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Abstract. Vulnerability becomes a major threat to the security of many
systems. Attackers can steal private information and perform harmful
actions by exploiting unpatched vulnerabilities. Vulnerabilities often re-
main undetected for a long time as they may not affect typical systems’
functionalities. Furthermore, it is often difficult for a developer to fix
a vulnerability correctly if he/she is not a security expert. To assist
developers to deal with multiple types of vulnerabilities, we propose a
new tool, called VuURLE, for automatic detection and repair of vulner-
abilities. VuRLE 1) learns transformative edits and their contexts (i.e.,
code characterizing edit locations) from examples of vulnerable codes
and their corresponding repaired codes; 2) clusters similar transforma-
tive edits; 3) extracts edit patterns and context patterns to create several
repair templates for each cluster. VuWRLE uses the context patterns to
detect vulnerabilities, and customizes the corresponding edit patterns to
repair them. We evaluate VuRLE on 279 vulnerabilities from 48 real-
world applications. Under 10-fold cross validation, we compare VuRLE
with another automatic repair tool, LASE. Our experiment shows that
VuRLE successfully detects 183 out of 279 vulnerabilities, and repairs
101 of them, while LASE can only detect 58 vulnerabilities and repair
21 of them.

Keywords: Automated Template Generation, Vulnerability Detection,
Automated Program Repair

1 Introduction

Vulnerability is a severe threat to computer systems. However, it is difficult
for a developer to detect and repair a vulnerability if he/she is not a security ex-
pert. Several vulnerability detection tools have been proposed to help developers
to detect and repair different kinds of vulnerabilities, such as cryptographic mis-
use [17], cross-site scripting (XSS) [26], component hijacking vulnerability [28],
ete.

Prior studies on automatic vulnerability repair typically focus on one type
of vulnerability. These studies require custom manually-generated templates or
custom heuristics tailored for a particular vulnerability. CDRep [17] is a tool to
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repair cryptographic vulnerabilities. It detects and repairs the misuses of cryp-
tographic algorithms. By manually summarizing repair patterns from correct
primitive implementations, repair templates are generated. Similar to CDRep,
Yu et al. [26] proposed an approach to repair string vulnerabilities in web ap-
plications. They manually construct input string patterns and attack patterns.
Based on the input-attack patterns, the tool can compute a safe input, and con-
vert a malicious input into a safe input. AppSealer [28] defines manually crafted
rules for different types of data to repair component hijacking vulnerabilities
by using taint analysis. By applying dataflow analysis, it can identify tainted
variables, and further repair those variables based on the defined rules.

Manually generating repair templates and defining repair rules are tedious
and time consuming activities. As technology and computer systems advance,
different vulnerabilities may occur and fixing each of them likely requires differ-
ent repair patterns. Unfortunately, it is very expensive or even impractical to
manually create specific templates or rules for all kinds of vulnerabilities. The
above facts highlight the importance of developing techniques that can generate
repair templates automatically.

To help developers repair common bugs, Meng et al. [20] proposed LASE
that can automatically generate a repair template. LASE automatically learns
an edit script from two or more repair examples. However, LASE’s inference
process has two major limitations. First, it can only generate a general template
for a type of bug. However, a bug can be repaired in different ways based on the
contezt (i.e., preceding code where a bug appears in). Second, it cannot learn
multiple repair templates from a repair example that involves repair multiple
bugs.

To address the above limitations, we design and implement a novel tool, called
VuRLE (Vulnerability Repair by Learning from Examples), that can help devel-
opers automatically detect and repair multiple types of vulnerabilities. VWRLE
works as follows:

1. VuRLE analyzes a training set of repair examples and identifies edit blocks
— each being series of related edits and its context from each example. Each
example contains a vulnerable code and its repaired code.

2. VuRLE clusters similar edit blocks in to groups.

3. Next, VuRLE generates several repair templates for each group from pairs
of highly similar edits.

4. VuRLE then uses the repair templates to identify vulnerable code.

5. VuRLE eventually selects a suitable repair template and applies the trans-
formative edits in the template to repair a vulnerable code.

