
Supervised vs Unsupervised Models: A Holistic
Look at Effort-Aware Just-in-Time Defect Prediction

Qiao Huang∗, Xin Xia†�, and David Lo‡
∗College of Computer Science and Technology, Zhejiang University, China
†Department of Computer Science, University of British Columbia, Canada

‡School of Information Systems, Singapore Management University, Singapore

tkdsheep@zju.edu.cn, xxia02@cs.ubc.ca, davidlo@smu.edu.sg

Abstract—Effort-aware just-in-time (JIT) defect prediction
aims at finding more defective software changes with limited
code inspection cost. Traditionally, supervised models have been
used; however, they require sufficient labelled training data,
which is difficult to obtain, especially for new projects. Recently,
Yang et al. proposed an unsupervised model (LT) and applied
it to projects with rich historical bug data. Interestingly, they
reported that, under the same inspection cost (i.e., 20 percent
of the total lines of code modified by all changes), it could
find more defective changes than a state-of-the-art supervised
model (i.e., EALR). This is surprising as supervised models that
benefit from historical data are expected to perform better than
unsupervised ones. Their finding suggests that previous studies
on defect prediction had made a simple problem too complex.

Considering the potential high impact of Yang et al.’s work,
in this paper, we perform a replication study and present the
following new findings: (1) Under the same inspection budget,
LT requires developers to inspect a large number of changes
necessitating many more context switches. (2) Although LT finds
more defective changes, many highly ranked changes are false
alarms. These initial false alarms may negatively impact prac-
titioners’ patience and confidence. (3) LT does not outperform
EALR when the harmonic mean of Recall and Precision (i.e.,
F1-score) is considered.

Aside from highlighting the above findings, we propose a sim-
ple but improved supervised model called CBS. When compared
with EALR, CBS detects about 15% more defective changes and
also significantly improves Precision and F1-score. When com-
pared with LT, CBS achieves similar results in terms of Recall,
but it significantly reduces context switches and false alarms
before first success. Finally, we also discuss the implications of
our findings for practitioners and researchers.

Index Terms—Change Classification, Cost Effectiveness, Eval-
uation, Bias

I. INTRODUCTION

Defect prediction techniques aim to help developers priori-

tize testing and debugging effort by recommending likely de-

fective code. Most defect prediction studies propose prediction

models built on various types of features (e.g., process or code

features), and predict defects at coarse granularity level, such

as file, package, or module [1]–[6]. Mockus and Weiss [7]

are the first to propose a prediction model which focuses on

identifying defect-prone software changes instead of files or

packages. Such prediction is also referred as just-in-time (JIT)
defect prediction by Kamei et al. [8]. JIT defect prediction is

�Corresponding author.

more practical since (1) it leads to smaller amount of code

to be reviewed1, and (2) developers can review and test these

risky changes while they are still fresh in their minds (i.e., at

commit time).

Different changes would require different amount of effort

to inspect, and intuitively, a change that modifies (i.e., adds

or deletes) a larger number of lines of code (LOC) requires

a developer to spend more effort to inspect it. Based on

this intuition, effort-aware JIT defect prediction [8] takes into

account the inspection cost of a change (measured by the

number of modified LOC); a prediction model in this setting

focuses on optimizing the number of defects that can be found

given a fixed inspection budget (e.g., inspecting 20% LOC

modified by all changes). Kamei et al. proposed a state-of-

the-art supervised model called EALR which leveraged linear

regression to help developers review changes more effectively

given a fixed inspection budget [8]. They reported that the

EALR model could identify 35% of all defective changes,

when 20% LOC modified by all changes are inspected.

One disadvantage for supervised defect prediction models

is that they require a large amount of labelled instances for

training [9]. Unfortunately, it is difficult to get sufficient

training data for a new project. To address this limitation,

Yang et al. [10] proposed an unsupervised model for effort-

aware JIT defect prediction, which simply sort the changes

by one metric. Their idea is inspired by Koru et al.’s finding

that smaller modules are proportionally more defect-prone and

should be inspected first [11]. For example, consider a metric

LT (i.e., lines of code in a file before a change); Yang et al.

hypothesizes that changes with lower LT are in smaller mod-
ules and should be inspected earlier. By performing empirical

study on the dataset published by Kamei et al. [8], they found

that unsupervised model with the metric LT outperforms the

state-of-the-art supervised model (i.e., the EALR model) in

terms of Recall. Here Recall means the proportion of inspected

defective changes among all defective changes.2

There are many advantages of the unsupervised model:

• It is straightforward to understand and much easier to

implement.

1The amount of inspected code in an individual change is much less than
the code in a file, package, or module.

2Some previous studies [12]–[14] also denoted this evaluation measure as
cost-effectiveness.

2017 IEEE International Conference on Software Maintenance and Evolution

978-1-5386-0992-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSME.2017.51

159

• It does not require any labelled training data, or any ma-

chine learning techniques. Thus, it can be easily applied

in a new project and runs much faster.

• Under the same inspection cost (i.e., 20% LOC), it can

find more defects.

These advantages suggest that previous studies on defect

prediction had made a simple problem too complex. This is

a surprising finding, since intuitively, as a supervised model

extracts prior knowledge (e.g., defect distribution, defective

patterns) from historical changes, it is expected to perform

better than a model which has no prior knowledge.

Considering the potential high impact of Yang et al.’s work,

in this paper, we perform a replication study3. In particular, we

would like to investigate why the unsupervised model achieves

a high Recall. Additionally, to have a holistic view, we

consider a number of additional metrics beyond Recall and use

them as yardsticks to compare supervised and unsupervised

models considered by Yang et al. Last but not least, we

would like to boost the performance of a supervised model

by leveraging the intuition underlying Yang et al.’s work.

Our study focuses on answering the following research

questions:

RQ1: Why do Yang et al.’s unsupervised model (LT)
perform better than Kamei et al.’s supervised model
(EALR) in terms of Recall?

We explore the distribution of change size (i.e., LOC

modified by the change) and find it highly skewed for every

project. Most changes are small while a few are very large.

Considering the same inspection cost (i.e., 20% LOC), on

average, LT requires developers to inspect more than twice as

many as the number of changes inspected when using EALR.

Thus, it is of no surprise that Yang et al.’s unsupervised model

finds more defects. However, it is not reasonable to expect

developers to inspect too many changes due to the additional

effort required for frequent context switches [15]. Additionally,

inspecting many changes can map to a high number of false

alarms which in turn may lead to developer fatigue and tool

abandonment – c.f. [16], [17]

RQ2: How do the supervised and unsupervised models
compare when different evaluation measures are consid-
ered?

We argue that, Recall cannot provide enough information to

help practitioners fully evaluate a prediction model. Thus, we

use 4 additional evaluation measures, namely Precision, F1-
score, PCI@20% (i.e., Proportion of Changes Inspected when

20% LOC modified by all changes are inspected), and IFA
(i.e., number of Initial False Alarms encountered before we

find the first defect). We use Recall, Precision and F1-score
because they are widely used in prior software engineering

studies [13], [18]–[21]. We propose PCI@20% to measure

the additional effort needed due to context switches between

changes, since context switching has been shown harmful to

developer productivity [15]. We propose IFA because previous

3The replication package of our study can be downloaded at https://zenodo.
org/record/836352#.WX2MlYiGOUk

studies [16], [17] have shown that developers are not willing

to use a prediction model if the first few recommendations are

all false alarms.

