safe point before the
crash happened, and executed the repaired program.

The closest related work is AppSealer [33], which is the
first approach that can fix security vulnerabilities in mo-
bile apps. AppSealer is able to fix vulnerabilities that can
be leveraged to perform component hijacking attacks. To
fix vulnerabilities, it translates Java bytecode into Jimple
IR and track the sensitive information on Jimple IR. They
places shadow statements to insert new variables and in-
structions to track the taint data and block dangerous in-
formation. Different from AppSealer, we focus on a different
kind of vulnerabilities, i.e., cryptography misuses.

8. CONCLUSION & FUTURE WORK

In this paper, we propose a approach, CDRep, to auto-
matically repair vulnerable apps with cryptographic mis-
uses. Given a vulnerable Android app, we first perform
static analysis to locate the misuse and identify the misuse
type. Then, based on the misuse type, we apply a suitable
patch template and adapt it to the vulnerable program by
replacing register placeholders in the template with actual
register names. Finally, we perform an optimization step to
remove dead code. To evaluate CDRep, we crawled 8,640
real-world Android apps and use CDRep to identify crypto-
graphic misuses and repair them. Out of the repaired apps,
we randomly pick 1,262 of them for manual inspection (by
security experts and app developers). The evaluation results
show that CDRep can automatically repair the vulnerable
apps effectively — it is able to repair 94.5% of the 1,262
vulnerable apps with an average patch generation time of
merely 19.3 seconds.

There are several aspects for future work. CDRep aims
to repair the cryptographic misuse by using static analysis
at bytecode level. However, detection with static analysis is
not complete.

Detect Self~Written Encryption/Decryption class. In
the detection phase of CDRep, we detect the crypto-
graphic misuse by using the pre-defined cryptographic
APIs that Java provided (e.g., Cipher.getInstance).
However, some developers might prefer to call the cryp-
tographic function written by themselves instead of
calling the existing cryptographic APIs. CDRep is un-
able to detect the self-written encryption/decryption
class.

Identify Constant Variable. We adopt backward data anal-
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ysis to identify the constant variable. However, it could
only match the constant variable when it is defined in
the function. In some circumstances, value of the vari-
able is not set in the function, and it is assigned by the
heap during runtime.

We will extend CDRep by applying hybrid analysis (i.e.,
static analysis and dynamic analysis). Static analysis en-
ables to extract the cryptographic usage from the code level,
and dynamic analysis could caputure the code behaviors at
runtime. It helps detect the self-written encryption/decryption
class and provide a more completed data flow graph.
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Appendix

In this section, we show two other templates for repairing
misuse 3 (i.e., use a constant secret key) and misuse 7 (i.e.,
use MD5 hash function).

Figure 5 presents the patch template for misuse 3, i.e.,
use a constant secret key. In the patch template, we create
a new class to generate random number. It inserts a new
SecureRandom class to generate a new random number in
transformation i. To store te secret key, we create a new
field for the random number in transformation é:. In trans-
formation #ii, we identify the register that stores the orig-
inal constant secret key, namely, Pli, and replace the Ply
with the new generated random number. First, the inserted
SecureRandom function is called, and it assigns a random
number to temporary register Ply from line 6 to line 8. Next,
the random string is processed based on the required length
from line 10 to line 19. Finally, the processed random string
is assigned to the original register Pl;.

Figure 6 shows the patch template for misuse 7, i.e, use
MDS5 hash function. Instead of inserting a new class, we first
identify the location that calls API Ljava/security/
MessagesDigest. Based on the function call, we extract the
register that keeps the input parameter (i.e., Pl1). The value
stored in Pl corresponds to the encryption method chosen.
We modify the value “MD5” into “SHA-256".



Misuse 3: Use a constant secret key
Input: Vulnerable Java class Target

Transformation: | i | Insert SecureRandom bytecode to the app
ii | Insert a new field to the Target: field public static key:Ljavax/crypto/SecretKey;
iii | [Encryption:]
1 — const ply, *
§invoke-virtual {pl;}, Ljava/lang/String;->getBytes()[B
§move-result-object pl,
§const-string pl,, “AES”

+ invoke-static {}, SecureRandom;->get_key() Ljavax/crypto/SecretKey;
+ move-result-object Pl
+ sput-object Ply, Target;->key:Ljava/crypto/SecretKey;
9  +invoke-virtual { Pls}, Ljava/lang/Object;->toString()Ljava/lang/String;
10+ move-result-object Pl

2
3
4
5 §invoke-direct {pls, pl;, plo}, Ljavax/crypto/spec/SecretKeySpec;-><init>([BLjava/lang/String;)V
6
7
8

11+ move-object pl;, Ply

12 +invoke-virtual { Pl;}, Ljava/lang/String;->length()I
13+ move-result Pl,

14+ move pls, Ply

15+ move-object ply, pl;

16+ move pl, pls

17+ const/16 ply, 0x10

18+ add-int/lit8 plg, pls, -0x10

19+ invoke-virtual { Ply, pl¢}, Ljava/lang/String;->substring(I)Ljava/lang/String;
20+ move-result-object Ply

21+ move-object pl;, Ply

iv | [Decryption:]

— const ply, *

§invoke-virtual {pl,}, Ljava/lang/String;->getBytes()[B
§move-result-object pl;

§const-string pl,, “AES”

§invoke-direct {pls, pl;, plo}, Ljavax/crypto/spec/SecretKeySpec;-><init>([BLjava/lang/String;)V
+ sget-object Ply, Target;->key:Ljava/crypto/SecretKey;

+ invoke-virtual { Pl;}, Ljava/lang/Object;->toString()Ljava/lang/String;
+ move-result-object Pl

9 + move-object pl;, Ply

10+ invoke-virtual { Pl;}, Ljava/lang/String;->length()I

11+ move-result Pl,

12+ move pls, Ply

13+ move-object ply, pl;

14+ move pl, pls

15+ const/16 ply, 0x10

00 N B W=

16+ add-int/lit8 pl, ple, -0x10

17  + invoke-virtual { Ply, pl}, Ljava/lang/String;->substring(I)Ljava/lang/String;
18  + move-result-object Pl

19+ move-object pl;, Ply

Figure 5: Patch template for misuse 3: this template fixes the use of a constant secret key

Misuse 7: Use MD5 hash function
Input: Vulnerable Java class Target

Transformation: | [Modification]

1 —const Pl;, “MD5”

2§ invoke-static {Pl,}, Ljava/security/MessageDigest;
->getlInstance(Ljava/lang/String;)Ljava/security/MessagesDigest;

3+ const-string Pl;, “SHA-256"

Figure 6: Patch template for misuse 7: this template fixes the use of MD5 instead of a stronger hash function
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