VuRLE addresses the first limitation of LASE by generating many repair
templates instead of only one. These templates are put into groups and are used
collectively to accurately identify vulnerabilities. VuRLE also employs a heuris-
tics that identifies the most appropriate template for a detected vulnerability. It
addresses the second limitation by breaking a repair example into several code
segments. It then extracts an edit block from each of the code segment. These



edit blocks may cover different bugs and can be used to generate different repair
templates. This will result in many edit blocks though, and many of which may
not be useful in the identification and fixing of vulnerabilities. To deal with this
issue, VuaRLE employs a heuristics to identify suitable edit blocks that can be
generalized into repair templates.

We evaluate VuRLE on 279 vulnerabilities from 48 real-world applications
using 10-fold cross validation setting. In this experiment, VuRLE successfully
detects 183 (65.59%) out of 279 vulnerabilities, and repairs 101 of them. This
is a major improvement when compared to LASE, as it can only detects 58
(20.79%) out of the 279 vulnerabilities, and repairs 21 of them.

The rest of this paper is organized as follows. Section 2 presents an overview
of our approach. Section 3 elaborates the learning phase of our approach and
Section 4 presents the repair phase of our approach. Experimental results are
presented in Section 5. Related work is presented in Section 6. Section 7 concludes
the paper.

2 Overview of VuRLE

In this section, we introduce how VuRLE repairs vulnerabilities. Figure 1
shows the workflow of VuRLE. VuRLE contains two phases, Learning Phase
and Repair Phase. We provide an overview of working details of each phase
below.

Learning Phase. VuRLE generates templates by analyzing edits from repair
examples in three steps (Step 1-3).

1. Edit Block Extraction. VuRLE first extracts edit blocks by performing
Abstract Syntax Tree (AST) diff [8] of each vulnerable code and its repaired
code in a training set of known repair examples.

The difference between a pair of vulnerable and repaired code may be
in several code segments (i.e., contiguous lines of code). For each pair of
vulnerable and repaired code segments, VuRLE outputs an edit block which
consists of two parts: (1) a sequence of edit operations, and (2) its context.
The first specifies a sequence of AST node insertion, deletion, update, and
move operations to transform the vulnerable code segment to the repaired
code segment. The latter specifies a common AST subtree corresponding to
code appearing before the two code segments.

2. Edit Group Generation. VuRLE compares each edit block with the other
edit blocks, and produces groups of similar edit blocks.

VuRLE creates these edit groups in several steps. First, it creates a graph
where each edit block is a node, and edges are added between two edit blocks
iff they share the longest common substring [11] of edit operations with
a substantial size. Next, it extracts connected components [12] from these
graphs. Finally, it applies a DBSCAN [5]-inspired clustering algorithm, to
divide edit blocks in each connected component into edit groups.
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Fig. 1: Workflow of VuRLE: 1) VuRLE generates an edit block by extracting
a sequence of edit operations and its context. 2) VuRLE pairs the edit blocks
and clusters them into edit groups 3) VuRLE generates repair templates, and
each contains an edit pattern and a context pattern. 4) VuRLE selects the best
matching edit group to detect for vulnerabilities 5) VuRLE selects and applies
the most appropriate repair template within the selected group.

3. Repair Template Generation. In each edit group, VuRLE generates a
repair template for each pair of edit blocks that are adjacent to each other
in the connected component (generated as part of Step 2).

Each repair template has an edit pattern and a context pattern. An edit
pattern specifies a sequence of transformative edits, while a context pattern
specifies the location of the code where the transformative edits should be
applied. To create the edit pattern, VuRLE identifies the longest common
substring of edit operations in the two edit blocks. To create the context
pattern, VuRLE compares the code appearing in the context part of the two
edit blocks. To generalize the patterns, VuRLE abstracts concrete identifier
names and types appearing in the patterns into placeholders.

The context pattern is used to identify vulnerable code, while the edit
pattern is used to repair identified vulnerabilities in the repair phase.

Repair Phase. VuRLE detects and repairs vulnerabilities by selecting the most
appropriate template in two steps (Step 4-5). These two steps are repeated a
number of times until no more vulnerable code segments are detected.