By replicating Yang et al.’s experiment with the same dataset

but more evaluation measures, we find that LT does not outper-

form EALR considering these additional evaluation measures.

In some projects, EALR even significantly outperforms LT

considering some of these new evaluation measures.

RQ3: Could the supervised model be enhanced leveraging
intuition of Yang et al.’s unsupervised model?

We propose a simple but improved supervised model called

CBS. It first builds a logistic classifier to identify defective

changes. Then it sorts the identified defective changes in

ascending order by their inspection cost.

When compared with EALR, CBS significantly improves

Recall for each project, and it also significantly improve both

Precision and F1-score for 5 out of the 6 projects. When

compared with Yang et al.’s unsupervised model (LT), it

achieves similar results in terms of Recall in 4 out of 6 projects

and significantly improves Recall in the other 2 projects. It also

significantly reduces the amount of initial false alarms and the

amount of changes required to inspect for each project.

The main contributions of our paper are as follows:

1) We perform an in-depth analysis of the experiment results

in Yang et al.’s work, and analyze the reason why the

unsupervised model outperforms supervised models in

effort-aware JIT defect prediction.

2) We perform a holistic evaluation of supervised versus

unsupervised models with two new considerations: con-

text switches and developer fatigue due to initial false

alarms. We present new findings and highlight limitations

of unsupervised models that were not revealed by prior

studies.

3) We propose a simple but improved supervised model

called CBS. While CBS performs as well as Yang et al.’s

unsupervised model (LT) in terms of Recall, it signifi-

cantly outperforms LT in terms of the other evaluation

measures.

Paper Organization. The remainder of the paper is organized

as follows. We introduce the background and related work on

JIT defect prediction in Section II. We describe the technical

details of the supervised and unsupervised models proposed

by previous studies (i.e., EALR and LT) in Section III. We

introduce our improved supervised model in Section IV. We

introduce the evaluation measures in Section V. We present

our experimental setup and results in Section VI and VII,

respectively. We discuss the implications for practitioners and

researchers in Section VIII. We examine the threats to validity

in Section IX. We conclude the paper and mention future work

in Section X.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background and related

work of just-in-time (JIT) defect prediction and effort-aware

JIT defect prediction.

160

A. Just-in-Time Defect Prediction

Traditional defect prediction models focus on identifying

defect-prone classes, files or modules. Such granularity could

be too coarse to be applied in practice. For example, a

prediction model is more likely to recommend large files to

developers for inspection, since defect proneness increases as

file size increases [22]. However, it is difficult for developers

to recall the logic and technical details hidden in the code

when given a large file with thousands of lines of code. Also,

it is difficult to decide which developer should be assigned

to inspect the code since a large file often have multiple

authors [23].

To address the above limitations, Mockus and Weiss are

the first to study change-level defect prediction [7]. They

proposed a supervised model to predict defects in a large-

scale telecommunication system at the initial maintenance

request (IMR) level, which consists of multiple changes.

Their model used the properties of a change itself, such as

lines of code added and deleted, diffusion of the change,

measures of developer experience, etc. Kim et al. extracted

text feature from various sources (i.e., change log, source code,

and file names), and combined them with features extracted

from change metadata and complexity metrics to build the

prediction model for classifying clean or buggy changes [23].

Yin et al. empirically studied the incorrect bug-fixes from 4

large operating systems [24]. They found that at least 14.8%

to 24.4% of fixes for post-release bugs are incorrect and affect

end users. They also found that concurrency bugs are the most

difficult to fix, and developers and reviewers of incorrect fixes

usually do not have enough knowledge about the involved

code. Shihab et al. performed an industrial study on the risk

of software changes [25]. They found that the number of lines

of code added by the change, the bugginess of the files being

changed, the number of bug reports linked to a change and the

developer experience are the best indicators of change risk.

Kamei et al. [8] referred to the change-level defect prediction

as Just-in-Time Defect Prediction, and they performed a large-

scale empirical study on six open source projects and five

commercial projects.

B. Effort-Aware JIT Defect Prediction

Previous studies [26]–[28] have pointed out that defect

prediction model should also be effort-aware. For traditional

defect prediction at file level, the number of lines of code in

a file is used as a measure of the effort required to inspect the

file [28], [29]. Kamei et al. [8] also evaluated the performance

of defect prediction model at change level when considering

inspection cost. They used the size of a change (i.e., total

number of LOC added and deleted by the change) to measure

the inspection cost of a change.

Considering tight development and release, and limited

human resources, previous studies on effort-aware defect

prediction focused on finding more defects with limited code

inspection cost. Besides, previous studies [22], [30], [31] have

shown that about 80% of the defects are contained in about

TABLE I
SUMMARY OF CHANGE METRICS.

Metric Description
NS Number of subsystems touched by the current change
ND Number of directories touched by the current change
NF Number of files touched by the current change
Entropy Distribution across the touched files

LA Lines of code added by the current change
LD Lines of code deleted by the current change
LT Lines of code in a file before the current change

FIX Whether or not the current change is a defect fix

NDEV Number of developers that changed the files
AGE Average time interval between the last and current change
NUC Number of unique last changes to the files

EXP Developers experience (number of files modified)
REXP Developers experience in recent years
SEXP Developer experience on a subsystem

20% of the files. Motivated by these work, Kamei et al. as-

sumed that the available resources only account for 20% of the

effort it would take to inspect all changes, and they proposed

a supervised model called EALR [8]. Instead of predicting

defect-proneness, EALR would predict the defect-density for

each change. Then it ranks changes in descending order by

the predicted defect-density, and the top changes are inspected

one by one until the accumulated inspection cost reaches the

threshold of 20%. They used Recall (i.e., the proportion of

inspected defective changes among all the defective changes)

to evaluate the performance of the prediction under effort-

aware setting.

More recently, Yang et al. [10] proposed an unsupervised

model for effort-aware JIT defect prediction. Their model is

based on the assumption that changes in smaller files should

be inspected first, which is inspired by Koru et al.’s finding

that smaller modules are proportionally more defect-prone

and should be inspected first [11]. They reported that using

the same data provided by Kamei et al. [8], their unsu-

pervised model could achieve higher Recall when compared

with supervised model. Following Yang et al.’s work, Yan et

al. [32] applied the unsupervised model to effort-aware file-

level defect prediction, and they found that the conclusion of

Yang et al. does not hold under within-project setting for file-

level defect prediction. Different from Yan et al.’s work, we

focus on investigating why Yang et al.’s unsupervised model

achieves high recall in effort-aware JIT defect prediction.

III. EFFORT-AWARE JIT DEFECT PREDICTION MODELS

In this section, we introduce the technical details of the

supervised model proposed by Kamei et al. [8], and unsuper-

vised model proposed by Yang et al. [10] for effort-aware JIT

defect prediction.

A. Supervised Model by Kamei et al. (EALR)

Kamei et al. considered 14 metrics derived from the source

control repository data of a project to represent a change.

Table I presents the name and description of each metric.

These metrics can be grouped into five dimensions: diffusion

(NS, ND, NF and Entropy), size (LA, LD and LT), purpose

161

(FIX), history (NDEV, AGE and NUC) and experience (EXP,

REXP and SEXP).