4. Edit Groups Selection. Given an input code and a set of repair templates,
VuRLE compares code segments of the input code with edit groups and
identifies an edit group that best matches it.

5. Template Selection & Application. The most matched edit group may
have multiple templates that match an input code segment. VuRLE enu-
merates the matched templates one by one, and applies the transformative
edits specified in the edit pattern of the template. If the application of the
transformative edits results in redundant code, VuRLE proceeds to try the
next template. Otherwise, it will flag the code segment as a vulnerability
and generates a repaired code segment by applying the transformative edits.

3 Learning Phase: Learning from Repair Examples

In this phase, VuRLE processes a set of vulnerability repair examples to
produce groups of similar repair templates. The three steps involved in this phase
(Edit Block Extraction, Edit Block Group Extraction, and Repair Template
Generation) are presented in more details below.

3.1 Edit Block Extraction

For each repair example, VuRLE uses Falleri et al.’s GumTree [7] to compare
the AST of a vulnerable code and its repaired code. Each node in an AST cor-
responding to a source code file can be represented by a 2-tuple: (Type, Value).
The first part of the tuple indicates the type of the node, e.g., VariableDeclara-
tionStatement, SimpleType, SimpleName, etc. The second indicates the concrete
value stored in the node, e.g., String, readLine, “OziExplorer”, etc.

Using GumTree, VaRLE produces for each repair example a set of edit blocks,
each corresponds to a specific code segment in the AST diff between a vulner-
able code and its repaired code. Each edit block consists of a sequence of edit
operations, and its context. The sequence can include one of the following edit
operations:

Insert(Node u, Node p, int k): Insert node u as the k' child of parent
node p.

— Delete(Node u, Node p, int k): Delete node u, which is the k** child of
parent node p.

Update(Node u, Value v): Update the old value of node u to the new
value v.

— Move (Node u, Node p, int k): Move node u and make it the k" child of
parent p. Note that all children of u are moved as well, therefore this moves
a whole subtree.

For each sequence of edit operations, VuRLE also identifies its context. To
identify this context, VuRLE uses GumTree to extract an AST subtree that
appears in both vulnerable and repaired ASTs and is relevant to nodes affected



by the edit operations. This subtree is the largest common subtree where each
of its leaf nodes is a node with SimpleName type that specifies a variable that is
used in the sequence of edit operations. We make use of the getParents method
of GumTree to find this subtree.

Vulnerable Code Segment
String line = reader.readLine();
if (! line.startsWith("*OziExplorer'))
{...

Ve

Repaired Code Segment

String line = reader.readLine();
if (line == null || ! line.startsWith(**OziExplorer'))
{...

Rs [VariableDeclarationStatement: «” Riz[_IfStatement: < |
Rs |SimpleType: Strin: Rr [VariableDeclarationFragment: *»] R: [InfixExpression: || Ry [PrefixExpression: !

Rs Rg
Re [SimpleName: String | [SimpleName: line || MethodInvocation: “” | Ri[ InfixExpression: = = Ris

MethodInvocation: “”

Rio, Ri1 Ris Ri16 R19 R20
['SimpleName: reader |[SimpleName: readLine][ SimpleName: line | [NullLiteral: “*][ SimpleName: line |[SimpleName: StartsWith| [ StringLiteral: OziExplorer |

Fig. 2: Vulnerable and Repaired Code Segments and Their ASTs

To illustrate the above, consider Figure 2. It shows the ASTs of a vulnerable
code segment and its corresponding repaired code segment. Performing AST
diff on these two ASTs produces a sequence of edit operations which results in
the deletion of nodes Vi5 to Vi7, and the insertion of nodes Ri2 to Rs; into
the subtree rooted at V3. It also produces a context which corresponds to the
common AST subtree highlighted in gray.

3.2 Edit Group Generation

VuRLE generates edit groups in two steps: (1) edit graph construction; (2)
edit block clustering. We describe these two steps in detail below.

Edit Graph Construction. VuRLE creates a graph, whose nodes are edit
blocks extracted in the previous step. The edges in this graph connect similar
edit blocks. Two edit blocks are deemed similar iff their edit operations are sim-
ilar. To check for this similarity, VuRLE extracts the longest common substring



(LCS) [11] from their edit operation sequences. The two edit blocks are then con-
sidered similar if the length of this LCS is larger than a certain threshold Tg;,.
Each edge is also weighted by the reciprocal of the corresponding LCS length.
This weight represents the distance between the two edit blocks. We denote the
distance between two edit blocks e; and eq as dist(e;s, ez).

Connected Edit Groups

Components

( Group 1
Eo =
E7 £=0.17

Fig. 3: Edit Block Clustering: CCs to Edit Block Groups

Edit Block Clustering. Given an edit graph, VuRLE first extracts connected
components [12] from it. For every connected component, VuRLE clusters edit
blocks appearing in it.

To cluster edit blocks in a connected component (CC), VuRLE follows a
DBscan-inspired clustering algorithm. It takes in two parameters: e (maximum
cluster radius) and p (minimum cluster size). Based on these two parameters,
VuRLE returns the following edit groups (FGS):

EGS(CC) = {N.(e;) | e € CC A |Ne(e)| = p} (1)

In the above equation, N.(e;) represents a set of edit blocks in CC whose
distance to e; is at most €. Formally, it is defined as:

N.(e;) ={e; € CC | dist(e;,e;) < e} (2)

The value of p is set to be 2 to avoid generating groups consisting of only one
edit block. The value of ¢ is decided by following Kreutzer et al.’s code clustering
method [14]. Their heuristic has been shown to work well in their experiments.
The detailed steps are as follows:

1. Given an edit graph, VuRLE first computes the distance between each con-
nected edit block. Two edit blocks that are not connected in the edit graph
has an infinite distance between them.



2. VuRLE then orders the distances in ascending order. Let (dy,ds,...,d,) be
the ordered sequence of those distances.

3. VuRLE finally sets the value of ¢ by finding the largest gap between two
consecutive distances d(;;1y and d(;) in the ordered sequence. Formally, ¢ is

set as € = d;=), where j* = argmaxlgjgn(%).

To illustrate the above process, Figure 3 presents two connected components
(CCs), {E1, Es, E3, Es5, Eg} and {Ey, E7}. VURLE first orders the distances into
[0.12, 0.14, 0.17, 0.25]. It then computes the largest gap between two consecutive
distances, and identifies a suitable value of e, which is 0.17. Based on ¢ = 0.17
and p = 2, VuRLE creates two groups of edit blocks for the first CC: {FE},
Es, E3}, and {E5, Eg}. It generates none for the second CC.

3.3 Templates Generation

For each edit group, VuRLE identifies pairs of edit blocks in it that are
adjacent nodes in the edit graph. For each of these edit pairs, it creates a repair
template. A repair template consists of an edit pattern, which specifies a sequence
of transformative edits, and a context pattern, which specifies where the edits
should be applied.

To create an edit pattern from a pair of edit blocks, VuRLE compares the edit
operation sequences of the two edit blocks. It then extracts the longest common
substring (LCS) from the two sequences. This LCS is the edit pattern.

To create a context pattern from a pair of edit blocks, VuRLE processes the
context of each edit block. Each context is a subtree. Given a pair of edit block
contexts (which is a pair of AST subtrees, ST} and ST3), VuRLE proceeds in
the following steps:

1. VuRLE performs pre-order traversal on ST; and ST5.

2. For each subtree, it extracts an ordered set of paths from the root of the
subtree to each of its leaf nodes. The two ordered sets P.S; and PS5 represent
the context of STy and ST5 respectively. We refer to each of these paths as
a concrete context sequence.

3. VuRLE then compares the corresponding elements of P.S; and P.Ss. For each
pair of paths, if they share a longest common substring (LCS) of size Tsim,
we use this LCS to represent both pairs and delete the paths from PS; and
PS5. We refer to this LCS as an abstract context sequence.