The metrics in diffusion dimension characterize the distri-

bution of a change. Previous studies showed that a highly

distributed change is more likely to be defective [4], [7], [33],

[34]. The metrics in size dimension characterize the size of a

change, and a larger change is more likely to be defective

since more code has to be changed or implemented [35],

[36]. The purpose dimension only consists of FIX, and it is

believed that a defect-fixing change is more likely to introduce

a new defect [37]–[39]. The metrics in history dimension can

tell us how developers interacted with different files in the

past. As stated by Yang et al. [10], a change is more likely

to be defective if the touched files have been modified by

more developers [40], by more recent changes [37], or by

more unique last changes [4], [33]. The experience dimension

measures a developer’s experience based on the number of

changes made by the developer in the past. In general, a

change made by a more experienced developer is less likely

to introduce defects [7].

Based on these 14 metrics, Kamei et al. [8] built a logistic

classifier learned from a training dataset to predict the risk

score (i.e. defect-proneness) of new changes in the testing

dataset. However, the score does not consider the inspection

cost of each change, and the performance would be bad

under the effort-aware setting [8]. To solve this problem, they

proposed an effort-aware linear regression (EALR) model,

which tries to learn the relationships between the various

characteristic metrics of a change c (i.e., change metrics shown

in Table I) and its defect-density D(c) from the training

dataset. The defect-density D(c) is defined as follow:

D(c) =
Y (c)

Effort(c)
(1)

Here Y (c) is 1 if the change c is defective and 0 otherwise,

and Effort(c) is the amount of effort required to inspect the

change.

Then the EALR model would predict the value of D(c′) for

a new change c′ in the testing dataset, and sort these changes in

descending order by their risk scores. Note that they only use

12 metrics (excluding LA and LD) as independent variables

to build the EALR model, since lines of code added/deleted

(i.e., LA and LD) together make up the effort value in the

dependent variable of EALR model [8].

In practice, it is difficult for a linear regression model to

accurately predict the value of D(c), which would negatively

impact the performance of prediction. Kamei et al. [8] reported

that the EALR model could detect 35% of all defective

changes when developers inspect 20% of LOC modified by

all changes.

B. Unsupervised Model by Yang et al. (LT)

More recently, Yang et al. [10] leveraged the same metrics

in Kamei et al.’s work [8] to build an unsupervised model.

The unsupervised model only uses one metric M among

all the available metrics and sort the changes in descending

order according to the reciprocal of M . More formally, given

a change c and the metric value M (c), the model would

predict a risk score R(c) = 1
M (c) . Changes will be sorted

in descending order according to the predicted risk score. To

follow Kamei et al.’s work [8], the unsupervised model also

excluded LA and LD from the candidate metrics. Among all

the other 12 candidate metrics, the unsupervised model with

LT metric achieves the best performance in most cases, and

it also significantly outperforms the EALR model in terms

of Recall. Sorting based on LT follows Koru et al.’s finding,

which reveals that smaller modules are proportionally more

defect-prone and should be inspected first [11]. Thus, we also

choose LT as the underlying metric for unsupervised model in

our experiment.

IV. CBS: AN IMPROVED SUPERVISED MODEL

In this section, we propose a simple but improved super-

vised model called CBS. We first introduce the motivation of

CBS, then we present its technical details with a pseudocode.

The major problem of EALR is that the relationship between

the change metrics and defect density (see Equation 1) may

not be linear. Thus, it is difficult to accurately predict a specific

value of defect-density using a linear model. However, as

shown in Kamei et al.’s work [8], it is relatively easy to build a

classifier to predict whether a change is defective or not. They

reported that the classifier can find about 70% of all defective

changes. To leverage the advantages of such a classifier, while

benefiting from Koru et al.’s findings, we propose CBS (i.e.,

Classify-Before-Sorting). CBS assumes that among changes

that are classified to be potentially buggy, small ones should

be inspected first, since they give the best bang for the buck.

Algorithm 1 Pseudocode for Classifier Building

1: BuildClassifier(TrainSet , Metrics)
2: Input:
3: TrainSet : Training set of changes
4: Metrics: Metrics (see Table I) of changes in TrainSet
5: Output:
6: Classifier : The classifier built on the training dataset
7: Method:
8: Re-sample TrainSet to balance the number of defective

and non-defective changes;
9: Remove ND, REXP, LA and LD from Metrics;

10: Apply standard logarithmic transformation to each metric
in Metrics except for FIX;

11: Build a classifier Logistic by using logistic regression
applied on TrainSet and Metrics;

12: return Logistic;

Algorithm 1 presents the pseudo-code to build a classifier

as proposed by Kamei et al. [8]. We first follow Kamei et

al. to re-sample training data to deal with data imbalance

(i.e., they randomly removed instances of the majority class

until the training data is balanced) (Line 8). Then we remove

several metrics (Line 9). Following Kamei et al., we remove

the metrics ND and REXP, since they found that NF and ND,

and REXP and EXP are highly correlated. Usage of highly

162

correlated features may decrease classifier accuracy. We also

remove the metrics LA and LD since they will be used for

sorting. After that, we follow Kamei et al. to perform standard

log transformation to several metrics (Line 10). Finally, we

build a classifier by using logistic regression (Line 11).

Algorithm 2 Pseudocode for CBS

1: CBS(Logistic, TestSet)
2: Input:
3: Logistic: The classifier built on training dataset
4: TestSet : Testing set of changes
5: Output:
6: RankedList : Ranked list of changes for inspection
7: Method:
8: Defective,NonDefective = ∅;
9: for all change c ∈ TestSet do

10: Use Logistic to predict the label l of change c;
11: if l is potentially defective then
12: Add c into Defective;
13: else
14: Add c into NonDefective;
15: end if
16: end for
17: Let RankedList = Changes in Defective sorted in ascend-

ing order of size (i.e., LA+LD);
18: return RankedList ;

Algorithm 2 presents the pseudo-code of CBS. Using the

classifier built on training dataset, we first identify potentially

defective and non-defective changes in testing dataset (Lines

8-16). A change would be classified as potentially defective

if its predicted score is larger than 0.5; otherwise it will

be classified as potentially non-defective. Then we sort the

predicted potentially defective changes in ascending order

of their size (i.e., LA+LD) (Line 17). This ranked list of

potentially defective changes is then returned (Line 18).

V. EVALUATION MEASURES CONSIDERED

In this section, we introduce the following 5 evaluation

measures used in our paper to evaluate the performance of

both supervised and unsupervised models. Suppose we have a

dataset with M changes and N defects. After inspecting 20%

LOC, we inspected m changes and found n defects. Besides,

when we find the first defective change, we have inspected

k changes. Then the 5 evaluation measures are defined and

computed as follows:
Recall: Proportion of inspected defective changes among all

the actual defective changes. This is the evaluation measure

used by many previous studies [8], [10], [41]–[43]. They

focused on achieving high Recall so that more defective

changes could be detected. Recall is computed as: n/N .
Precision: Proportion of inspected defective changes among

all the inspected changes. A low Precision indicates that de-

velopers would encounter more false alarms, which may have

negative impact on developers’ confidence on the prediction

model. Precision is computed as: n/m.
F1-score: A summary measure that combines both Precision
and Recall - it evaluates if an increase in Precision (Recall)

outweighs a reduction in Recall (Precision). In many cases,

high Recall indicates the sacrifice of Precision, and vice

versa [44]. Therefore, to fairly evaluate the prediction model,

F1-score is also widely used in prior software engineering

studies [13], [18]–[21]. Note that if all the inspected changes

are not defective, then both Precision and Recall would be

0, and F1-score would be NaN (i.e., not a number) since it

divides zero. In this case, we set F1-score to be 0 since the

prediction model achieves the worst performance. F1-score is

computed as: 2∗Precision∗Recall
Precision+Recall .