4. VuRLE uses the remaining concrete sequences and identified abstract se-
quences as the context pattern.

As a final step, for each template, VuRLE replaces all concrete identifier
types and names with placeholders. All occurrences of the same identifier type
or name will be replaced by the same placeholder.

Figure 4 illustrates how VuRLE generates a context pattern by comparing
two contexts. VuRLE performs pre-order traversal on AST subtrees of context
1 and context 2, generating an ordered set of paths for each context. After
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Fig. 4: Context Pattern Generation

comparing the two set, VaRLE finds the matching paths highlighted in gray.
For each matching pair of nodes that is of type SimpleName or SimpleType,
VuRLE creates placeholders for it. There are five matching pair of nodes fulfilling
this criteria, which are indicated by the dashed lines. Thus, VuRLE creates five
placeholders named $Vy, $V1, $V4, $75, and $My from them.

4 Repair Phase: Repairing Vulnerable Applications

In this phase, VuRLE uses repair templates generated in the learning phase
to detect whether an input code is vulnerable and simultaneously applies ap-
propriate edits to repair the vulnerability. The two steps involved in this phase
(Edit Group Selection and Template Selection) are presented in more details
below. They are performed iteratively until VuRLE can no longer detect any
vulnerability.

4.1 Edit Group Selection

To detect whether an input code is vulnerable, VuRLE needs to find the edit
group with the highest matching score. VaRLE compares the input code (IC)
with each edit group (EG) and computes the matching score as follows:



Smatching (IC, EG) = Z Smatching (IC, T) (3>
Tetemplates(EG)

In the above equation, templates(EG) is the set of templates corresponding
to edit group EG, and Sy,atching(IC, T') is the matching score between template
T and IC. VuRLE computes the matching score between the template 7" and
input code IC' as follows:

1. VuRLE first generates an AST of the input code.

2. VuRLE performs pre-order traversal on this AST to produce an ordered set
of paths. Each path is a sequence of AST nodes from the root of the AST
to one of its leaf node. Let us denote this as I P.

3. VuRLE compares IP with the context of template T. If sequences in T
can be matched with sequences in [P, the number of matching nodes is
returned as a matching score. Abstract sequences need to be fully matched,
while concrete sequences only need to be partially matched. Otherwise, the
matching score is 0.

4.2 Template Selection

In the most matched edit group EG, there are likely to be multiple corre-
sponding templates (i.e., templates(EG) has more than one member). In this
final step, we need to pick the most suitable template.

To find a suitable template, VuRLE tries to apply templates in templates(EG)
one-by-one according to their matching scores. To apply a template, VuRLE first
finds a code segment whose context matches with the context of the template. It
then replaces all placeholders in the template with concrete variable names and
types that appear in the context of the code segment. Next, VuRLE applies each
transformative edits specified in the edit operation sequence of the template to
the code segment.

If the application of a template results in redundant code, VuRLE proceeds
to try the next template. The template selection step ends when one of the
templates can be applied without creating redundant code. The code segment
where the template is applied to is marked as being vulnerable and the resultant
code after the transformative edits in the template is applied is the corresponding
repaired code.

5 Evaluation

This section evaluates the performance of VuRLE by answering two questions
below:

RQ1 (Vulnerability Detection) How effective is VuRLE in detecting whether
a code is vulnerable?



RQ2 (Vulnerability Repair) How effective is VURLE in repairing the de-
tected vulnerable codes? Why some vulnerable codes cannot be repaired by
VuRLE?

The following sections first describe the settings of our experiments, followed
by the results of the experiments which answer the above two questions.

5.1 Experiment Setup

Dataset. We collect 48 applications written in Java from GitHub! that have
more than 400 stars. These applications consist of Android, web, word-processing
and multimedia applications. The size of Android applications range from 3-
70 MB while the size of other applications are about 200 MB. Among these
applications, we identify vulnerabilities that affects them by manually analyzing
commits from each application’s repository. In total, we find 279 vulnerabilities.
These vulnerabilities belong to several vulnerable types listed in Table 1.