PCI@20%: Proportion of Changes Inspected when 20% LOC

modified by all changes are inspected. A high PCI@k%
indicates that, under the same number of LOC to inspec-

t, developers need to inspect more changes. Note that the

definition of inspection cost in prior papers [8], [10] only

considers the size of a change, and some problems may arise

when a prediction model requires developers to inspect a large

number of changes. Suppose Alpha team needs to review 10K

changes where each change modifies only 1 LOC, and Delta

team needs to review only 1 change while it modifies 10K

LOC. The number of LOC that needs to be inspected by the

two teams are the same (i.e., 10K LOC in total). However,

developers in Alpha team would frequently switch between

different changes and this may increase the actual time and

effort spent. For example, Meyer et al. [15] conducted a survey

with 379 professional software developers and they found

that developers perceive their days as productive when they

complete many or big tasks without significant interruptions or

context switches. Also, a large number of changes may cover

many different localities (e.g., hundreds of files and modules),

thus requiring more coordination and communication between

developers with different expertise. The additional effort re-

quired due to context switches and additional communication

overhead among developers should not be ignored. To the

best of our knowledge, this is the first paper that takes these

factors into consideration to evaluate effort-aware JIT defect

prediction models. PCI@20% is computed as: m/M .

IFA: Number of Initial False Alarms encountered before we

find the first defect. Inspired by previous studies on fault

localization [16], [17], [45], we assume that if the top-k

changes recommended by the model are all false alarms,

developers would be frustrated and are not likely to con-

tinue inspecting the other changes. For example, Parnin and

Orso [16] investigated how developers use and benefit from

automated debugging tools through a set of human studies.

They found that developers would stop inspecting suspicious

statements, and turn back to traditional debugging, if they

couldn’t get promising results within the first few statements

they inspect. IFA is computed as: k.

VI. EXPERIMENT SETUP

In this section, we first describe the statistics of our dataset.

Then we introduce the experiment setting. Finally, we present

the motivation of our research questions.

163

TABLE II
STATISTICS OF THE STUDIED PROJECTS.

Project Period Language # of Changes % of Defects
Mean LOC # of changes # of modified files
per change per day per change

Bugzilla 08/1998-12/2006 Perl 4,620 36% 37.5 1.5 2.3
Columba 11/2002-07/2006 Java 4,455 31% 149.4 3.3 6.2
Eclipse JDT 05/2001-12/2007 Java 35,386 14% 71.4 14.7 4.3
Eclipse Platform 20/2001-12/2007 Java 64,250 14% 72.2 26.7 4.3
Mozilla 01/2000-12/2006 C++ 98,275 5% 106.5 38.9 5.3
PostgreSQL 07/1996-05/2010 Ruby 20,431 25% 101.3 4.0 4.5

A. Data Statistics

Table II summarizes the statistics of the studied projects.

This dataset is published by Kamei et al. [8], and also used

in Yang et al.’s work [10]. We can see that the changes of

each project are gathered in a long period of time, written in

different programming languages. The number of changes in

each project ranges between 4,455 and 98,275. A change is

labeled as defective if it induces one or more defect. For each

project, only a small percentage of all changes are defective

(about 5% to 36%).

B. Experiment Setting

To evaluate the prediction model, for each project, we

follow Yang et al. [10] to use the time-wise-cross-validation
defined in their work. Specifically, we first sort all changes

in chronological order according to the commit date. Then

we gather the changes submitted in the same month into one

group. Suppose we have N groups of changes in a project,

we use changes in group i and group i+1 (1 ≤ i ≤ N − 5)

as training data to build the supervised model. Then we use

changes in group i+4 and group i+5 as testing data to evaluate

both supervised and unsupervised model. As stated by Yang

et al. [10], they chose the period of two consecutive months

because the release cycle of most projects is typically 6 to 8

weeks. Besides, using two consecutive months guarantees each

training set will have enough instances for building supervised

models, and also allows us to have enough runs for each

project. Note that we use time-wise-cross-validation instead of

10-fold cross-validation, since 10-fold cross-validation cannot

guarantee the changes for testing are always created later than

changes for training. In real application, we cannot use data in

the future to build the supervised model and predict the data

in the past.

Finally, since there are multiple runs for each project, we

apply the Wilcoxon signed-rank test [46] with Bonferroni

correction [47] at 95% significance level on two competing

models. We consider that one model performs significantly

better than the other model at the confidence level of 95%

if the corresponding Wilcoxon signed-rank test result (i.e.,

p-value) is less than 0.05. We also use the Cliff’s delta

(δ) [48] to quantify the amount of difference between two

approaches. The amount of difference is considered negligable

(| δ |< 0.147), small (0.147 ≤| δ |< 0.33), moderate

(0.33 ≤| δ |< 0.474), or large (| δ |≥ 0.474).

C. Research Questions

We investigate the following three research questions:

TABLE III
THE MEDIAN NUMBER OF CHANGES TO BE INSPECTED GIVEN THE SAME

LOC BUDGET (20%) WHEN USING THE SUPERVISED MODEL (EALR) AND

UNSUPERVISED MODEL (LT)

Model BUG COL JDT PLA MOZ POS AVG
EALR 24 66 290 411 460 89 223

LT 36 125 568 963 1245 157 516

RQ1: Why do Yang et al.’s unsupervised model (LT)
perform better than Kamei et al.’s supervised model
(EALR) in terms of Recall?

In intuition, supervised models extract prior knowledge

from historical changes, and intuitively are likely to per-

form better than unsupervised models which have no prior

knowledge. Thus, we are interested to explore the reason

why the unsupervised model in Yang et al.’s work [10] could

outperform supervised models in terms of Recall.
RQ2: How do the supervised and unsupervised models
compare when different evaluation measures are consid-
ered?

Yang et al. [10] used Recall to evaluate a prediction model

when using 20% effort. However, Recall does not consider the

number of false alarms and context switches. False alarms may

negatively impact developers’ patience and confidence, while

context switches may reduce developers’ productivity. Thus,

we argue that more evaluation measures should be used to

assess defect prediction models. To gain more insights, in ad-

dition to Recall, we use another 4 evaluation measures, namely

Precision, F1-score, PCI@20% and IFA, which have been

introduced in Section V. Using these additional evaluation

measures, we can compare the supervised and unsupervised

models more comprehensively.

RQ3: Could the supervised model be enhanced leveraging
intuition of Yang et al.’s unsupervised model?

Based on the intuition that defective changes with smaller

sizes should be inspected first, we propose a simple but im-

proved supervised model called CBS. We first compare it with

EALR to investigate whether it achieves better performance

in terms of different evaluation measures. Then we compare

it with Yang et al.’s unsupervised model.

VII. EXPERIMENT RESULTS

A. RQ1: Why do Yang et al.’s unsupervised model (LT) per-
form better than Kamei et al.’s supervised model (EALR) in
terms of Recall?

To answer this RQ, we investigate two specific sub-

questions. The first sub-question explores the distribution of

164

0
5

10
15

Bugzilla Columba JDT Platform Mozilla PostgreSQL

Fig. 1. Distribution of change size in each project.

change size in each project. Our preliminary experiment found

that many changes in the dataset only modify a few or even

zero lines of code (e.g., a change that only renames a file).