Table 1: Types of Vulnerabilities in Our Dataset

Vulnerability Type Description

Failing to release a resource [19] before reusing it. It increases

1 s . .
Unreleased Resource a system’s susceptibility to Denial of Service (DoS) attack.

Inappropriate usage of encryption algorithm [4, 17] or usage

Cryptographic of Plaintext Password Storage. It increases a system’s
Vulnerability susceptibility to Chosen-Plaintext Attack (CPA), brute force
attack, etc.

Ignoring a method’s return value. It may cause an
unexpected state and program logic, and possibly a privilege
escalation bug.

Showing an inappropriate error handling message. It may
cause a privacy leakage, which reveals useful information to

Unchecked Return
Value

Improper Error

Handling potential attackers.
Unchecked hostnames or certificates [10, 6]. It makes a system
SSL Vulnerability susceptible to eavesdroppings and Man-In-The-Middle

attacks [2].
Unchecked input of SQL. It makes a system susceptible to
SQL injection attack, which allows attackers to inject or
execute SQL command via the input data [16].

SQL Injection
Vulnerability

Experiment Design. We use 10-fold cross validation to evaluate the perfor-
mance of VuRLE. First, we split the data into 10 groups (each containing roughly
28 vulnerabilities). Then, one group is defined as a test group, and the other 9
groups as a training group. The test group is the input of the repair phase, while

! Github: https://github.com/



the training group is the input of the learning phase. We repeat the process 10
times by considering different group as test group. We examine the repaired code
manually by comparing it with the real repaired code provided by developers.
Furthermore, we compare VuRLE with LASE [20], which is state-of-the-art tool
for learning repair templates. When running VuRLE, by default we set T;,, to
three.

To evaluate the vulnerability detection performance of our approach, we use
precision and recall as the evaluation metrics, which are defined as follows.

Precision = L
" TP+ FP
TP
frecall = 75 T FN

where T'P is the number of correctly detected vulnerabilities, F' P is the number
of wrongly detected vulnerabilities, and F'N is the number of vulnerabilities that
are not detected by our approach.

To evaluate the vulnerability detection performance of our approach, we use
success rate as the evaluation metric. Success rate is the proportion of the cor-
rectly detected vulnerabilities that can be successfully repaired.

5.2 RQ1: Vulnerability Detection

To answer this RQ, we count the number of vulnerabilities that can be de-
tected by VuRLE and compute the precision and recall on the entire dataset.

Table 2: Detection Result: VuRLE vs LASE

# of Detected Vulnerabilities|Precision| Recall
VuRLE 183 64.67% [65.59%
LASE 58 52.73% 120.79%

Table 2 shows the number of detected vulnerabilities, precision, and recall
of VuRLE and LASE. VuRLE successfully detects 194 vulnerabilities out of the
279 vulnerabilities, achieving a recall of 65.59%. On the other hand, LASE can
only detect 58 vulnerabilities out of the 279 vulnerabilities, achieving a recall of
only 20.79%. Thus, VuRLE detects 215.52% more vulnerabilities compared to
LASE. In terms of precision, ViRLE improves over LASE by 22.64%. It means
that VuRLE proportionally generates less false positives than LASE.

5.3 RQ2: Vulnerability Repair

To answer this RQ, we investigate the number of vulnerabilities that can
be repaired successfully. We also investigate how VuRLE can repair some bugs



Table 3: Vulnerability Repair: VaRLE & LASE
# of Repaired Vulnerabilities|Success Rate
VuRLE 101 55.19%
LASE 21 36.21%

than cannot be repaired by LASE. We also discuss some causes on why VuRLE
cannot repair some bugs.

Table 3 presents the success rate of VuRLE and LASE. The success rate of
VuRLE is much higher than the success rate of LASE. VuRLE successfully re-
pairs 101 vulnerabilities (55.19%), and LASE can only repairs 21 vulnerabilities,
with a success rate of 36.21%. Thus, VuRLE can repair 380.95% more vulnera-
bilities compared to LASE. In terms of success rate, it improves over LASE by
52.42%.