On the other hand, some other changes modify a large number

of LOC. For example, in the Columba project, the largest

change modifies about 87K LOC, which accounts for about

13% of the total LOC (i.e., 665K) in the whole project. Since

the unsupervised model prefers small changes (i.e., changes

with small LT are not likely to modify too many LOC), it

is possible that a large number of small changes would be

inspected while the requirement of low inspection cost is still

satisfied. The second sub-question investigates the number

of changes required to inspect when using the supervised

model and unsupervised model. We would like to see whether

the unsupervised model requires developers to inspect more

changes.

Question 1: What is the distribution of change size in each
project?

To gain an overview of the distribution of change size

(i.e., LOC added and deleted) in each project, we use vio-

lin plot [49] to visualize it. Since absolute values of some

changes’ sizes are quite huge (e.g., more than 100K LOC are

modified), we applied a standard log transformation (base 2)

to the size of each change before visualization.

Figure 1 presents the visualization results. The results show

that, for each project, the majority of changes only modify a

small number of LOC. Specifically, the sizes of most changes

are less than 1000 (i.e., 210) LOC. On the other hand, a small

number of changes modify a huge number of LOC (e.g., 215 =

32K LOC), and they account for the majority of LOC modified

in total. Thus, it is clear that the distribution of change size in

each project is highly skewed.

Question 2: Given the same LOC budget, how many
changes do the unsupervised and supervised model require
developers to inspect?

Based on the observations above, we would like to validate

whether Yang et al.’s unsupervised model (LT) requires devel-

opers to inspect more changes than Kamei et al.’s supervised

model (EALR) when 20% LOC are inspected. Table III

shows the median number of changes inspected when using

EALR and LT. On average across the six projects, EALR

requires developers to inspect 223 changes, while LT requires

developers to inspect 516 changes. Since LT requires devel-

opers to inspect more than twice as many changes as those

required by using EALR, it is of no surprise that LT can

find more defective changes. On the other hand, LT does

not proportionally increase the number of inspected defective

changes. According to the results presented in Yang et al.’s

work, on average, LT can find 43% of all defective changes,

while EALR can find 31% of all defective changes. Finally,

Yang et al. did not discuss the negative impact of the large

number of false alarms and context switches during the manual

inspection process. We further discuss this concern in RQ2.

The distribution of change size in every project is highly
skewed. LT leverages this property to achieve higher Recall
by requiring developers to inspect more than twice as many
changes as those required by using EALR. However, prob-
lems may arise due to context switches and false alarms.

B. RQ2: How do the supervised and unsupervised models
compare when different evaluation measures are considered?

Table IV presents the median results of Kamei et al.’s

supervised model (EALR) and Yang et al.’s unsupervised

model (LT) in terms of all evaluation measures (i.e., Precision,

Recall, F1-score, PCI@20% and IFA) when inspecting 20%

LOC. We choose to present median results following Yang et

al. To follow Yang et al.’s work [10], we regard one prediction

model in a project as a winner in terms of a certain evaluation

measure, if it significantly outperforms the other model with

a moderate or large improvement in terms of the Cliff’s delta.

The evaluation result of a winner is also marked by “
√

”. The

row “AVG” reports the average median over the six projects.

The row “W/T/L” reports the number of projects for which

the corresponding prediction model obtains a better, equal,

and worse performance than the other model.

The results show that LT wins in terms of Recall in 5 out of

the 6 projects, which is consistent with the results presented

in Yang et al.’s work. On the other hand, EALR wins in terms

of Precision in 5 out of the 6 projects. When considering

Recall and Precision together (i.e., F1-score), the differences

between the results of LT and EALR in every project are

small or even negligible. As for PCI@20% and IFA, EALR

significantly outperforms LT in at least 5 out of the 6 projects,

which suggests that when using EALR, developers could be

able to focus on a smaller number of changes and succeed

in finding the first defective change earlier. We also notice

that the IFA of unsupervised model is quite large. On average

across the six projects, the top-70 changes recommended by

unsupervised model are all false alarms. According to the

survey [17] about practitioners’ expectations on automated

fault localization, it is not acceptable to use the automatic

tool if the first 10 suspicious program elements are all false

alarms. Thus, we doubt whether the unsupervised model is

practical in use. As a comparison, the IFA of supervised model

is much more reasonable. For every project, supervised model

165

TABLE IV
MEDIAN RESULTS OF EALR AND LT IN TERMS OF DIFFERENT EVALUATION MEASURES WHEN INSPECTING 20% LOC

Project
Recall Precision F1-score PCI@20% IFA

EALR LT |δ| EALR LT |δ| EALR LT |δ| EALR LT |δ| EALR LT |δ|
BUG 0.299 0.449

√
0.41 (M) 0.364 0.333 - 0.325 0.378 - 0.312

√
0.516 0.52 (L) 3.5 5 -

COL 0.400 0.440 - 0.250
√

0.190 0.35 (M) 0.299 0.265 - 0.440
√

0.677 0.88 (L) 2
√

24 0.90 (L)
JDT 0.347 0.452

√
0.56 (L) 0.155

√
0.112 0.43 (M) 0.210 0.181 - 0.345

√
0.611 0.89 (L) 5

√
49 0.84 (L)

PLA 0.290 0.432
√

0.53 (L) 0.157
√

0.110 0.42 (M) 0.198 0.178 - 0.295
√

0.590 0.81 (L) 1
√

144 0.98 (L)
MOZ 0.190 0.363

√
0.77 (L) 0.045

√
0.035 0.33 (M) 0.072 0.062 - 0.232

√
0.554 0.93 (L) 8

√
185 0.82 (L)

POS 0.331 0.432
√

0.41 (M) 0.235
√

0.176 0.33 (M) 0.255 0.246 - 0.373
√

0.647 0.75 (L) 5
√

13 0.45 (M)
AVG 0.310 0.428 - 0.201 0.159 - 0.227 0.218 - 0.333 0.599 - 4.1 70 -

W/T/L 0/1/5 5/1/0 - 5/1/0 0/1/5 - 0/6/0 0/6/0 - 6/0/0 0/0/6 - 5/1/0 0/1/5 -

TABLE V
MEDIAN RESULTS OF EALR AND LT IN TERMS OF DIFFERENT EVALUATION MEASURES WHEN INSPECTING 5% LOC

Project
Recall Precision F1-score PCI@20% IFA

EALR LT |δ| EALR LT |δ| EALR LT |δ| EALR LT |δ| EALR LT |δ|
BUG 0.095 0.171

√
0.39 (M) 0.333 0.330 - 0.144 0.215 - 0.106

√
0.219 0.46 (M) 3

√
5 0.34 (M)

COL 0.200 0.195 - 0.293
√

0.156 0.53 (L) 0.232 0.171 - 0.203
√

0.398 0.70 (L) 2
√

23 0.98 (L)
JDT 0.146 0.175 - 0.160

√
0.097 0.56 (L) 0.144 0.123 - 0.139

√
0.260 0.85 (L) 5

√
49 0.89 (L)

PLA 0.102 0.150 - 0.240
√

0.071 0.79 (L) 0.134
√

0.089 0.36 (M) 0.063
√

0.288 0.79 (L) 1
√

129 0.94 (L)
MOZ 0.053 0.115

√
0.48 (L) 0.069

√
0.021 0.57 (L) 0.057 0.036 - 0.042

√
0.265 0.85 (L) 8

√
172 0.92 (L)

POS 0.127 0.165 - 0.227
√

0.158 0.46 (M) 0.160 0.154 - 0.147
√

0.293 0.69 (L) 5
√

13 0.47 (M)
AVG 0.121 0.162 - 0.220 0.139 - 0.145 0.131 - 0.117 0.287 - 4 65.2 -

W/T/L 0/4/2 2/4/0 - 5/1/0 0/1/5 - 1/5/0 0/5/1 - 6/0/0 0/0/6 - 6/0/0 0/0/6 -

can find the first defective change when inspecting the top-10

suspicious changes.

Note that Yang et al. [10] and Kamei et al. [8] selected 20%

LOC as the cut-off value. However, selecting another cut-off

value might lead to different results. Besides, in our dataset,

inspecting 20% LOC still requires developers to inspect a large

amount of LOC. For example, in Mozilla project, 20% LOC

corresponds to a total number of about 80K LOC. Thus, we

investigate the performance of EALR and LT when inspecting

less LOC (i.e., 5% LOC). Table V presents the comparison

results when inspecting 5% LOC. The results are similar to

those in Table IV. One difference is that, when inspecting

5% LOC, LT only wins in terms of Recall in 2 out of the 6

projects, and EALR additionally wins in terms of F1-score in

1 out of the 6 projects.

Yang et al.’s unsupervised model (LT) sacrifices Precision to
achieve higher Recall. When considering Precision and Re-
call together (i.e., F1-score), unsupervised model no longer
outperforms supervised model. Also, LT performs poorly
in terms of IFA, which may negatively impact developers’
patience and confidence.

C. RQ3: Could the supervised model be enhanced leveraging
intuition of Yang et al.’s unsupervised model?

Table VI compares the evaluation results of CBS with

EALR. On average across the six projects, CBS could find

about 46% of all defective changes when inspecting 20% LOC,

which significantly outperforms EALR in terms of Recall
with an average improvement of 47%. CBS also significantly

outperforms EALR in terms of Precision and F1-score in at

least 5 out of the 6 projects. The PCI@20% of CBS is close

to that of EALR for each project, which suggests that CBS

does not require inspecting additional changes. However, CBS

does not achieve the expected IFA (i.e., no more than 10) in

3 out of the 6 projects.

Table VII compares the evaluation results of CBS with Yang

et al.’s unsupervised model (i.e., LT). CBS and LT achieve

similar results in terms of Recall in 4 out the 6 projects, while

CBS significantly improves Recall in the other 2 projects.

When considering Precision, F1-score and PCI@20%, CBS

significantly outperforms LT in at least 5 out of the 6 projects.

This suggests that CBS significantly reduces the amount of

false alarms and the amount of changes required to inspect

for each project.

CBS can find more defective changes than EALR, and also
significantly improves Precision and F1-score. When com-
pared with Yang et al.’s unsupervised model, CBS achieves
similar results in terms of Recall, but it significantly reduces
context switches and false alarms before first success.

VIII. DISCUSSION

A. Comparison with Fu and Menzies’s Work

Most recently, Fu and Menzies [50] also revisited unsu-

pervised model in effort-aware JIT defect prediction. They

replicated Yang et al.’s work [10] and pointed out that su-

pervised model performs better in terms of Precision and F1-
score. They also proposed a supervised model called OneWay,

which leverages the training data to automatically choose the

best metric for the unsupervised model in Yang et al.’s work.

Compared with their work, we present more findings con-

sidering additional perspectives, as shown below:

1) We investigate why the unsupervised model performs

better in terms of Recall. We point out that the distribution

of change size in every project is highly skewed. The

unsupervised model leverages this property to achieve

higher Recall by requiring developers to inspect more

than twice as many changes as those required by using

EALR.

2) We propose 2 additional evaluation measures (i.e., P-
CI@20% and IFA), which considers the negative impact

of frequent context switches between different changes,

and developer fatigue leading to likelihood of tool aban-

166

TABLE VI
COMPARISON OF THE PERFORMANCE ACHIEVED BY EALR AND CBS WHEN INSPECTING 20% LOC

Project
Recall Precision F1-score PCI@20% IFA

EALR CBS |δ| EALR CBS |δ| EALR CBS |δ| EALR CBS |δ| EALR CBS |δ|
BUG 0.299 0.438

√
0.43 (M) 0.364 0.473

√
0.39 (M) 0.325 0.442

√
0.48 (L) 0.312 0.368 - 3.5 4 -

COL 0.400 0.464
√

0.35 (M) 0.250 0.352
√

0.34 (M) 0.299 0.390
√

0.44 (M) 0.440 0.364 - 2
√

9 0.56 (L)
JDT 0.347 0.453

√
0.49 (L) 0.155 0.216

√
0.49 (L) 0.210 0.297

√
0.60 (L) 0.345 0.302 - 5

√
14 0.45 (M)

PLA 0.290 0.515
√

0.79 (L) 0.157 0.207 - 0.198 0.304
√

0.53 (L) 0.295 0.369 - 1
√

22 0.83 (L)
MOZ 0.190 0.435

√
0.94 (L) 0.045 0.098

√
0.66 (L) 0.072 0.156

√
0.77 (L) 0.232 0.252 - 8

√
34 0.45 (M)

POS 0.331 0.444
√

0.51 (L) 0.235 0.376
√

0.54 (L) 0.255 0.387
√

0.72 (L) 0.373 0.321 - 5 7 -
AVG 0.310 0.458 - 0.201 0.287 - 0.227 0.329 - 0.333 0.329 - 4.1 15 -

W/T/L 0/0/6 6/0/0 - 0/1/5 5/1/0 - 0/0/6 6/0/0 - 0/6/0 0/6/0 - 4/2/0 0/2/4 -

TABLE VII
COMPARISON OF THE PERFORMANCE ACHIEVED BY LT AND CBS WHEN INSPECTING 20% LOC

Project
Recall Precision F1-score PCI@20% IFA

LT CBS |δ| LT CBS |δ| LT CBS |δ| LT CBS |δ| LT CBS |δ|
BUG 0.449 0.438 - 0.333 0.473

√
0.43 (M) 0.378 0.442 - 0.516 0.368

√
0.40 (M) 5 4 -

COL 0.440 0.464 - 0.190 0.352
√

0.61 (L) 0.265 0.390
√

0.48 (L) 0.677 0.364
√

0.88 (L) 24 9
√

0.70 (L)
JDT 0.452 0.453 - 0.112 0.216

√
0.75 (L) 0.181 0.297

√
0.70 (L) 0.611 0.302

√
1.00 (L) 49 14

√
0.74 (L)

PLA 0.432 0.515
√

0.50 (L) 0.110 0.207
√

0.67 (L) 0.178 0.304
√

0.66 (L) 0.590 0.369
√

0.87 (L) 144 22
√

0.92 (L)
MOZ 0.363 0.435

√
0.44 (M) 0.035 0.098

√
0.84 (L) 0.062 0.156

√
0.84 (L) 0.554 0.252

√
0.99 (L) 185 34

√
0.82 (L)