Figure 5 provides a repair example generated by LASE and VuRLE on the
same input code. The piece of code in the example contains a vulnerability
that allows any hostname to be valid. LASE generates an overly general re-
pair template, which only include invocation to setHostnameVerifier. It gener-
ate such template since each repair example invokes the setHostNameVerifier
method after they define the setDefaultHostnameVerifier method, but the
definition of the verifier method itself is different. On the other hand, VuRLE
generates two repair templates that can repair this vulnerability. One of the
template is for modifying the verify method, and another is for invoking the
setDefaultHostnameVerifier method.

HostnameVerifier allHostsValid = new HostnameVerifier(){
public Boolean verify(String hostname, SSLSession session){
return true;
}
}

urlConnection.setDefaultHostnameVerifier(allHostsValid);
urlConnection.setHostnameVerifier(allHostsValid);

(a) Patch Generated by LASE

+

HostnameVerifier allHostsValid = new HostnameVerifier(){
public Boolean verify(String hostname, SSLSession session){
- return true;
+ HostnameVerifier hv = HttpsURL Connection.getDefaultHostnameVerifier();
+ Return hv.verify(hostname, session);

}

urlConnection.setDefaultHostnameVerifier(allHostsValid);
urlConnection.setHostnameVerifier(allHostsValid);

+

(b) Patch Generated by VuRLE

Fig.5: A Vulnerability Repaired by LASE and VuRLE



Among 183 detected vulnerabilities, VuRLE cannot repair some of them. We
discuss the main causes as follows:

Unsuccessful Placeholder Resolution. When replacing placeholders with con-
crete identifier names and types, VuiRLE may use a wrong type or name to
fill the placeholders. For example, the required concrete type is “double”,
but the inferred concrete type is “int”. Moreover, VuRLE may not be able
to concretize some placeholders since they are not found in the matching
contexts.

Lack of Repair Examples. In our dataset, some vulnerabilities, such as Cryp-
tographic Misuses and Unchecked Return Value, have many examples. Thus,
a more comprehensive set of repair templates can be generated for these
kinds of vulnerabilities. However, some vulnerabilities, such as SSL Socket
Vulnerability, only have a few examples. Thus, VuRLE is unable to derive a
comprehensive set of repair template to repair these kinds of vulnerabilities.

Partial Repair. For some cases, VuRLE can only generate a partial repair.
This may be caused either by the inexistence of similar repairs or because
VuRLE only extracts a partial repair pattern.

6 Related Work

This section describes related work on vulnerability detection and automatic
vulnerability repair.

Vulnerability Detection. A number of works on detecting software vulnera-
bilities. Taintscope [26] is a checksum-aware fuzzing tool that is able to detect
checksum check points in programs and checksum fields in programs’ inputs.
Moreover, it is able to automatically create valid input passing the checksum
check. TaintScope can detect buffer overflow, integer overflow, double free, null
pointer dereference and infinite loop. Sotirov et al. [25] propose a static source
analysis technique to detect vulnerabilities, such as buffer overflow, format string
bugs and integer overflow. They classify the vulnerabilities and extracted com-
mon patterns for each type of vulnerability. Mohammadi et al. [21] focus on the
XSS (Cross Site Scripting) vulnerability detection. Instead of analyzing source
code, they detect XSS vulnerability that is caused by improper encoding of un-
trusted input data.

Medeiros et al. [18] propose a combination approach to detect vulnerabilities
in web applications. They combine taint analysis and static analysis. Taint analy-
sis is for collecting human coding knowledge about vulnerabilities. Furthermore,
they generate several classifiers to label the vulnerable data. These classifiers
achieve a low false positive rate. Fu et al. [9] propose a static analysis approach
to detect SQL injection vulnerability at compile time. Their approach symboli-
cally executes web applications written in ASP.NET framework and detects an
SQL injection vulnerability if it can generates an input string that matches with
a certain attack pattern. Kals et al. [13] propose SecuBat, a scanner that can
detect vulnerabilites in web applications. SecuBat provides a framework that



allows user to add another procedure that can detect a particular vulnerability.
Similar like SecuBat, Doupé et al. [3] propose a web vulnerability scanner that
is aware of web application state. It infers the web application’s state machine
by observing effects of user actions on the web application’s outputs. This state
machine is traversed to discover vulnerabilities. Balduzzi et al. [1] propose an
automatic technique to discover HTTP parameter pollution vulnerabilities in
web applications. It automatically launches an attack by injecting an encoded
parameter into one of the known parameters and discovers a vulnerability if the
attack is successful.