POS 0.432 0.444 - 0.176 0.376
√

0.78 (L) 0.246 0.387
√

0.64 (L) 0.647 0.321
√

0.91 (L) 13 7 -
AVG 0.428 0.458 - 0.159 0.287 - 0.218 0.329 - 0.599 0.329 - 70 15 -

W/T/L 0/4/2 2/4/0 - 0/0/6 6/0/0 - 0/1/5 5/1/0 - 0/0/6 6/0/0 - 0/2/4 4/2/0 -

TABLE VIII
COMPARISON OF THE PERFORMANCE ACHIEVED BY CBS AND ONEWAY WHEN INSPECTING 20% LOC

Project
Recall Precision F1-score PCI@20% IFA

CBS OW |δ| CBS OW |δ| CBS OW |δ| CBS OW |δ| CBS OW |δ|
BUG 0.438 0.362 - 0.473

√
0.394 0.34 (M) 0.442 0.369 - 0.368 0.396 - 4 6 -

COL 0.464 0.561 - 0.352
√

0.227 0.53 (L) 0.390
√

0.315 0.37 (M) 0.364
√

0.649 0.73 (L) 9
√

31 0.68 (L)
JDT 0.453 0.422 - 0.216

√
0.117 0.71 (L) 0.297

√
0.183 0.69 (L) 0.302

√
0.553 0.70 (L) 14

√
52 0.67 (L)

PLA 0.515
√

0.407 0.59 (L) 0.207
√

0.110 0.65 (L) 0.304
√

0.167 0.67 (L) 0.369
√

0.537 0.66 (L) 22
√

238 0.80 (L)
MOZ 0.435

√
0.327 0.60 (L) 0.098

√
0.041 0.72 (L) 0.156

√
0.074 0.74 (L) 0.252

√
0.449 0.58 (L) 34

√
157 0.55 (L)

POS 0.444 0.451 - 0.376
√

0.224 0.69 (L) 0.387
√

0.294 0.57 (L) 0.321
√

0.555 0.69 (L) 7
√

18 0.49 (L)
AVG 0.458 0.422 - 0.287 0.186 - 0.329 0.234 - 0.329 0.523 - 15 83.7 -

W/T/L 2/4/0 0/2/4 - 6/0/0 0/0/6 - 5/1/0 0/1/5 - 5/1/0 0/1/5 - 5/1/0 0/1/5 -

donment due to occurrences of many false alarms before

success (i.e., a buggy change is identified).

We also compare our approach CBS with OneWay. Ta-

ble VIII presents the comparison results of CBS and OneWay

(denoted as “OW” in the table) when inspecting 20% LOC.

The results show that, CBS wins in terms of Recall in 2

out of the 6 projects and ties with OneWay in the other 4

projects, which suggests that OneWay cannot find more defects

than CBS. CBS significantly outperforms OneWay in terms

of Precision, F1-score and IFA in at least 5 out of the 6

projects, which suggests that CBS can significantly reduce the

number of false alarms before first success. Finally, compared

with CBS, OneWay would require developers to inspect about

20% more changes on average across the six projects, which

translates a large number of additional context switches.

B. Implications

1) Implications For Practitioners: Our experiment results

have shown that, in most cases, unsupervised model performs

better in terms of Recall, while supervised model performs

better in terms of Precision. Although we can use F1-score
to balance between Precision and Recall, the importance of

Precision and Recall are not always the same in different

projects.

For example, if the recommended changes are separately

assigned to a large group of developers, the number of false

alarms encountered by each developer would be significantly

reduced. Thus, Recall is likely to be more important than

Precision in this scenario, since a prediction model with high

Recall can detect more defective changes. On the other hand,

if the recommended changes are assigned to a few developers

only, the negative impact of false alarms on developers’

patience and confidence should be carefully considered. In this

scenario, the importance of Precision should be weighted more

than Recall.
In summary, we suggest developers use different measures

to evaluate a prediction model more comprehensively, and

choose the most appropriate model according to the require-

ment, schedule and resources in their own project.

2) Implications For Researchers: Both the studies by Yang

et al. [10] and Kamei et al. [8] assumed that the inspection cost

of a change is linearly associated with the change’s size (i.e.,

the number of modified LOC). However, we have found some

changes in the dataset which modified thousands of LOC. The

actual effort required to inspect such a large change may not

be linearly correlated with change size. For example, some

changes only add a common comment (e.g., copyright) to

a large number of files, and the amount of time and effort

to inspect such changes is likely to be low. Thus, we argue

that more factors (e.g., change type) should be considered to

decide the inspection cost of a change. We recommend future

research to do an empirical study on which additional factors

influence the amount of time and effort needed to inspect a

change, and how to determine the weights of different factors.

167

We also encourage future research on effort-aware JIT defect

prediction to consider context switch cost and initial false

alarms in evaluating the proposed solutions.

IX. THREATS TO VALIDITY

A. Internal Validity

The internal validity relates to errors in our code when

replicating the supervised and unsupervised model, which are

both published by their authors using R language. Although

our code is written in Java, we have carefully read the

published source code and strictly follow the implementation.

Since we use the same experiment setting as Yang et al.’s work,

we compare our experiment results with theirs. For supervised

model, our results are slightly different from those in [10].

Specifically, for each project, the differences between Yang et

al.’s results and ours in terms of Recall are no more than 0.02.

We argue that small difference is acceptable since supervised

model requires data preprocessing and introduces random

numbers. For unsupervised model, we reproduced the same

experiment results since it is straightforward to implement.

Thus, we believe there is little threat to internal validity.

B. External Validity

The external validity relates to the quality and general-

izability of our dataset. We use six open source projects,

which belong to different application domains, vary in size,

cover a long period of time and are written in different

programming languages. In total, we have analyzed 227,417

changes. However, there are still many other projects in other

domains using other programming languages, which are not

considered in our study. Besides, all the six projects in our

study are developed by open source communities, it is still

unclear whether our conclusion is generalizable to commercial

projects. In the future, we plan to reduce this threat further

by analyzing even more changes from additional software

projects.

C. Construct Validity

The construct validity relates to the suitability of our eval-

uation measures. In addition to Recall, we use 4 evaluation

measures, namely Precision, F1-score, PCI@20% and IFA.

We use Precision because Recall and Precision are usually

paired. We use F1-score because it balances the tradeoff

between Precision and Recall. Also, F1-score is widely used

in prior software engineering studies [13], [18]–[21]. We use

PCI@20% because we find that the distribution of change size

in every project is highly skewed, and we argue that inspecting

too many changes would introduce additional effort cost. We

use IFA because previous studies have shown that developers

are not willing to use the prediction model if its IFA is quite

large. Since we have carefully discussed the motivation of

using these additional evaluation measures and cited previous

studies to support our assumptions, we believe this construct

validity should be acceptable.

Another threat to construct validity relates to the underlying

metric we choose for Yang et al.’s unsupervised model. We

choose the metric LT since it achieves the best average

Recall in Yang et al.’s paper. However, another metric AGE

also achieves similar Recall. We re-run our experiment with

AGE-based unsupervised model and find that our conclusion

remains the same, and thus not interesting to report.

Finally, as recent studies [51], [52] pointed out, the exper-

imental design may also impact the conclusion of our paper.

First, our results rely on time-wise cross validation scenario

and we only choose two consecutive months as the time

slots in order to follow Yang et al.’s work [10]. However,

different validation techniques (e.g., choosing other time slots)

may produce different performance estimates [53]. Second, we

only use logistic regression as the underlying classification

technique for supervised models in order to follow Kamei et

al.’s work [8]. However, recent studies pointed out that defect

prediction models with different classification techniques or

different parameter settings may yield different results [54],

[55]. Last but not the least, we do not consider possible mis-

labelling in our dataset – Tantithamthavorn et al. [56] pointed

out that noise may creep into defect datasets and impact the

recall achieved by defect prediction models. To reduce these

threats to experimental design, as future work, we plan to

conduct more experiments using additional datasets, different

validation techniques and different classification techniques.

X. CONCLUSION AND FUTURE WORK

In this paper, we revisit Yang et al.’s recent study on

supervised versus unsupervised models in effort-aware JIT

defect prediction. We first highlight that it is of no surprise

that Yang et al.’s unsupervised model (LT) can find more

defects, since it requires developers to inspect more than

twice as many changes as those required by using Kamei et

al.’s supervised model (EALR). We point out that inspecting

too many changes would introduce additional effort due to

frequent context switches. Then we use 4 additional evaluation

measures to gain more insights of a prediction model. We find

that LT sacrifices Precision to achieve higher Recall, and it

no longer outperforms EALR when considering Recall and

Precision together (i.e., F1-score). We also point out that,

when using LT, developers may feel frustrated due to the large

number of initial false alarms. Finally, we propose a simple

but improved supervised model called CBS. When compared

with Yang et al.’s unsupervised model, CBS achieves similar

results in terms of Recall, but it performs significantly better

in terms of Precision and F1-score. CBS also significantly

reduces context switches and initial false alarms.

In the future, we plan to conduct a user study to investigate

the actual effort required to inspect different types of changes.

We are also interested to investigate the performance of

supervised and unsupervised models in commercial projects.

Acknowledgment. We would like to thank Kamei et al. [8]

and Yang et al. [10] for providing us the datasets and source

code used in their study. This work was partially supported by

NSFC Program (No. 61602403 and 61572426), and National

Key Technology R&D Program of the Ministry of Science and

Technology of China (No. 2015BAH17F01).

168

REFERENCES

[1] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[2] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on Software Engineering, vol. 42, no. 10, pp. 977–998,
2016.

[3] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software engineering, vol. 31, no. 10, pp. 897–910,
2005.

[4] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 78–88.

[5] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences and re-
sults from initiating field defect prediction and product test prioritization
efforts at abb inc.” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 413–422.

[6] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Transactions on Software Engineering, vol. 18, no. 5,
pp. 423–433, 1992.

[7] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[8] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2013.

[9] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 91–100.

[10] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 157–168.

[11] G. Koru, H. Liu, D. Zhang, and K. El Emam, “Testing the theory
of relative defect proneness for closed-source software,” Empirical
Software Engineering, vol. 15, no. 6, pp. 577–598, 2010.

[12] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1276–1304, 2012.

[13] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013, pp. 279–289.

[14] F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 432–441.

[15] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 19–29.

[16] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 international sym-
posium on software testing and analysis. ACM, 2011, pp. 199–209.

[17] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, 2016, pp. 165–
176.

[18] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining techniques
for building fault-proneness models in telecom java software,” in The
18th IEEE International Symposium on Software Reliability (ISSRE’07).
IEEE, 2007, pp. 215–224.

[19] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of
cross-project defect prediction,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineer-
ing. ACM, 2012, p. 61.

[20] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open

source software,” Empirical Software Engineering, vol. 18, no. 5, pp.
1005–1042, 2013.

[21] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in Proceedings of the 11th
working conference on mining software repositories. ACM, 2014, pp.
72–81.

[22] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

[23] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[24] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 26–36.

[25] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial
study on the risk of software changes,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 62.

[26] T. Menzies and J. S. Di Stefano, “How good is your blind spot sampling
policy,” in High Assurance Systems Engineering, 2004. Proceedings.
Eighth IEEE International Symposium on. IEEE, 2004, pp. 129–138.

[27] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on. IEEE, 2010, pp. 107–116.

[28] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” Journal of Systems and Software, vol. 83, no. 1,
pp. 2–17, 2010.

[29] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Automated Software Engineering, vol. 17, no. 4, pp.
375–407, 2010.

[30] M. Hamill and K. Goseva-Popstojanova, “Common trends in software
fault and failure data,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 484–496, 2009.

[31] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,”
in ACM SIGSOFT Software Engineering Notes, vol. 29, no. 4. ACM,
2004, pp. 86–96.

[32] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect
prediction: Unsupervised vs. supervised models,” in Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2017, p. to appear.

[33] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 31–41.

[34] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 452–461.

[35] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 181–190.

[36] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Software Engineering, 2005. ICSE
2005. Proceedings. 27th International Conference on. IEEE, 2005, pp.
284–292.

[37] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on software
engineering, vol. 26, no. 7, pp. 653–661, 2000.

[38] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, vol. 1. IEEE, 2010, pp. 495–504.

[39] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric
of small source code changes,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 6, pp. 511–526, 2005.

[40] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Naka-
mura, “An analysis of developer metrics for fault prediction,” in Pro-
ceedings of the 6th International Conference on Predictive Models in
Software Engineering. ACM, 2010, p. 18.

169

[41] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble learning
approach for just-in-time defect prediction,” Information and Software
Technology, vol. 87, pp. 206–220, 2017.

[42] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transactions on
Reliability, vol. 65, no. 4, pp. 1810–1829, 2016.

[43] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-
in-time defect prediction,” in Software Quality, Reliability and Security
(QRS), 2015 IEEE International Conference on. IEEE, 2015, pp. 17–
26.

[44] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[45] X. Xia, L. Bao, D. Lo, and S. Li, “automated debugging considered
harmful considered harmful: A user study revisiting the usefulness
of spectra-based fault localization techniques with professionals using
real bugs from large systems,” in Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on. IEEE, 2016, pp.
267–278.

[46] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[47] H. Abdi, “Bonferroni and šidák corrections for multiple comparisons,”
Encyclopedia of measurement and statistics, vol. 3, pp. 103–107, 2007.

[48] N. Cliff, Ordinal methods for behavioral data analysis. Lawrence
Erlbaum Associates, 1996.

[49] J. L. Hintze and R. D. Nelson, “Violin plots: a box plot-density trace
synergism,” The American Statistician, vol. 52, no. 2, pp. 181–184, 1998.

[50] W. Fu and T. Menzies, “Revisiting unsupervised learning for defect pre-

diction,” in Proceedings of the 2017 25th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2017, p.
to appear.

[51] C. Tantithamthavorn, “Towards a better understanding of the impact
of experimental components on defect prediction modelling,” in Pro-
ceedings of the 38th International Conference on Software Engineering
Companion. ACM, 2016, pp. 867–870.

[52] T. Menzies and M. Shepperd, “Special issue on repeatable results
in software engineering prediction,” Empirical Software Engineering,
vol. 17, no. 1-2, pp. 1–17, 2012.

[53] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An empirical comparison of model validation techniques for defect
prediction models,” IEEE Transactions on Software Engineering, vol. 43,
no. 1, pp. 1–18, 2017.

[54] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction mod-
els,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 789–800.

[55] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“Automated parameter optimization of classification techniques for
defect prediction models,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 321–332.

[56] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The impact of mislabelling on the performance and interpreta-
tion of defect prediction models,” in Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, vol. 1. IEEE, 2015,
pp. 812–823.

170