Similar like the above works, our work also detects vulnerabilities. How-
ever, those works are specialized to detect a certain type of vulnerabilities. On
the other hand, our work can detect many types of vulnerabilities, under the
condition that examples for repairing the corresponding vulnerabilities can be
provided.

Vulnerability Repair. To repair vulnerabilities automatically, it is common to
generate a repair pattern for a specific vulnerability. FixMeUp [24] is proposed
to repair access-control bugs in web applications. It automatically computes
an interprocedural access-control template (ACT), which contains a low-level
policy specification and program transformation template. FixMeUp uses ACT
to identify a faulty access-control logic and performs the repair. CDRep [17]
detects cryptographic misuse in Android applications and repairs vulnerabili-
ties automatically by applying manually-made repair templates. It makes use
of seven repair templates, each for a particular type of cryptographic misuse.
Yu et al. [27] propose an approach to sanitize user’s input in web applications.
Given a manually defined input pattern and its corresponding attack pattern,
their approach checks whether an input has the same pattern with an input
pattern and identifying whether the input is safe from the corresponding at-
tack. If it is not, they convert a malicious input into a benign one. Smirnov and
Chiueh [23] proposed DIRA, a tool that can transform program source code to
defend against buffer overflow attacks. At running time, the transformed pro-
gram can detect, identify, and repair itself without terminating its execution.
Repair is achieved by restoring programs state to the one before the attack oc-
curs, which was achieved through manually pre-defined procedures. Sidiroglou
and Keromytis [22] propose an automated technique to repair buffer overflow
vulnerabilities using manually-made code transformation heuristics and testing
the repair in a sandboxed environment. Lin et al. [15] propose AutoPAG, a tool
that automatically repairs out-of-bound vulnerabilities. It automatically gener-
ates a program patch by using pre-defined rules for repairing a particular case
of out-of-bound vulnerability.

Different than the above works, our work aims to automatically repair differ-
ent kinds of vulnerabilities by learning from examples. The closest to our work
is LASE [20], which generates a repair template from repair examples. Different
than ours, it cannot generate many repair templates from repair examples, which
may include fixes for different vulnerabilities. It also cannot generate many se-



quences of edits when given a repair example, each corresponds to a certain code
segment in the example.

7 Conclusion and Future Work

In summary, we propose a tool, called VuRLE, to automatically detect and
repair vulnerabilities. It does so by learning repair templates from known repair
examples and applying the templates to an input code. Given repair examples,
VuRLE extracts edit blocks and groups similar edit blocks into an edit group.
Several repair templates are then learned from each edit group. To detect and
repair vulnerabilities, VuRLE finds the edit group that matches the most with
the input code. In this group, it applies repair templates in order of their match-
ing score until it detects no redundant code (in which case a vulnerability is
detected and repaired) or until it has applied all repair templates in the edit
group (in which case no vulnerability is detected). VuRLE repeats this detection
and repair process until no more vulnerabilities are detected.

We have experimented on 48 applications with 279 real-world vulnerabilities
and performed 10-fold cross validation to evaluate VuRLE. On average, VuRLE
can automatically detect 183 (65.59%) vulnerabilities and repair 101 (55.19%) of
them. On the other hand, the state-of-the-art approach named LASE can only
detect 58 (20.79%) vulnerabilities and repair 21 (36.21%) of them. Thus, VaRLE
can detect and repair 215.52% and 380.95% more vulnerabilities compared to
LASE, respectively.

In the future, we plan to evaluate VuRLE using more vulnerabilities and
applications written in various programming languages. We also plan to boost
the effectiveness of VuRLE further so that it can detect and repair more vulner-
abilities. Additionally, we plan to design a new approach to detect and repair
vulnerabilities without examples.
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